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ABSTRACT

Spiking deconvolution corrects for the e�ect of the seis-
mic wavelet, assumed to be minimum delay, by applying
an inverse �lter to the seismic trace to get an estimate
of re�ectivity. In order to compensate for propagation
and absorption e�ects one may use time-varying decon-
volution where a di�erent inverse �lter is computed and
applied for each output sample position. We modify
this procedure by estimating a minimum-delay wavelet
for each time-sample position of the seismic trace. This
gives a decomposition of the seismic trace as a sum of
minimum-delay wavelets, each multiplied by a re�ectiv-
ity coe�cient.

The re�ectivity estimation is a single-trace process which
is sensitive to non-white noise, and it does not take into
account lateral continuity of re�ections. We therefore
have developed a new data processing strategy by com-
bining it with adaptive SVD �ltering. The SVD �ltering
process is applied to the data in two steps. First, in a
sliding spatial window on NMO-corrected CMP or com-
mon shot gathers. Next, after local dip estimation and
correction, on local patches in common-o�set panels.
After the SVD �ltering, we apply the new re�ectivity
estimation procedure. The SVD �ltering removes noise
and improves lateral continuity while the re�ectivity esti-
mation increases the high-frequency content in the data
and improves vertical resolution.

The new data processing strategy was successfully ap-
plied to land seismic data from North-east in Brazil. Im-
provements in data quality are evident in prestack data
panels, velocity analysis and the stacked section.

INTRODUCTION

Prediction error �ltering is one of the most commonly
used techniques for processing seismic data (Robinson,

1980; Yilmaz, 1987). Prediction error �ltering can be
classi�ed in two types: spiking deconvolution (Robin-
son, 1967) which aims at removing the e�ect of the seis-
mic wavelet from the data, and predictive deconvolution
(Peacock and Treitel, 1969) which aims at attenuating
ringing and multiple re�ections. In spiking deconvolu-
tion (Leinbach, 1995) a seismic trace is assumed to con-
sist of a wavelet convolved with a re�ectivity series (the
response of the earth) plus additive noise. The re�ectiv-
ity series and the noise are assumed to be uncorrelated
with the statistical properties of random white noise.
The wavelet is assumed to be minimum delay (Robin-
son, 1980). With these assumptions the autocorrelation
function of the trace can be used to compute the spiking
deconvolution �lter by the (Levinson, 1947) algorithm.

This method is very robust, but the results are poor
when the wavelet is mixed delay (Robinson, 1980; Yil-
maz, 1987). When the wavelet is known, it can be
used to design a pulse-shaping �lter (Berkhout, 1977)
so that the output is a minimum-delay wavelet. The
wavelet can also be estimated from data and then used
to compute an inverse �lter (Porsani and Ursin, 1968;
Ursin and Porsani, 2000). The �ltered seismic trace is
then an estimate of the re�ectivity series. Misra and
Sacchi (2007) and Misra and Chopra (2010) deconvolve
the data with a standard spiking deconvolution �lter.
From the �ltered, whitened data they estimate an all-
pass phase �lter which is then applied to the whitened
data. This, again, represents an estimate of the re�ec-
tivity series. Van der Baan (2008) estimates the phase
of the wavelet in a data window using kurtosis maxi-
mization. Combined with an estimate of the amplitude
spectrum of the wavelet, this is used to design an in-
verse �lter. The procedure may be applied in several
time windows to achieve a time-variant deconvolution
�lter.

Due to propagation and absorption e�ects in the earth
the wavelet in the data is varying with time. To compen-
sate for this a time-varying deconvolution �lter (Clarke,
1968) may be applied. From the autocorrelation func-
tion of the data in a time gate a new deconvolution �lter
is computed and applied for each time sample position.
Wang (1969) gave a procedure for optimal selection of
the length of the time gate. Gri�ths et al. (1977) used a
conjugate-gradient method to compute the deconvolved
output, without computing the �lter coe�cients.
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Our method is di�erent from these classical approaches.
We, also, start with the data in a time gate. From the
autocorrelation function we compute a spiking decon-
volution �lter which is minimum delay. The inverse of
this is an estimate of a local minimum delay wavelet.
This procedure is repeated for each time sample posi-
tion. The seismic trace can be represented by a sum
of these wavelets multiplied by the sample values of the
re�ectivity series. This is a linear equation where the
data vector is equal to a lower triangular wavelet ma-
trix times the re�ectivity vector. This equation can be
solved recursively to obtain the re�ectivity series. The
new procedure is similar to, but di�erent from, time-
varying deconvolution, and the result is also slightly dif-
ferent. As a valuable by-product we obtain the time-
varying minimum-delay wavelets which can be used for
interpretation.

The new method has been test on land seismic data
from the North-east of Brazil. The data was acquired
with an explosive source, so that there should not be a
problem with the source wavelet in the data processing.
In order to improve the data quality we �rst enhance re-
�ections by adaptive SVD �ltering (Porsani et al., 2010).
This is �rst applied on NMO corrected shot gathers and
next on local patches of dip-corrected data in common-
o�set panels. From the SVD �ltered data we estimate
the re�ectivity series with our new method. We show
that the two methods are complementary: the SVD �l-
tering removes incoherent noise and laterally coherent
events which are not primary re�ections, and the recur-
sive re�ectivity estimation improves vertical resolution
and increases the high-frequency content of the output
data.

SEISMIC TRACE DECOMPOSITION

We consider a seismic trace d(t), t = 0, 1, . . . , L, and
choose a data window d(k + j), j = 0, 1, . . . Ld. The
local auto-correlation function is

Rk(τ) =
∑
j

d(k + j)d(k + j + τ) , τ = 0, 1, . . . , Ld (1)

From this we use the Levinson (1947) algorithm to com-
pute a damped spiking �lter (Robinson, 1967)

[Rk(τ) + λ2δτ ] ∗ gk(τ) = σ2δτ (2)

where ∗ denotes time convolution, σ2 is the minimum
sum of the squared error terms, and

δτ =

{
1 τ = 0
0 otherwise

and gk(τ) =

{
1 τ = 0
0 τ > Lf

(3)

The inverse of the spiking �lter is a minimum-delay
wavelet (Robinson and Treitel, 1980) computed directly
from

gk(t) ∗ wk(t) = δt with wk(t) =

{
1 t = 0
0 t > Lw

(4)

The seismic trace is now expressed as a sum of minimum-
delay wavelets

d(t) =
∑
k

rkwk(t− k) (5)

This can be written in vector-matrix notation as

d = Wr (6)

where W is an L× L lower triangular matrix with ele-
ments 1 on the diagonal. This equation is solved recur-
sively for rk, k = 0, . . . , L, which gives an estimate of
re�ectivity with time-varying minimum delay wavelets.

Time−variant deconvolution

In time-varying deconvolution we compute and apply a
di�erent �lter for each time sample. We have already
computed the �lters, gk(τ), in equation 2. The output
of the deconvolution process is

r̂k =
∑
τ

d(t− k − τ)gk(τ) (7)

This can be written

r̂ = Gd (8)

From this equation we get the decomposition

d = G−1r̂ (9)

in terms of wavelets de�ned by the columns of G−1. It
is of the same form as the decomposition in equation 6,
but the wavelets are not necessarily minimum delay. The
matrix F = GW is also lower triangular with elements
1 on the diagonal. It is, however, di�erent from the
identity matrix, so the decompositions in eq. 6 and 9
are di�erent.

From equation 6 we have

r = W−1d (10)

The lines ofW−1 can now be considered as time-varying
�lter impulse responses. They are, however, not neces-
sarily minimum delay.

In conclusion, the new process is a decomposition of the
seismic trace in minimum-delay wavelets. The recursive
estimate of the re�ectivity may also be considered to
be the output of a mixed-delay time-varying �ltering
procedure.

APPLICATIONS AND RESULTS

The proposed method was tested on a land seismic line
from the Tacutu basin, located in the North-east of
Brazil, with an explosive source.
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First a standard processing sequence was applied: ge-
ometry, edit, preliminary spherical divergence correction,
standard velocity analysis and NMO correction. Due to
the limited CMP coverage, the data were then resorted
into shot gathers before the �rst SVD �ltering was ap-
plied using a sliding spatial window. After inverse NMO
corrections, the �ltered data is subject to local dip es-
timation and a second SVD �ltering on common-o�set
panels. Details are given in Porsani et al. (2010). From
these SVD �ltered data we estimate the re�ectivity se-
ries with the new method. The data may then be subject
to a re�ned velocity analysis before NMO corrections
and stack.

Fig. 1 shows a single shot gather before and after SVD
�ltering and SVD �ltering followed by re�ectivity es-
timation. It is seen that SVD �ltering removes noise
and improves lateral continuity and that re�ectivity es-
timation improves vertical resolution and boosts high
frequencies.

Fig. 2 shows stacked sections. The stacking velocities
used for NMO corrections are the same for all sections.
Fig. 2a shows the original data with no extra processing.
In Fig. 2b re�ectivity estimation is applied before SVD
�ltering, and in Fig. 2c the two procedures were applied
in reverse order. Both section represent improvement as
compared to the ones in Fig. 2a.

By inspecting the two sections we believe that the sec-
tion in Fig. 2c has less noise than the section in Fig. 2b.
Thus, the optimal data processing procedure is to apply
SVD �ltering followed by re�ectivity estimation. The
reason for this may be that the re�ectivity estimation
algorithm is sensitive to noise, so that it is better to ap-
ply SVD �ltering, with removes noise, before re�ectivity
estimation.

CONCLUSIONS

We have developed a new method for estimating seis-
mic re�ectivity by decomposition of a seismic trace in
minimum-delay wavelets. The method improves vertical
resolution for a source wavelet which is close to mini-
mum delay. For a mixed-delay source wavelet one may
apply an all-pass phase �lter before or after the re�ec-
tivity estimation.

We have also developed a data processing strategy for
noise removal and signal enhancement by combining
adaptive SVD �ltering with re�ectivity estimation. The
SVD �ltering removes noise and improves lateral conti-
nuity while the re�ectivity estimation increases the high-
frequency content in the data and improves vertical res-
olution. The new data processing strategy was success-
fully applied to seismic land data, showing improvements
in the prestack domain and on the stacked section.
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Figure 1: Input data in (a), after SVD �ltering (b) and
after SVD �ltering followed by recursive re�ectivity es-
timation (c).
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Figure 2: Stacked sections. Original data (a), after recursive re�ectivity estimation followed by adaptive SVD �ltering
(a) and after adaptive SVD �ltering followed by recursive re�ectivity estimation (b).
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