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ABSTRACT

The structure tensor is a very versatile tool. It can
be used to detect edges, estimate coherency and lo-
cal slopes. In this work we use the structure tensor to
estimate local slopes for data �ltering purposes. We
investigate the use these slopes to apply an structure-
preserving �lter to an synthetic seismic dataset.

INTRODUCTION

The structure tensor was applied to seismic data analysis
and �ltering many times before. Bakker (2002) gives a
very comprehensive description of the applications of
structure tensors to seismic data �ltering. They can
also be used to identify and create clusters of areas of
interest in seismic data (Faraklioti and Petrou, 2005)
and to edge-preserving smoothing by di�usion �ltering
of seismic data (Hale, 2009; Lavialle et al., 2007).

We use the structure tensor to estimate local slopes of
the data. With this slopes we can predict each trace
from its nearest neighbors by using plane-wave structure
prediction (Fomel, 2010). Then, we stack the predicted
traces with the original ones, accomplishing structure
�ltering (Liu et al., 2010). We also test the possibil-
ity of using stacking weights to improve the structure
preservation.

THE STRUCTURE TENSOR

The structure tensor is obtained by simple windowed
smoothing operations and simple di�erentiation of the
image. It's commonly used to detect lines and regions
of interest in images. The structure tensor is known
by di�erent names depending on the application �eld:
gradient structure tensor, second-moment matrix, scat-
ter matrix, interest operator and windowed covariance
matrix (Faraklioti and Petrou, 2005).

The �rst order structure tensor is obtained by a �rst or-
der Taylor expansion from the squared di�erence func-
tion. For the sake of simplicity we omit the deduction
of the tensor (see e.g. (Faraklioti and Petrou, 2005) for
detailed derivation).

Let P (t, x) be the recorded wave �eld at a given time t
and position x. The structure tensor is given by:
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where, the symbol 〈·〉 represents the average value pro-
duced by the smoothing procedure under a given win-
dow, around (t0, x0). The window size, in this case, is
called integration scale. The local smoothing window
used when the derivatives are calculated is called local
scale. This is done because derivatives estimated from
raw data are very noisy (Faraklioti and Petrou, 2005).

We can observe that the structure tensor is symmet-
ric and semi-positive de�nite. This means that all the
eigenvalues are real and positive. The structure ten-
sor eigenvalues and eigenvectors can be used to detect
lines, borders and regions with constant image intensity.
The expected behavior for each one of those scenarios
is summarized in table 1.

Local Structure Eigenvalues

constant intensity λ1 ≈ λ2 ≈ 0
line λ1 � 0 λ2 ≈ 0

corner λ1 � 0 λ2 � 0

Table 1: Local structure conditions and expected re-
lationships between eigenvalues of the structure tensor
matrix(Faraklioti and Petrou, 2005).

The eigenvalues of the matrix 1 are the roots of the
characteristic equation:
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Both eigenvalues can be easily found by solving the pre-
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vious equation. Its solution is given by:
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By looking at equation 3 we can notice that both eigen-
values are positive, and satisfy the relation λ1 ≥ λ2 ≥ 0.
In order to avoid loss of signi�cant digits, it is wise to
compute the eigenvalues as follows:
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EIGENVALUES AND LOCAL SLOPES

Let e1 and e2 be eigenvectors corresponding to eigen-
values λ1 and λ2, respectively. The eigenvector e2 is
perpendicular to data gradient, thus being parallel to
the structures on the seismic image (Hale, 2009).

We can estimate the data local slope by using the incli-
nation of e2. The inclination of e2 is given by:
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Since e1 is orthogonal to the data structures, we can
also use it to estimate the local slope, by employing the
following equation:
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STRUCTURE PREDICTION FILTERING

There are many ways to accomplish structure-enhancing
�ltering of a seismic image, like di�usion �ltering of
seismic data (Lavialle et al., 2007) or steering Gaussian

elongated windows along local slopes patterns (Haglund,
1992). For simplicity, we choose to �lter along the struc-
tures using plane-wave prediction (Liu et al., 2010).

A trace can be predicted by shifting it according to the
local seismic event slopes. Consider the prediction op-
erator Pi,j(σi) as an operator for prediction of trace j
from trace i, according to the local slope pattern σi (see
e.g. Fomel (2002) and Fomel (2010) for further details).
It's possible to predict a trace from a distant neighbor
by simple recursion. So, predicting trace k from trace 1
is simply:

(8)P1,k = Pk−1,k · · · P2,3 P1,2.

In this work we propose the use of the structure pre-
diction with the dips estimated by the structure tensor,
instead of using the ones estimated with plane-wave de-
structors. After estimating the slopes, we predict a trace
from its neighbors and stack the predicted traces with
the original trace. In that way we accomplish the struc-
ture �ltering (Liu et al., 2010).

TESTS WITH SYNTHETIC SEDIMENTARY

DATA

We tested the ability of the structure tensor to esti-
mate local slopes for �ltering purposes with a synthetic
data for a sedimentary model, showed in �gure 1. This
dataset, proposed by Claerbout (1992), is composed by
200x200 pixels, spaced by 8 m in the x axis and 4 ms
in the t axis.

Figure 1: Synthetic data for a sedimentary model with
noise.

The �rst step to obtain the slopes is the eigenvalues
calculation. For this procedure the local and integra-
tion scales were windows with 5x5 samples each. The
window samples had Gaussian like weights, following
the expression e−(αt2+βx2)/16, with α = 1 (ms)−2 and
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β = 1 (m−2). For simplicity, t and x were considered in-
tegers with unitary spacing inside the window and origin
at the window center.

The slopes were estimated using the �rst eigenvalue
and the equation 7. We choose to use λ1 to obtain
the slopes, by using equation 4. If calculated without
proper care, λ2 may su�er from loss of signi�cance. By
calculating it using equation 5 the dips obtained with
equation 6 are equivalent to the ones obtained with λ1
and equation 7.

The slopes obtained with the structure tensor are based
on sums over data derivatives. This derivatives can be a
little noisy, even after applying smoothing procedures. A
possible workaround is to further smooth the data before
di�erentiation, taking care to not blur the re�ector's
edges too much.

That can be done by changing the local and integration
scales. A bigger local scale make the structure tensor ig-
nore smaller details. The integration scale should re�ect
the characteristic size of the texture of interest (Weick-
ert, 1999), in this case it should re�ect the re�ectors
size. Instead of increasing the scale's size, we choose to
smooth the slopes obtained three times with a triangular
smoothing window of 7x7 samples, obtaining the slopes
showed in �gure 2.

Figure 2: Smoothed slopes estimated using the structure
tensor.

We used the estimated slopes to predict each trace from
its three nearest neighbors, generating the data cube
depicted in �gure 3. At this point it is possible accom-
plish structure �ltering by simply stacking the traces of
the data cube. By doing so, we have the �ltered data
showed in �gure 4. The noise was clearly attenuated,
but the fault and the interface between the folded lay-
ers and the plane layers was smeared. This e�ect is
very clear when we calculate the di�erence between the

original and �ltered data (�gure 5).

Figure 3: Predicted traces from input data (�gure 1),
using the slopes estimated in �gure 2.

Figure 4: Filtered data using an simple mean �lter.

Figure 5: Di�erence between the original data (�gure
1) and the data �ltered with simple mean (�gure 4).
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SIMILARITY FILTERING WITH GAUSSIAN

WEIGHTS

To prevent the blurring of data near faults and strati-
graphic interfaces, we decided to improve the struc-
ture �ltering by using similarity based �lter weights for
the stacking step (Liu et al., 2010). For the similarity
weights, we use the de�nition of local similarity proposed
by Fomel (2007). Those weights are showed in �gure
6. To further improve the data staking we employed
a Gaussian taper. This results lower weights in stack-
ing for traces predicted from traces far from the original
trace. The Gaussian weights are given by:

(9)wi = e−h
2
i /h

2
r ,

where hi is the distance to trace i and hr controls the
shape of the Gaussian weight function (Liu et al., 2010).
This approach is analogous to bilateral �ltering (Tomasi
and Manduchi, 1998), with the advantage of smooth
variation of the similarity weights. The product of both
weights is showed in �gure 7.

Finally, the �ltering using the stacking weights of �g-
ure 7 is showed in �gure 8. We can see that the noise
was attenuated, also there are very little smearing of
the faults and other interfaces. This fact is further con-
�rmed by the di�erence between the original data and
the �ltered data (�gure 9).

Figure 6: Similarity weights for the predicted traces (�g-
ure 1).

CONCLUSIONS

The results of structure prediction �ltering, with slopes
from the structure tensor, were satisfactory. We can see
on �gures 4 and 8 that the noise was successfully atten-
uated. The smoothing took place along the layers, not
across them, as expected. One of the problems encoun-
tered was the blurring of re�ectors, as showed in �gures

Figure 7: Similarity weights with Gaussian taper.

Figure 8: Filtered data using the improved similarity
weights.

Figure 9: Di�erence between the original data (�gure
1) and the data �ltered with improved similarity weights
(�gure 8).
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4 and 5. Blurring the re�ectors implies in blurring the
fault present in the image and the interface between the
folded layers and the plane layers. To address this prob-
lem, we use the stacking weights proposed by (Liu et al.,
2010). These weights help to preserve the sharpness of
the re�ectors (�gures 8 and 9), acting almost like a bilat-
eral �lter. This �lter is well known by its edge-preserving
properties. In this case, the re�ector's ends can be con-
sidered edges. The results could be further improved if
the slopes estimation was enhanced at discontinuities,
like faults or other types of seismic interfaces.
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