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SEISMIC REFLECTION TOMOGRAPHY'

P. HUBRAL1

Lil<e in medicine or non-destn¡ctive testing, tomography has now becore a well
established inaging tool. In reflection seismology it is used to image the velocity
or the rcflectivity of the earttr particularly in surface, resewoir, borehole, and
crosshole seismology. Origina[y based on ray theory it ca¡r now bo developed
frrom the wave equation as described by Huygen's principle given in form of
KirchhofFs int€gral for acoustic and elastic media Tomography thus, has
undergone a similar transition as seismic migration theory and both theories in fact
veqi much relafe to each other. Accepting the Born approximation for the medium
ûo be imaged one can formulate the tomographic imagFng approach as a cônsistent
and comprehensive theory of linearized inversion. This incorporates such methods
as transmission and reflection tomography for arbitrary ftrequencies as well as
high-ñæquency coryut€rized tomography that involves the Radon transform. The
general framework'of linea¡ized scalar diftaction tomography will be discuss€d
from first principles. Emphasis is put on refloction tomography. lhe case of
zero-offset reflection tomography is treated for a Born scatter€r as well as for a
layered medium with reflectors buried into an arbitrary inhomogeneous velocity
field.

TOMOGRAFIA DE sfSMIcA DE REFLEX.Ã.O - Como em medicina ou
testes não destnrtivos, a tomografìa s€ tornou uma técnica de imageamento bem
estabelecida. Em sfsmica de reflexão, ela ê usada para rn4)ear a velocidade ou ne-
flectividade da terra principalmenæ em sfsmica de superffcie, reservatório, "furo"
e "ctosshole", Originalmente baseada na teoria de raio, ela pode ser dcsenvolvid¿
das equaçõel de onda como descrito pelo princfpio de Huygens dado na forma da
integfal de Kirchhoff para meios acústicos e elásticos. Assim, a tomografia passou
por urna tnûsição simila¡ à da migração sfsmica, as duas t€orias se relacionando
bastante uüa com a outra. Aceitando a aproximação de Bofn para o meio a ser
rna¡rado, pode-se formular a tomografia como uma teoria consistente e abrangente
de inversão linearizada. fsto incorpora os métodos como tomografia de transmis-
são e de reflexão para freqilências aúitrárias assim como a tomografia coryutado
Åzqda de alta freqitência que envolve a trarisfonnada de Radon. A estnrnrra geral

{a tomografia de difração escalar linearizada será discutida de princfpios blisicos.
Enfase é dada à tomogfafra de reflexão. O caso de tomografia de reflexão & des-
locanento z,eto ê traiado para um espalhador Born asiim como para ,,m meio
constitufdo ds semedas com refletores ircrsos em um caryo a¡bitrário de veloci-
dades não homogêneas.

INTRODUC'TION

Seismic Tomgraphy hås already become a
widely investigated a¡ea of resea¡ch. Henoe only
oertain a¡¡pccts will be surr,marized here. In
one can subdivide Scismic Tomography i¡1s ¡vs mnin
b¡rics: Traveltime Tomography and Diftaction
Tomography. Both ar€ based on linearisation
principles. In thÊ ñrst case the linearisation principle is

based on the eiconal equatíon (Nolet, 1987).In thÊ
second case it is based on the wave equation
(Langenberg, 1987).

Traveltire Tomography can fr¡¡ther bo dividÊd
into transmission-, pflection- and refraction
tomgrEùy. Tbece in turn can be further eubdivided,
de,pending on tbe typc of waveE and mÊasr¡rpænt
configrrrations th¡t ar€ cmployed. Fc instance,
rpfraction tomogrryhy can be based on eitber beåd
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wavìsr (Faretl & Enivena" 1984; Amorin, et al.' 1987)

or diving waves (Firbas, 1981; Herm¿n, 1980).
Diftaction tomography (Langenberg, 1987; Wu

& Toksö2, 1987), m the other hand offers also
diffe,rent modes of application, like thÊ reflection mode
a¡d transmi$sion mode. These in tum find application
in reflection-, VSP- and crosshole seismic
ûomogrqphy.

In order not to enter into too mâny deøils at the
exfrense of sacrifrcing mathematical rigor and physical
insight, in this pap€r $'e will only cmcenFat€ on the
Reflection Mode Dif;&ætion Tomography. This
apfþare to be the most valuable tomographic scheæ in
seismic exploration. The subject is very interesting as

it reveals the close interrelation between seismic
tmography and seismic migration theory.

As an extension to r€flection tomography for
Born scatt€r€rs, a reflection rnode tomographic scheme
for laterally inhomogeneous velocity models will also
be presenæd. This scheræ is also refered b as a
true-amplinrde zero ofrset migration scheme (tlubral &
Tygcl, 1989) of the t,"e which Newman (1989) refers
ûo as "modified diffraction ståck" anrt Bortfeld (1982)
as "gummation migration".

INVER.SB SCATTBR.ING

Traneient seismic point sources cfeatc a
wavefield in ttp el¡astic eartb- 'fVhen this hits
inhomogeneities, such as layer boundaries, reflectors
qrd diffracûors, one can observe scattercd waves. This
information can in tuIn be used in geophysical
eiçloration to locale the scattering objects.

The theory of inr¡erse scattering is closely relarcd
to seismic migration and can be based on the
Kirphhoff integral. In the following a reflection-mode
zero-offset algorithm is outlined aÉi it shows a
connection between diftaction tomography and
seismic migration. It gives a sound theorctical basis for
lhe "exploding reflector model" ttnt ha$ been used in
seismic post-stack migration for a long rime, but so far
without any mathernatical sound foundation. The
algoritbm described here (t:ngenberg, 1987; Wenzel
& Menges, 1989) can be formulated such that it can
apçount for other measut€rent configtrrations that are

encountered in seismic exploration e.g. in transmission
tomography, where either the so called frequency or
angular modes of illumination are employed (Devaney,

1984; I-anænberg, 1987; V/u & Toksöz' 1987).

REFLBCTION MODE DIFFRACTION
TOMOGR.APITY

The planar recording surface S¡4 will be the
plane z : d in a cartesian coordinate (x,y,z) system
(Fig. 1). The inhomoçneity to be irnaged by the
rethod of refliection tomography falls below the plane
z: d.

S e ísmi c vefle c tìon tomo g rap hy

Let all inhomogeneities fall into the volure V"
surrounded by the surface of the scaüer€r Sc. The P-
and S-war¡e velocity \¡/ithin tbe scatÞrcr is dependent
on the location R and given by v" (R) and vg (R).
These velocities arc assumed to differ only sligbtly
from a constant background with P- and
S-wave-velocity îp and Vg, into which the source
location falls. As is well known, the P- and S-wave
contribution to the partícle displacement vector is
obtained from the scalar potential +(R,t) and the
vector poæntial t(R,t) according to

u(R,t): Vö(R,t) + V *(R,t) (1)

wittr v being the Nabla-Operator. As is common
practice in seismic imaging, we consider in the
following diffraction tomographic imnging approach
only the scala¡ potential $(R,t). This satisfies for R É
vc

L^ +,Ë]*,",u 
: -F(t)ô(R-Ro) Q)

andforR c Vc

tt "f;,',*, 'oJ

Ro € S¡4 is the source location for a point soulre,
whose souroe signaûrre is described by the
time-function F(t).
lVith a Fourier transformation with respect to time

ö(R,<o) : f] O{n,t) exp [i<ot] dt (4)

\¡/e can change the wave equations (2) and (3) into the
following inhomogeneous Helmholz-Equæions

(A + kp2) Ö(R,or) : -F(<'¡)ô(R - Ro) +

* on" o(.R) ö(R,<o)

where we have introduced the so called object
function

(s)

O(R) - tl- &y2
p

1 r(R) (6a)



r(R) :
RÉ vc

Re Vc

P. Hubral

(6b)

with the hclp of the cha¡actcristic frmction exp t jk* lR - R-l l
Ô(Bor) : F(<o)

4,r lR - Rol

-"n" l?- fl- rl ocn') o(R'ro)

3jj5l*-,R.l1.0,*,
¿¡t ln - ntl

exp [2jk- ln - n'l¡
O/R'\ 

-Ë- 

,15 R'
(4¡rlR - R'l)2

mo ¿ Ss (R,g)0s (R,p) - 2"i q. krre

t

t'r9

(7)
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Figu¡G 1. Conrtant velocity mdel with buried scattÊ¡er.

IgDoring üe fact úat úÊ æasuremcnt-8t¡nfacc
S¡¡ repæccotr a fiec ¡r¡rface, wç can cÆiûÊ thc solution
of eçration (5) as

The first t€rm Fpnts€Nrts the incident wavcfield
of the point sourca at Ro c SM. The second tcrm
describes tbe scattcred field of the inbomogeneities.
rlVe observe that fte intsgral in eqration (7) has thp
fi¡nction ô(Bo) on the left-hand side and within the
integral. This makes tþ equation iû thi¡ form
extremely difñcult to solve for forwa¡d and invcrse
scattering problems. A linearisation cannot be avoided,
if one wants to mnkç use of equation (7) for
tomographic iña$ng.

This linearisat¡on is achiewd by re'placing tbe
ûotal field ô(&or) in the intogrand by the incident
field. This replacement is jrutifìed if tbe vclocity
pcrtutaton vp(R)-V¡ is sufficiently smll, i.e. if tbe
inhomogeneous velocity distribution sdisfies tbc so
called first Bqn approximatioo

ZERO-OTTSET PROFILING

If we put Ro : & we can u/riþ tbo liæariz¡d
inæeral (7) as

0s (R,o) - - kp' r(') JX lX l1

v

R
v3

(8)

p*in¡ng now a modified ssaff€,Éd ærçotrsct
field accmding to

t=D(x,yl

we obtain

(e)
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ln - n'lof," {n,.) : * f:- f: Jl. o(n'l
exp [ 2jkn lR - R'l ] 

o, *,

Tbe latt€r cquation cm be inverted as it has the
form of a 3D-Fourier integ¡al.

The modification (9) involves a deconvolution of
thc æro-offset scafter€d field trace. This is descdbed
by the division with F(<o) in the sçtared bracket. The
dcrir¡ative on tbe oûber hand corresponds to "tn¡e
amplitude scaling", i.e. to a multþlication of the
æro-offsct trace $,ith the tire t. To solve formula (10)
for O(R) is, what is generally described, an inverse
sorrrìoe prcblem, wbe¡e the source density is given by
o(R).

It is intcresting to not€ that in integrei (10) there
appears ZEn insæø of Ep. This irrylies th¿t the
modified scaüered wavefield $fo(R,to) i¡ a wawñeld,
where the tn¡e "background-nelocity" or "macac
nelocity" Ç is replaced by 1d2.lVe observe ttlat this
replacereni i¡ well known in'wave equation migration
ü*ty, wh¡n one int¡oduces the so called "exploding
reflector modol".

Henco formulas (9) and (10) give a mathe'matical
justiñcation of the e¡ploding reflector assumption. We
noÞ, tbat indeed the zerooffset traces (whbh in a
zero+f'fset section do not satisS one wa\¡e oquation)
can be modified to exploding reflectø traces as long
as the Born approximation holds tn¡e.

The inversion of integral (10) for O(R) now
solves our 3D inverse tmographic scatÞring problem
as lrre can accept ttrat the zero-offset field is given at R
e SM. Upon S¡4 we have R: (x,yd). Now choosing
the integration variabþ R : (x',y'l') also in cartesia¡r
coordinaûes, the volume integfal (10) becomes a 2D
convolution integral over x and y.

Taking the 2D Fourier transform of gflo(R,<o)
with respect to x and y

(10)

Equation (13) is ths fast tomographic algerithn,
which rclates to ttto Stolt algerithm (Sûolt' 1978).

The 2D For¡rier spectn¡m of the modified zero-
offsct dab with respect to x and y is proportional to
the 3D spatial Fourier transform Õ of the object
function upon the so called Ewald-sphere

Kz: + t/ +þn2 - k*' - ky'

This is a consequence of the Fourier-Diffraction
Theorem (Langenberg, 1987).

Corcidering transient point sounees implies
having available many frequencies to. The radü of the
Ewald spherc can then be va¡ied and the spatial 3D
Fourier sfrectnrm of O(R) becornes available by
sweeping (i.e. covering with Ewald spheres) the
K-domain of Õ(x).

The approach chosen above should be t¿ken as

reptesentative for solving a variety of irn4g.rñg
problems by diffraction tomography, where sources
and ¡eceivers do not necessarily coincide but surround
ttre scatering object in such a way as e.g. encountered
is VSP or cross-hole tomography. The respective
algorithms can be found in V/u & Toksöz (1987).
Ottrer generalisations of the above algorithm arc, of
col¡ñr€, desirable. An important generalisation results
when tlte ûracno velocity model can no longer be
assur¡ed to be constånt. Such a generalisation of the
above ¡nocedure is now available and has become
known ar¡ "tnre amplitude migration". Extnedy
excellent practical resulús of very high resolution have
been obtained with this approach by Newman (1988,
1989). For a laterally varying "macro-velocity" model
the details of the theory will be given in the following.

+f;o {r*,r y,z,ot) : J: lX Ol"t (x,y,z,ø) exp[-jK*x - jKyy] dx dy

dz'

(11)

ölno tr*,ry,d,<,r) : I t?- Õ1K*,K'z')
expIjld-z'l 4kp,-K* -Ky

4kp - K"'- Ky

we obtain

and as d> z'

of;o {r*,r y,¿,ù : *
exp I jd '-K*'-

4kp -Kx -Ky

l (12>

Õ1 K*,Ky,Kz: - K*'- Ky" )

1

(13)
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Tsto-ofûæt Rcflection Tomography in
laterelly inhomogeneous earth Dodef

The primary zero-offset reflection of a point
sonroc from a smooth reflector within a lateølly
inhomogeneous velocþ earth model (Fig. 2) is (within
tbe framework of ray theory) defined by parameters

pcrtaining to ttre normal-incidence ray. The
geometrical spreading factor - usually computed along
the ray - in a forn'a¡d modelling a¡rproach - can in this
case be recovered from traveltiræ measurìg¡nents at the
surface. As a consequence of this, zero-offset
reflections can be time-migrated such that the
gooretrical spreading factor along the normal
incidence ray is removed. This lead to "tnre-arpliûrde
time-migration". It will be shown that true-amplitude
time-migrated reflections a¡e obtained by nothing rnorc

füan a sirnple diffraction stack followed essentially by
a tiæ derivative of tbe diffraction-stack traces. For a
¡rnqll transmission loss of a primary zerc.offset
reflection tbrougb tbe layers, the tnre-aryliûrde
tirc-nigrated reflection provides consequently a direct
¡neasrrre for the reflection coefEcient at the reflecting
loupr end of the normal-incidence ray.

B¡sic Conccptr

Iæt us assuæ the earth to be isotropic, elastic

and inhomogeneous in such a $'ay that primary zero-

offset r€floctions can be well desøibed by ray theory.
For instancc, tbe earth may be assuæd o consi¡t
lçcally of arbitrarily many layerc of constaú P-waræ

and S-wave velocity and density. There may in
addition be meny reflectors buried within the earth
with normal-incidence reflectíon coefficients varying
laterally. The principal objective of this work is to find
the (time-migrat€d) ¡nsitions of all reflectors as well
as their laterally changing normal-incidence reflection
coefficients. In tbe pursuit of rhis objective, sorc
interesting properties of normal-incidenoe rays will be
presenæd below.

Measu¡emcnt Configurrtion

Coíncident shots and rrceir¡ers arÊ gxpected to
fall upon a densc (rectangular) grid on tbe
reasurerent plane z : 0 (Fig. 2). Furthcr' let us

aasurne that at each grid location, i.e. at thp zpro-offset
location (x,y), one records the vertical-displacerent
component of tbe clastodynamic wavefield resulting
from a compressional gnint source placed d lhe v€ry
saÍÞ location. All point sou¡ces ã€ ü)rgover
expected to have identical soutìcrc signaû¡r€s at aU

surface locations (x,y).

Mac¡cVclocity Modcl

It is assumed that the tn¡Ê P-wave velocity
distribution in tbe erth is wcll rypoximded by an

alreody available "rn¡cro-velolcity modol". In this
mdel ray trar/el tiæs ft,om any eubsurfræ point þ
rbitrary poh6, at tbÊ masr¡ænt plaæ z - O, ate

expccÞd to sgrce wpll with tbe tn¡e P-waræ travel
tiæs, in thp corresponding sctual P-warrc rrclocig

sc v

x

Figurc 2. Velocity model lvith buried reflector R.- FA: zeio-offset (vertical component) primary reflection (with geometrical spreading loss).

TA: trræ-amplitude refþction (without geometrical spreading loss).

a
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distribution of the earth. Figwe 2 shows a siryle
skÊtch of a 3D macro'velocity model with a particulr
æflecting intcrface R buded at depth.

Printry Rcflcction Tiæ-Fields

In the r€corded (vertical coqronent) zeru.offset
seicmic tmces, only tbÊ coqnessional primary
reflections that p¡opagatÊ along normal incidence rays
will be of iúeresL All other seismic events in the
zeroofrset trace at (xy) at€ in the following
considcred to be noises. The zerooffs€t travel-time
surface pcrtaining to lhe zero-ofrset location (x,y) and
rcflectø R (Fig. 2) is denoted by t : R(x,y). In
prticular R(xn,yn) is the two-way travel t¡me along
the normal ray between (xn,yn) and the normal
incidence point NIP upon reflector R.

Tracing from NIP all possible direct rays up to
the rcasr¡¡ement plane z : O and computing the two-
way tiæs along these rays defines the tra\/€l-time t :
D(x,y) of the so called "diffraction-tire surface". The
minimum tiæ of this surface is D(x¡,yi), wittr (xi,yi)
being the surface location of the image ray (Hubral,
tgTI) to NIP. While the norr¡al-incidence ray is
perpendicular to tbe reflector, the irnage ray is
perpendicular to fhe measurcment plane. It is obvious
that D(xÐ is tangent to R(x,y) at (xn,yn).

Thougb the time sr¡rface D(x,y) is identical with
the ono that would be obsen¡ed in the zero-offset data
for a dif8actßr ú. NIP, we will in the following
theorptical treatrent not permit any such diffractors on
tbe reflecting interfaces.

Modificd Diftraction Stack

Iæt us assume that, for each subsurface point
within the available macro-velocity model, one has
constn¡ctpd the corre.sponding diftaction-rimc surface.
In particular, let us consider all point on the image ray
through (xi,yi). The diftacdon-tirne surfaces
pertaining to these points har¡e all their agrx at (xi,yi).

Many of these diffraction-time surface u/ill bê
tangent to certain, primåry ¡eflection-time sr¡rfaces that
ar€ lrrcsent in the zero-offset recording. These will
p€rtain to various subsurface reflectors inærsected by
the irnage ray. The aperture of each diffraction tirre
surface should, of corÍrse, be chosen such that all
(unknown) reflection time surfaces in the zero-ofrset
recordiqg, which pertain to subsurface reflectors
c¡ossed by the image ray through (xi,yÐ, will fall into
the selected afrerture range.

Below we will choose a 3D-time windowpa¡a|lel
ûo tbÊ diffraction-tiæ surfaæ t : D(x,y) such that
D(x,y) wi¡l be at its cent€r. In other words we will
choose the tiæ window -e < t - D(x,y) < €,
uå€r€ c bas ûo be chosen such that seismic pulses
from ¡eflec'tor R fuily faü into tbe tiæ window.

Sc lsmlc reflcctlon tonography

Thercaftcr we will "sr¡n" @ortfeld, 1982> (r
"difÈaction stack" (Newman, 198Ð thc zcro-offs€t
reflections (with their original field amplitrdes) within
this 3D tire window along time surftces parallel to t
: D(x,y). Finally we will place the resulting
"diffraction-stack signal" obtained by Ois procedwe
into the tiæ intenral -e < t-D(xi,yi) < e of a
"new ouþut trace" at location (xi,yÐ. This su¡nmation
or stacking frræess is, of oouñ¡e, repeaæd fø the
diffraction-time surfaces belonging þ all other points
on the im4gp ray ererging at (xi,yi). In this tvay one
can fill up the nelv ouq)ut trace at (xi,yi) for all tiæs
with dífferent diffraction stack signals.

From tbe trace thus constn¡cted at (xi,y) one
takes then the tiß derivative and scales tbe ouþut
with a certain constant factor indicated below. This
latter operation justifies the attribute "rnodified" in the
thenn "modified dif;fraction stack".

The process just described is thereafter repeated
for all other diffraction-tirne surfaces pertaining to
subsurface points upon irn4ge rays emerging at any
other possible surface location.

True Amplitude Tine-Migration

As a result of the above "modified diftaction
stack" one obtains so called "tnre-aqrlihrde time-
migrated 3D data'' in the (x,yl) domain of Figure 2.
That this is indeed the case will be úou¡n below,
wtrere we will prove tltat the procedure outlined above
will inde€d romov€ from zerooffset primary
reflections their geometrical spreading loss along
normal rays, when "time-migrating" these reflection
frrom the tirne surface R(x,y) to the time-migrated
surface l(x,y) (not shown in Figure 2). The
zero-offset reflection FA in Figure 2 will thus be
tirne-migrated to ttþ tn¡e-arry)litude reflection TA.

I(x,y) is the two-\ilay time along image rays
connecting the surface location (x,y) with reflecûor R.
I(x,y) can conscquently be viewed as the tirne-surface
defined by all the minima of the dif&ætion-tinp
surfaces pertaining to points on reflector R.

We note that image rays would make it possibte
to "depth-migrate" (Hubral, 1977) trc rime surface
I(x,y) into the unknown reflector R at depth. In the
following however, we will only perfcm the modiEed
diffraction stack on the zero-offset (xy,Ð data volume,
Lc. we will present the theory for a tnreqúitude
"time migration" and not for a tnre-amplitude "depth
migration". Of course, it is well know that the
macro-velocity rnodel for a dqrth migration should in
general be more precise ttnn that for a time migration.

RAY THEORY FOR NORMAL INCIDENCE
REFLECTIONS

For a compressional point source and receiver at
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location (x¡,yn) the vertical-com¡nnent of the
displacement vector of the primary com¡ressional
reflection can (within the framework of ray theory and
if we ig¡ore the free surface) be expressed as (Hubral'
1983):

u (x¡,]¡,2 : O,t) : Re { b(x¡,Yn) W(t - R(x¡,ytr))} '
(14)

where

1
ue(x¡,yn) :i Kt (fI K¡) cosP (15)

p is the emergence angle of the normal ray at (xn,yn).
W(t) is the analytic signal of the compressional source
wavelet w(t), i.e.,

\V(t) : w(t) - iH [w(t)] (16)

H denotes the Hilbert transform

123

A:K¡¡1p-K¡ (19b)

with K¡¡p and K¡ being two fundaæntal 2 x 2
waveft,ont curvatr¡rre matrices speciûed below.

The square root in expression (18) is defined by

6l sgn(trA)\,q:
i\,4-a;f

with the sign-firnction given as

Qe>o

Qe<o
(20)

(2t)sgn(x) :
,x( O

,X)0

-1

+1

(17)

Kr : K¡(x¡,Yn) is the (rcal) normal-incidence
reflection coefficient at NIP. This may vary as a
tunction of (xp,/¡). ((nKp : IIKl(x¡,y¡)) is the
product of all the (real) transmission coeffrcients
encor¡ntered by the primary cornpressiøral wave on its
two-way path along ttp normal incidence ray ùom
(x¡,yn) to NIP and back. It will be a positive quantity
often close to unity.

Geometrical Sprcading

L is the geometrical spreading factor in formula
(15) whbh, in a forward modelling approach, wduld,
in general" be compuæd by dpamic ray tracing
(Cærveny, 1977) along the normal incidence ray. Such
a computation is, however, not rcquiæd in the
following procedure.

With respect to the normal ray the factor L is
giwn by the ex¡nession (Hubral, 1983; I(rcy, 1983):

H tw(t)t :* "t J: # u"

2r_

VQA

where

QA:detA

and

trA denotes the trace of the matrix A. Noæ tbat thc
solution (14) is invalid if Q4 is zero.

KNp and K¡ rplate to the trro-way tiæ
surfaces t : R(x,y) and t : D(x,y) as follows
(Bordeld, 1989):

V1
KN:KN(xn,yn):ñ

(22a)

ð2R(x,y) a2R(x,y)
T ðxðy

¿2R(x,y) ô2R(x,y)
ôx ôy ay2

.V1
KNp : K¡¡¡p(x¡,yn) : 

r.""rp

a2D(x,y) a2D(x,y)

ðx2 ôx ðY

a2D(x,y) a2D(x,y¡

t (18)

(19a)
ðx ôY ôy2

(22bl.
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whcre all dsrivatives aæ taken at (xnryn). v1 is the
coryreesional near-sudace velocity, which is aseurcd
b be known.

Tbe waveftront cr¡ñ¡at¡r€ m¡trices KNIP and K¡
can be associaæd with two h¡'potbetical rv&vos¡ KXp
(xnryn) can be viewed as pertaining to tbe wavefront
ercrging æ (xn,yn), which has its origin in a
h¡'pothetical point-source at NIP. K¡ (x¡,yn), on the
othsr bând, can be vienrcd as pertaining to tbÊ
war¡eûront ereriing æ (xn,yn) which hâs its ôrigin in
a h¡'pothetical wave originating at all points of R
simultaneously. Alternativeþ ode can view K¡1p and
KN 

"s 
pertaining to tlvo "eigcnwaves", which hanre

tbe unique pnoperty that, when propagating down and
up tbe normal incidence ra¡ they start and ererge at
the surfaoe with the same waveûront (Hubral, 1983).

The definition (20) of the square root in formula
(18) has some interesting consequences concerning
solution (14). hovided that the velocity above the
reflector is constant and the reflection coeffrcient
K¡ (x¡,Yn) at NIP is ¡nsitive, the reflected
zero'offset pulse at (xn,yn) may either have the shape
w(t), -w(t) or Hlw(t)].

It is well known that ttþ reflected pulse shape
depends on the number of caustics along the normal
By, which are ¡str¡lly counted in forward ray
modelling. In order to guarant€e a colrect tnre
mplitude r€covery of the souree pulse, we assume
that no caustics exist in a laterally inhomogeneous
ædium.

As indicated above, no CMP data nor any
traveltimes for inûerpreted reflections are required for
the theory de.scribed here. However, with the recorded
3D zero-offset daþ also the rnacro-velocity model is
expecæd to be gvpn. This implicitly defines
consequently the time-surface D(x,y) and the curvah¡re
matrix KNIp (x¡,y¡), thus making the computation
of the spreading factor L at any location (xn,yn)
possible without identifying primary reflections ftrom
rcflector R nor tracing a normal ray to it. We will not
enter here into a discussion concen'ng the
computation of the rnacrevelocity model. This surely
cannot be derived from the zero-offset data but
requires borehole or CMP measurements.

THBORY OF MODIFIEI' . DIFFRACTION
STACK MIGRATION

lVe now provide a mattrernatical formulation of
the summation method, which we prefer to call
"modified diffraction stack". For simplicity we make
use of analytic signals, i.e. operate with the complex
r¡ersion of the vertical-component of the displacerent
veaûor of the coqlressional pri¡nary reflection
recorded at (xn,yn). This is given as the expression
within the parenthesis of fonnula (14)

U(x¡, Yn, t) : ue (x¡, Yn) IV(t - R (xn, yn))
(23>

Diffr¡ction St¡ck

lVith respect to the zcro-offset locatign (xn,yn)
r¡æ define

g(x,y) : D(x,y) - R(x,y) (V+,

IVe know that in the vicinity of (xn,yn) we have

Ig(x,y)
2 [x - x¡r y - yn] Ã t* - x¡, y - ynlT

(2s,

where T denotes the transpose and

Ã : (KNp - KN) ' -'.t'Ê: ¡ 2cos2F
vl vl (26>

Formula (25) results because

8(xn'Yn): V g(x¡,yn): O (n>

For a rectangle

Mn= t(x,y)Ilx-x,,l ( €1, ly-ynl . ezl

(28)

cenüed at (xn,yn) let us consider the following
int€gfal ûo be representative for a "diffraction stack"
for the zero-offset reflections from reflector R in
rectångle Mn.

Ui (x¡,y¡,r, : 
J{ dx dy U(x,y,r + D(x,y))

: 
J{ dx dY uo (x,Y) W(r + D(x,y) - R(x,y))

: 
Jl dx dy uo (x,y) w(r + g (x,y)) (29)

The index i indicates that the rezulting
"diffraction-stack signal" obtained by the right-hand
side expression is to be transferred into the apex of the
diffraction-tirp-sr¡rface D(x,y) at ttte output trace at
location (xi,yi). The arguments x¡r y¡r on the other
hand, in the left-hand side of fomula (29) should be
taken as an indication that the integral (29) will get its
m¡in ço¡fiþutis¡ from the zero-offset reflections in
thc vicinity o,f (xn,yn). Though we allow ihat r in
int€gral (29) may take on any value, we rpmark that in
the discrcte irylementatiør of formula (29) only a
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(3s)

(40)

finiæ range of values for r reds to be consider€d.
This we atready indica¡€d above, when we shortly
summa¡ized the modified diftaction stack. In this
connection it should also be made clear that in the
practical impleræntæion of the atgorithn, we will use
instead of Mo the'interior of a sufficiently large circle
cente,rcd at (xi,yi) as we assuûþ no a priori
knowledge with respect to the point of øngency of
R(x,y) and D(x,y).

The r-Fot¡¡ier transform of the above expression
(29) can be qnitten

Û¡ (x¡,y¡,ro) = tl(r) ue (x¡, y^> V"p !
(o>o)

ftre,nce one finds

or: teking real parts

1 -2'r

- 

l-
cosp ' <o

il

U¡ (x¡,y¡,o) :

Û(,ù) J{ 
dx dy uo (x,y) exp [iro g(x,y)] (30)

(36)

The Fourier transforrr pair for analytic signals
F(t) is

F(t) : * t: dor exp tiotl Ê (o¡) (38a)

(32) Ê (r) : JX dt exp [-i<otl F(t) (38b)

Indicæing this relationship by Ê1r¡ .- F(t), one
notes that

Substiûrting the exprcssion (15) for ue (x¡,yn)
yields

ûi(x¡1,y¡,<o) - û(r) tK¡(rIK¡) | cosot

l\/TÌ7 L=t3ill
¡ cosÞ ú)

,#, û¡ (x¡,Y¡,or) - - * ,* t, 1"o,lo,t)l6e)

: lV(. K¡(rI K1) W t*r l , (o¡ > O)

Where we have used the notation
or

Û1r¡ : f] A" exp [-io¡r] ]V(r) (31)
K¡(tI K1) \n;nfi<o, : t+ I Û¡ (x¡,y¡,ro) ,

We also have interchanged the order of space and
tir'ç integration and used the shifting property of the
Fouricr transfom. The integral in (30) is of the form
studied by Hubral & Tlgel (1989). It shows that" for
large positive <o )) 1,

Ûi (x¡,y¡,ro) = Û(.) uq (x¡,yn) 
ä 

,Tt ,

(,o > O) ar)

(¡o > O)

\rith

ûi (x¡'/¡,o) : U¡ (x¡'Y¡'-ro) (¡¡ < O)

(33¿)

and

QA:detÃ €3b)

Also the squar€ root in equation (32) turns out to
be

(34)

with the root of Q,l bcing defired in expressim (2O).

L, as oæ obsenes, is tbe goætrb sprpadiqg fúo;r
of tbÊ zerc-offs€t rcflection et (xn,yn). Snbstiûrting
oquation (34) into formul¡ (32), øe finds for to )> I

Kr (rr Kt) \ñ7;1v(t¡ - - + å u¡ (x¡,Y¡,r)

Kr (n K¡\ f,Q|w(t) - - + * u¡ (x¡,]¡,t)

where u¡ : Re U¡.

(41)
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where

q(n Kd $'(t) : w6(t)

os obtain üe final rcsult
1¿

w¡¡(t) - 
@ * f", (x¡,]¡,t)l

Iûoducing tbe definition w1¿(t) for the tn¡e
arylitude sien¡l

S elsmíc rcflcctlon tomogrøplry

(42>

(43)

velocity tbe RMS-velocity may often be good enough
to define the diftaction time surfaces. Then there is no
need for any ray tracing at all.

An important aslrect, of course, is the
performance of tbe prcsenæd migration method in tbÊ
pæsenoe of random noise. ÍIer€ first co.ryutational
exfreriments (Mürz, 1985; Iftey, 198Ð show ttrat thc
modified diftaction stack favourably enhances thc
signal-noise ratio, just as one would expect fr,om any
stacking pnocess.
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It is inærcsr¡ng to obsen¡e that in a tn¡e-
aryliüde trace (42) there appears only the source
pulse w(t), even though the zero-offset reflections
could havc been pulses of the form -w(t) and H[w(t)],
due to caustics encountered along the normal ray. As
the above theory shows, the modified diffraction stack
migration ¡smoves the geometrical sprea'ling loss in
thÊ tirc-migræion of the reflections. It also
reconstitut€s the original sourpe pulse w(t) in the case
of a constant background velocity model. This very
much helps the interpretation as the sign of K, is also
corf€ctly rcoovered. In the case of caustics on normal
rays in a laÞrally inhomogeneous velocity medium the
corr€ct sourse pdse need however not be correctly
reconstiû¡t€d by the above procedure.

coNcl.usroNs

Rather than having enter€d into the broad general
subject of ûomography, we tneated only one aspect in
sorne rather detail, namely the reflection mode
diffraction tomography for zero-offset r€cordings. We
first treat€d the car¡e of a Born-type scatterer.
Tþereafrer we extended tbe method ûo a laterally
inhomgeneous model. In a laterally inhomogeneous
eartb, wher€ coryressional zero'offset rcflections
from smoooth subsurface reflectors a¡e well
approximated by t.ay theory, one can constn¡ct
so-called "true-arqrlitude-tirre-migrated" reflections
by nofting more than a diffraction stack, followed by
a scaled time derivation of the resufting stack trace. To
make this migration method operationally efficient one
has to implement (a) a very quick ray tracing ftrom the
various subsurface points of tl¡e rnacro-velocþ model
ûo the reasr¡rem€nt surface and (b) a very fast
traveltiæ interpolation in order to obtain all the
diftaction time surfaces required for the staclc Very
efficient algorithms, for achieving such goals exist
(Goldin, 1986).

Of course, in cases with a small lateral change of
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