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ON THE STABILITY OF THE PACIFIC OCEAN SUBARCTIC FRONT

ALEJANDRO LIVIO CAMERLENGOI*

It is analitically shown that in the case of the Pacific Ocean Subarctic fronts in the
upper layer, instability due to horizontal shear may only be possible on very small
horizontal scales. Therefore, barotropic instability should not occur.

É mostrado analiticamente que no caso de frentes oceânicas na camada superior, a

instabilidade devida ao cisalhamento horizontal pode ser possível somente para

escalas horizontais muito pequenas. Portanto, a instabilidade barotrópica não deve

ocorïer.

INTRODUCTION MODEL FORMULATIONS

Camerlengo (1982) studied the large scale

response of the Pacific Ocean Subarctic Front to
momentum transfer. In that numerical work there were
no instabilities. It should be noted that in the upper
layer of the Subarctic Front the temperature and

salinity fronts compensate each other (Roden, 1972).

The aim of the present work is to derive a stability
criterion for an oceanic front in the upper layer, in
general, and for the Subarctic Front, in particular.

The instability of parallel inviscid flows was first
addressed by Lord Rayleigh (1880). The main
conclusion of his theorem, valid for nonrotating
systems, states that if the velocity profile does not
have an inflection point, the inviscid flow should be

stable. A direct result of the Rayleigh's theorem was

observed by Hoiland (1953). Denoting the velocity
profile and the inflection point by U and Uo,
respectively, Hoiland concluded that dzuldy2 should
negatively covariate with U - lJo, between the
meridional walls, as a condition for horizontal shear
instability. It should be noted that if the rotational
effects are included in Hoiland analysis, it is
immediately concluded that the P - plane
approximation should introduce a stabilizing effect.

Eddies may be generated by the horizontal shear

of the mean flows. In such a case, eddies extract
energy from the mean flow kinetic energy. However,
eddies may extract additional energy from the mean
available potential energy field through baroclinic
processes. More generally, energy may be supplied to
the eddies by both the horizontal shear of the mean

flow and the mean available potential energy field.

Statement of the Problem

A two-layer model is considered. In order to
filter out the barotrôpic mode, the lower layer is
chosen to be motionless (Fig. 1). Furthermore, it is
assumed that the height of the upper layer, h, has a
hyperbolic profile of the form

h : hoo - Ah tanh (ylLy) (1)

where the mean value, ñoo, and the amplitude, Âh, of
the upper layer are given arbitrary values of IOO and
1O m, respectively. The meridional lengttr scale of the
oceanic front, L, is set to be equal to 1O km.

To simplify the equations to be used, the
following hypotheses are made

where g* represents the reduced gravity and the
over-bar ( - ) quantities represent the mean state;

1) the oceanic f¡ont is geostrophically balanced, i.e.
:-

- f=u : C* +, V : O (Z)- ôy'

2) since the meridional length scale of the oceanic
front in the upper layer,L,y, has an order of magnitude
of ten kilometers, the f-plane approximation is used;

3) the zonal wave number, k, is much smaller than
(þ)-1; therefore only long waves are considered; and
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Figure 1- Initial position of the Suba¡ctic Front, modelled via an hyperbolic tangent profile.

4) the vorticity at the front, represented by -aVay, is
much less than the planetary vortìcþ, f.

Equations of Motion

With the above assumptions, the linear inviscid
perturbation equations may be written as

#* E#*'' F-rv, : -c. H, (3)

*fu':-sxôh'."ðy

fU + ik (u-c) V: - c.*#

itrru + #,F") + ik (u-c) H : 0

This system of equations may be reduced to the
single equationl

(8)

(e)

( hH' )' + u-c + o2ñ' H:0
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ðh' .ôh -ðv'
ðx *t ry*n rr:o (5)

(10)

where ( )' : d( )/dy and a2 : ¡21rx[)-1 is tfre
inverse of the Rossby radius of deformati--on squareA. 

-

Since the meridional length scale of interest is of
the order of ten kilometers, it may be assumed thatH(-):H(--):O

u

where the prime quantities represent the perturbation.
In equation (4) the geostrophic balance term is
substracted.

Assuming that the perturbation quantities have a
wavelike form

{',}

u (y)
v (y)
H (y)

For the perturbation to be unstable, the phase
speed, c 1 : ar + ic¡ ), must be complex. The
amplitude functions must also be complex.

For the sake of simplicity, the variable Z(: I _ c)
is introduced, and the following change of variables is
made (Howard, 1961): H - 71t2 e. With these
considerations, equation (lO), may be expressed as2

STABILITY CRITERION

1 See Appendix A for derivation
2 See Appendix B for derivation

where U (y), V (y) and H (y) are respecrively rhe
amplitudes of u', v' and h', the above set of equ;dons
has the form

ik(Í-c)u*(*;-f ) v: - g* ikH, (7)
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(lzQ' )'- [fh'+

--#t e: o

t-

i{tru')'+o2hz+

ci f thlq'lz + {.,2 O Úrrr lqlzl ay : 6

If

lzl2 : lü - cl2 > R2 : gx Fü'z
4f2

where t|r 't, Þ, K, X, tr and Alr a¡e the dimensionless
variables. The expression for the zonal velocity at tlrc
front, lul-, which is maximum, has the form

lul-:tr (16)

Multiplying equation (11) by Q* (complex conjugate

of Q) and upon integration by parts yields

t t hz lq'12 + [n' + ] <ñ U'l' + o.2 hz

* Wor l lelzl ay : 9 (tz)

where the limits are omitted.
The imaginary part of Z is -c1. It follows

immediately that the imaginary part of Z-1 is -clZ'2.
Therefore. the imaginary part of equation (12) is

The basic state may then be rewritten as

)r:l-Altanhl (17)

l¡: sech2! (18)

Thus, for the basic state (17 and 18) the stability
criterion (14) becomes

lp - {z = 
8* hoo 

(l - ar tanh r) sech4 r¡ 1-¡¡r2 n : 42
f'\' (1e)

For the purpose of clarity, a family of circles of
radius $, each one centered at p, is constructed in the
complex 1 plane (Fig. 2). The envelope defined by the
family of ci¡cles delimits the outer region of stability.
Because of the positive contribution of the term hlQ'12
in equation (13), it would be inappropriaæ to state that
the region delimited by the points inside tlre envelo¡re
corresponds to the unstable case.

¡et "yo md T.t be the minimum and maximum real
values of the points along the envelope, respectively.
Three cases are possible:

through the entire domain, the integrand of equation
(13) has a positive defnite form. In such a case,

equation (13) can hold only if "i 
: O. Therefore, the

condition (14) guarantees that the front is stable with
regard to the perturbations.

Looking at the problem from a mathematical
point of view, criterion (14) is met outside the circle of
radius R centered at ( ü, 0 ) along the c, axis in the
complex C plane. For a given oceanic front, both h
and ü are functions of the latitude, y. Therefore, to
every latitudinal point, y, across the front there
correspond one interval and one radius.

The two extremes - maximum and minimum- of
this family of intervals delimit the region of stability.
In other words, any point outside that region
corresponds to a stable fluctuation of the front. This
constitutes a sufficient condition of søbility.

I.et us nondimensionalize the governing
equations according to:

(13)

(14)

( 1s)

Yi

-l

\: YIL,

'y : c/lülm

p : û/lülm

r : <o/hl

X : k/lctl

¡r : ñ/hoo

l¡r : A-h/hoo

-l
Yr

Figure 2. Enveþe showing outer region of stability of
equation lr, - pl2 + Tl: 02 in ûre complex 1
plane for lr¡l = t.
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(2Oa)

(20b)

(2oc)

whose wavelengths are larger than 22 km may be
barotropically stable. Therefore, instability due to
horizontal shear is only possible on very small scales(i.e., < 21.6 km) and should not occur in upper layer
Pacific Ocean Subarctic Front.

(i)

(ii)

(iii)

6<"yo{^y1,

To("y1 <0,

^lo<O("Í1,

fl

. (Ð If borh -yo and ^y1 are posirive, rhe stability in
the ¡ complex plane corresponds to the points outside
the interval (Xl, Xo) since the dimensionless frequencyr is positive and real (Fig. 3a).

(ii) The same result holds if both extremes, "yo
and 11, are negative (Fig. 3b).

. ..ÍiiÐ If 1o is negative and ^y1 is positive, thestability region is determined by the'points inside the
interval (Xo, Xt) (Fig. 3c).

CONCLUSION

It has been observed that the time scale of the
oceanic mixed layer response to atmopheric wind
forcing is on the order of a couple of dãys, at most
(Garwood, 1977). For hoo : 10O m, \ : 1O km, 1o
and "y1 are found to be 0 and 1.25, respéctively. Usin!
a two-day period, the above values correspond to a
wavelength less than 2l.6 k;rn. Thus a sufficient
condition of stability for a pacific Ocean Subarctic
Front acted upon by wind forcing in the upper layer is
established. This criterion guarantees that waves
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'' å"ffÏ""åtî'.,iiîiJi: - complex plane whenever a) 1o ¿¡d rr are positive; b) "yo and r.¡ are negarive; c) "yo is
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APPENDD( A

Derivation of Equation 1O

In subtracting the product of equation (7) and ik
G - c) from the product of equation (8) and G, - Ð
(primed quantities represent derivatives with respect to
y) we will have an expression for U of the form:

U-: 2HG-c)fH' - f)l
(4.1)k2(ü-c)2+ffi'+f2

The appropriate physical scale is: Lx : 106 m, H
: lOO m, G _ c) : lO-1 m.s-1 f : lO-4 .-1 and Ly :
loa m. In the ocean typicat values of u and v are iríthe
order 1O-1 m.s-l. Therefore ü' : du/dy can be scaled
as û/þ. Thus, -u' << lO-4 s-1. Using these scaling
t€rms we will have:

(2 n)2
L*2

k2H(ü-c): H(u - c) : lQ-e s-1 6.2)

Then equation (4.1) will have the final
(geostrophic) form:

U : -g* H'lf (4.6)

By subtracting the product of equation (7) and f
from the product of equation (8) and ik (u - c) we
wind up with an expression for V of the form:

,, : ikf* 
t fH - H, (ü - c) I (1 + u,/Ð (A.7)

f2

The product of H'(ü - c) by l'/f is disregarded
because it is at least one order of magnitude less than
the rest of the products. Therefore, a final expression
for V will be:

,,, : iuF* 
¡H - 

(ü: c) H, + ü'rH.l (A.8)

Introducing equations (A.6 and 4.8) into
equation (9), and after some algebraic manipulations
yields:

fh'..:-(u-c) (1 + u'lÐ +H (u'- Ð : 10-6 s-1

Therefore:

k2 H G - c) << f'(ü, - Ð

and

k2 (u - c)2 << f(f - u')

+9 {h-H,,+ ñ,H,- [

*a2h+U__"lHÌ:O
or

(ñ H,), - tg * g-u'x + c2 ñl H =u-c ll- I u ^^'¡":o'
Which is the final expression we want (1O).

(4.3)

(4.4)

(A.s)

APPENDD( B

Derivation of equation (11)

LetZ:ü-cand

H: l1t2 q (8.1)

An expression for H' will have the form:

H, - ZIt2 a' * ,{ ez-ttz (B.Z)

Thus, the product (h H')' will be:

(ñH')' :fi71t2 e" + (h-u-, Z-tt7 e, *fi,71t2 e, *
* try 7-1t2 ¡O-T' t-',,, - Ërrfi7.srz1q (8.3)

We will have also

(hz Q)' : hze', + h-e' ü' +Ë, e, z (8.4)

Ilqoducing (8.4) inro rhe producr of equarion (8.3) by
Zit2 yields:

z1t2 (h H,), : (Ë z e), + I(F¡'r, _-Vl a
(B.s)

The product of equation 
!tO) 

by 71t2 *i116u

Z1t2 (h H,)' : ¡f h'' + (h E')' * a2 h- zl e (8.6)

Thus comparing equations (8.5 and 8.6) yields

(h'ze')'- [fn-,+ ClI, l, --V + a2ñ'Z] e:0
(8.7)

Which is the final expression we want (11).
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