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SEISMIC REFLECTION TOMOGRAPHY *

P. HUBRAL!

Like in medicine or non-destructive testing, tomography has now become a well
established imaging tool. In reflection seismology it is used to image the velocity
or the reflectivity of the earth particularly in surface, reservoir, borehole, and
crosshole seismology. Originally based on ray theory it can now be developed
from the wave equation as described by Huygen’s principle given in form of
Kirchhoff’s integral for acoustic and elastic media. Tomography thus has
undergone a similar transition as seismic migration theory and both theories in fact
very much relate to each other. Accepting the Born approximation for the medium
to be imaged one can formulate the tomographic imaging approach as a consistent
and comprehensive theory of linearized inversion. This incorporates such methods
as transmission and reflection tomography for arbitrary frequencies as well as
high-frequency computerized tomography that involves the Radon transform. The
general framework ' of linearized scalar diffraction tomography will be discussed
from first principles. Emphasis is put on reflection tomography. The case of
zero-offset reflection tomography is treated for a Born scatterer as well as for a
layered medium with reflectors buried into an arbitrary inhomogeneous velocity
field.

TOMOGRAFIA DE SfSMICA DE REFLEXAO — Como em medicina ou
testes ndo destrutivos, a tomografia se tornou uma técnica de imageamento bem
estabelecida. Em sismica de reflexdo, ela € usada para mapear a velocidade ou re-
flectividade da terra principalmente em sismica de superficie, reservatério, *‘furo”
e “crosshole’. Originalmente baseada na teoria de raio, ela pode ser desenvolvida
das equacdes de onda como descrito pelo principio de Huygens dado na forma da
integral de Kirchhoff para meios aciisticos e eldsticos. Assim, a tomografia passou
por uma trunsicio similar & da migragdo sfsmica, as duas teorias se relacionando
bastante uma com a outra. Aceitando a aproximagdo de Born para o meio a ser
mapeado, pode-se formular a tomografia como uma teoria consistente e abrangente
de inversdo linearizada. Isto incorpora os métodos como tomografia de transmis-
sdo e de reflexdo para freqiiéncias arbitrarias assim como a tomografia computado-
rizada de alta freqiiéncia que envolve a transformada de Radon. A estrutura geral
da tomografia de difrag@o escalar linearizada serd discutida de principios bésicos.
Enfase € dada a tomografia de reflexdo. O caso de tomografia de reflexdo de des-
locamento zero € tratado para um espalhador Born assim como para um meio
constitufdo de camadas com refletores imersos em um campo arbitrério de veloci-
dades ndo homogéneas.

INTRODUCTION

Seismic Tomography has already become a
widely investigated area of research. Hence only
certain aspects will be summarized here. In principle
one can subdivide Seismic Tomography into two main
topics: Traveltime Tomography and Diffraction
Tomography. Both are based on linearisation
principles. In the first case the linearisation principle is

based on the eiconal equation (Nolet, 1987). In the
second case it is based on the wave equation
(Langenberg, 1987).

Traveltime Tomography can further be divided
into  transmission-, reflection- and refraction
tomography. These in turn can be further subdivided,

depending on the type of waves and measurement

configurations that are employed. For instance,
refraction tomography can be based on either head
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waves (Farell & Enivena, 1984; Amorin, et al., 1987)
or diving waves (Firbas, 1981; Herman, 1980).

Diffraction tomography (Langenberg, 1987; Wu
& Tokséz, 1987), on the other hand, offers also
different modes of application, like the reflection mode
and transmission mode. These in turh find application
in reflection-, VSP- and crosshole seismic
tomography.

In order not to enter into too many details at the
expense of sacrificing mathematical rigor and physical
insight, in this paper we will only concentrate on the
Reflection Mode Diffraction Tomography. This
appears to be the most valuable tomographic scheme in
seismic exploration. The subject is very interesting as
it reveals the close interrelation between seismic
tomography and seismic migration theory.

As an extension to reflection tomography for
Bom scatterers, a reflection mode tomographic scheme
for laterally inhomogeneous velocity models will also
be presented. This scheme is also refered to as a
true-amplitude zero offset migration scheme (Hubral &
Tygel, 1989) of the type which Newman (1989) refers
to as “modified diffraction stack’ and Bortfeld (1982)
as “‘summation migration’’.

INVERSE SCATTERING

Transient seismic point sources create a
wavefield in the elastic earth. When this hits
inhomogeneities, such as layer boundaries, reflectors
and diffractors, one can observe scattered waves. This
information can in turn be used in geophysical
exploration to locate the scattering objects.

The theory of inverse scattering is closely related
to seismic migration and can be based on the
Kirchhoff integral. In the following a reflection-mode
zero-offset algorithm is outlined as it shows a
connection between diffraction tomography and
seismic migration. It gives a sound theoretical basis for
the “exploding reflector model” that has been used in
seismic post-stack migration for a long time, but so far
without any mathematical sound foundation. The
algorithm described here (Langenberg, 1987; Wenzel
& Menges, 1989) can be formulated such that it can
account for other measurement configurations that are
encountered in seismic exploration e.g. in transmission
tomography, where either the so called frequency or
angular modes of illumination are employed (Devaney,
1984; Langenberg, 1987; Wu & Toksoz, 1987).
REFLECTION DIFFRACTION
TOMOGRAPHY

MODE

The planar recording surface Sy will be the
plane z = d in a cartesian coordinate (X,y,z) system
(Fig. 1). The inhomogeneity to be imaged by the
method of reflection tomography falls below the plane
z=d.

Seismic ‘reflection tomography

Let all inhomogeneities fall into the volume V.
surrounded by the surface of the scatterer S;. The P-
and S-wave velocity within the scatterer is dependent
on the location R and given by vp (R) and vg (R).
These velocities are assumed to differ only slightly
from a constant background with P- and
S-wave-velocity Vp and Vg, into which the source
location falls. As is well known, the P- and S-wave
contribution to the particle displacement vector is
obtained from the scalar potential ¢(R,t) and the
vector potential $(R,t) according to
a(R,t) = VoR,t) + V . $(R,H) 1)
with V being the Nabla-Operator., As is common
practice in seismic imaging, we consider in the
following diffraction tomographic imaging approach
only the scalar potential ¢ (R,t). This satisfies for R &
Ve

1 8?
A - ke d(R,t) = -F(t)3(R-Ry) (2)
and for R € V
1 92
A - —— —|6RY) =0 3
at?

(12
R
cp (R)

R, € Sy is the source location for a point source,
whose source signature is described by the
time-function F(t).

With a Fourier transformation with respect to time

d(R,0) = [ d(R,t) exp [jot] dt “)

we can change the wave equations (2) and (3) into the
following inhomogeneous Helmholz-Equations

A+, ¢R,0) = -F(@)5(R - Ry) +

+ kp2 O(R) $(R,0) ()

where we have introduced the so called object
function

KRy
et ALY

p

OR) = (6a)
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with the help of the characteristic function

0 , R¢g Vg

rR) = (6b)

R € V.

Figure 1. Constant velocity model with buried scatterer.

Ignoring the fact that the measurement-surface
S represents a free surface, we can write the solution
of equation (5) as

119
exp[jk_ IR - R
d(R,0) = F(o) A e
47 IR - Rol
“kp? [ I [ OR) $(R’,0)
ik_ IR - R’l 1
exp [] D Pt e
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The first term represents the incident wavefield
of the point source at R, € Spj. The second term
describes the scattered field of the inhomogeneities.
We observe that the integral in equation (7) has the
function ¢(R,0) on the left-hand side and within the
integral. This makes the equation in this form
extremely difficult to solve for forward and inverse
scattering problems. A linearisation cannot be avoided,
if one wants to make use of equation (7) for
tomographic imaging.

This linearisation is achieved by replacing the
total field ¢(R,») in the integrand by the incident
field. This replacement is justified if the velocity
perturbation vp(R)-Vp is sufficiently small, i.e. if the
inhomogeneous velocity distribution satisfies the so
called first Born approximation,

ZERO-OFFSET PROFILING

If we put Ry, = R, we can write the linearized
integral (7) as

o]

s (R,0) = - kp? F) [0, 15, 1%,

exp [2jk.. IR - R[]
O(R’) By a3 r’ 8)

(4nlR - R’)?

Defining now a modified scattered zero-offset
field according to

9 $s (R,0)

mo
R,0) = 27j —
ty See) TR i ok GGy

)

we obtain
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Seismic reflection tomography

R (10)

mo _
by R0) =

The latter equation can be inverted as it has the
form of a 3D-Fourier integral.

The modification (9) involves a deconvolution of
the zero-offset scattered field trace. This is described
by the division with F(w) in the squared bracket. The
derivative on the other hand corresponds to ‘‘true
amplitude scaling”, i.e. to a multiplication of the
zero-offset trace with the time t. To solve formula (10)
for O(R) is, what is generally described, an inverse
source problem, where the source density is given by
O(R).

It is interesting to note that in integral (10) there
appears 2kp instead of kp. This implies that the
modified scattered wavefield ¢1sn°(R,m) is a wavefield,
where the true ‘background-velocity” or ‘‘macro-
velocity” Vp is replaced by Vp/2. We observe that this
replacement ig well known in wave equation migration
theory, when one introduces the so called “‘exploding
reflector model”.

Hence formulas (9) and (10) give a mathematical
justification of the exploding reflector assumption. We
note, that indeed the zero-offset traces (which in a
zero-offset section do not satisfy one wave equation)
can be modified to exploding reflector traces as long
as the Born approximation holds true.

The inversion of integral (10) for O(R) now
solves our 3D inverse tomographic scattering problem
as we can accept that the zero-offset field is given at R
€ Sy. Upon Spg we have R = (x,y,d). Now choosing

the integration variable R = (x’,y’,z’) also in cartesian.

coordinates, the volume integral (10) becomes a 2D
convolution integral over x and y.

Taking the 2D Fourier transform of ¢O(R,w)
with respect to x and y

mo mo g o
b Kx,Ky,z,0) = [ [T &g (X,y,2,0) exp[-jKxx - jKyy] dx dy

we obtain

00

by (Ky,Ky,d,0) = 5 % O(Kx,Ky,z")

R - Rl

Equation (13) is the fast tomographic algorithm,
which relates to the Stolt algorithm (Stolt, 1978).

The 2D Fourier spectrum of the modified zero-
offset data with respect to x and y is proportional to
the 3D spatial Fourier transform O of the object
function upon the so called Ewald-sphere

K,=+V 4kp2 - ky? - ky2
This is a consequence of the Fourier-Diffraction
Theorem (Langenberg, 1987).

Considering transient point sources implies
having available many frequencies w. The radii of the
Ewald sphere can then be varied and the spatial 3D
Fourier specttum of O(R) becomes available by
sweeping (i.e. covering with Ewald spheres) the
K-domain of O(K).

The approach chosen above should be taken as
representative for solving a variety of imaging
problems by diffraction tomography, where sources
and receivers do not necessarily coincide but surround
the scattering object in such a way as e.g. encountered
is VSP or cross-hole tomography. The respective
algorithms can be found in Wu & Tokséz (1987).
Other generalisations of the above algorithm are, of
course, desirable. An important generalisation results
when the macro velocity model can no longer be
assumed to be constant. Such a generalisation of the
above procedure is now available and has become
known as ‘“true amplitude migration”. Extremely
excellent practical results of very high resolution have
been obtained with this approach by Newman (1988,
1989). For a laterally varying ‘“macro-velocity’> model
the details of the theory will be given in the following.

J
2

andasd > 7’

j exp[jd \/4kp2 - Ky? - Kyi 1

by C (Kx,Ky,d,0) = = .
2 2 2 2
Vakp? - Ky” - Ky

O( Kx,Ky,Ky = Vakp? - K5 - Ky?)

(11)
: B 2 2 2"
exp [ jld - z’l Vakp? - Kx* - Ky*1] - a12)
2 2 2
\/4kp - Kx2 - Ky
(13)
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Figure 2. Velocity model with buried reflector R.
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FA: zero-offset (vertical component) primary reflection (with geometrical spreading loss).
TA: true-amplitude reflection (without geometrical spreading loss).

Zero-offset Reflection Tomography in a
laterally inhomogeneous earth model

The primary zero-offset reflection of a point
source from a smooth reflector within a laterally
inhomogeneous velocity earth model (Fig. 2) is (within
the framework of ray theory) defined by parameters
pertaining to the normal-incidence ray. The
geometrical spreading factor — usually computed along
the ray — in a forward modelling approach — can in this
case be recovered from traveltime measurements at the
surface. As a consequence of this, zero-offset
reflections can be time-migrated such that the
geometrical spreading factor along the normal
incidence ray is removed. This lead to ‘“‘true-amplitude
time-migration”. It will be shown that true-amplitude
time-migrated reflections are obtained by nothing more
than a simple diffraction stack followed essentially by
a time derivative of the diffraction-stack traces. For a
small transmission loss of a primary zero-offset
reflection through the layers, the true-amplitude
time-migrated reflection provides consequently a direct
measure for the reflection coefficient at the reflecting
lower end of the normal-incidence ray.

Basic Concepts

Let us assume the earth to be isotropic, elastic
and inhomogeneous in such a way that primary zero-
offset reflections can be well described by ray theory.
For instance, the earth may be assumed to consist
locally of arbitrarily many layers of constant P-wave

and S-wave velocity and density. There may in
addition be many reflectors buried within the earth
with normal-incidence reflection coefficients varying
laterally. The principal objective of this work is to find
the (time-migrated) positions of all reflectors as well
as their laterally changing normal-incidence reflection
coefficients. In the pursuit of this objective, some
interesting properties of normal-incidence rays will be
presented below.

Measurement Configuration

Coincident shots and receivers are expected to
fall upon a dense (rectangular) grid on the
measurement plane z = 0 (Fig. 2). Further, let us
assume that at each grid location, i.e. at the zero-offset
location (x,y), one records the vertical-displacement
component of the elastodynamic wavefield resulting
from a compressional point source placed at the very
same location. All point sources are moreover
expected to have identical source signatures at all
surface locations (X,y).

Macro-Velocity Model

It is assumed that the true P-wave velocity
distribution in the earth is well approximated by an
already available “macro-velocity model”. In this
model ray travel times from any subsurface point to
arbitrary points, at the masurement plane z = O, are
expected to agree well with the true P-wave travel
times, in the corresponding actual P-wave velocity
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distribution of the earth. Figure 2 shows a simple
sketch of a 3D macro-velocity model with a particular
reflecting interface R buried at depth.

Primary Reflection Time-Fields

In the recorded (vertical component) zero-offset
seismic traces, only the compressional primary
reflections that propagate along normal incidence rays
will be of interest, All other seismic events in the
zero-offset trace at (x,y) are in the following
considered to be noises. The zero-offset travel-time
surface pertaining to the zero-offset location (x,y) and
reflector R (Fig. 2) is denoted by t = R(x,y). In
particular R(x,,yp) is the two-way travel time along
the normal ray between (xp,y,) and the normal
incidence point NIP upon reflector R.

Tracing from NIP all possible direct rays up to
the measurement plane z = 0 and computing the two-
way times along these rays defines the travel-time t =
D(x,y) of the so called “diffraction-time surface”. The
minimum time of this surface is D(x;,y;), with (xj,y;)
being the surface location of the image ray (Hubral,
1977) to NIP. While the normal-incidence ray is
perpendicular to the reflector, the image ray is
perpendicular to the measurement plane. It is obvious
that D(x,y) is tangent to R(x,y) at (Xp,yp)-

Though the time surface D(x,y) is identical with
the one that would be observed in the zero-offset data
for a diffractor at NIP, we will in the following
theoretical treatment not permit any such diffractors on
the reflecting interfaces.

Modified Diffraction Stack

Let us assume that, for each subsurface point
within the available macro-velocity model, one has
constructed the corresponding diffraction-time surface.
In particular, let us consider all point on the image ray
through  (x3,yj). The diffraction-time surfaces
pertaining to these points have all their apex at (x;,y;).

Many of these diffraction-time surface will be
tangent to certain primary reflection-time surfaces that
are present in the zero-offset recording. These will
pertain to various subsurface reflectors intersected by
the image ray. The aperture of each diffraction time
surface should, of course, be chosen such that all
(unknown) reflection time surfaces in the zero-offset
recording, which pertain to subsurface reflectors
crossed by the image ray through (x;,y;), will fall into
the selected aperture range.

Below we will choose a 3D-time window parallel
to the diffraction-time surface t = D(x,y) such that

D(x,y) will be at its center. In other words we will

choose the time window -€ < t-D(x,y) < €,
where € has to be chosen such that seismic pulses
from reflector R fully fall into the time window.

Seismic reflection tomography

Thereafter we will ‘“sum’ (Bortfeld, 1982) or

“diffraction stack” (Newman, 1985) the zero-offset

reflections (with their original field amplitudes) within
this 3D time window along time surfaces parallel to t
= D(x,y). Finally we will place the resulting
“‘diffraction-stack signal’’ obtained by this procedure
into the time interval -€ < t-D(xj,yj) < € of a
“‘new output trace” at location (x;,y;). This summation
or stacking process is, of course, repeated for the
diffraction-time surfaces belonging to all other points
on the image ray emerging at (%;,y;). In this way one
can fill up the new output trace at (x;,y;) for all times
with different diffraction stack signals.

From the trace thus constructed at (x;,y;) one
takes then the time derivative and scales the output
with a certain constant factor indicated below. This
latter operation justifies the attribute ‘“modified” in the
therm “‘modified diffraction stack”.

The process just described is thereafter repeated
for all other diffraction-time surfaces pertaining to
subsurface points upon image rays emerging at any
other possible surface location.

True Amplitude Time-Migration

As a result of the above ‘“modified diffraction
stack” one obtains so called “true-amplitude time-
migrated 3D data’ in the (x,y,t) domain of Figure 2.
That this is indeed the case will be shown below,
where we will prove that the procedure outlined above
will indeed remove from zero-offset primary
reflections their geometrical spreading loss along
normal rays, when ‘‘time-migrating” these reflection
from the time surface R(x,y) to the time-migrated
surface I(x,y) (not shown in Figure 2). The
zero-offset reflection FA in Figure 2 will thus be
time-migrated to the true-amplitude reflection TA.

I(x,y) is the two-way time along image rays
connecting the surface location (x,y) with reflector R.
I(x,y) can consequently be viewed as the time-surface
defined by all the minima of the diffraction-time
surfaces pertaining to points on reflector R.

We note that image rays would make it possible
to ‘“‘depth-migrate” (Hubral, 1977) the time surface
I(x,y) into the unknown reflector R at depth. In the
following however, we will only perform the modified
diffraction stack on the zero-offset (x,y,t) data volume,
ie. we will present the theory for a true-amplitude
‘“‘time migration” and not for a true-amplitude ‘‘depth
migration”’, Of course, it is well know that the
macro-velocity model for a depth migration should in
general be more precise than that for a time migration.

RAY THEORY FOR NORMAL INCIDENCE
REFLECTIONS

For a compressional point source and receiver at
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location (xp,,yp) the vertical-component of the
displacement vector of the primary compressional
reflection can (within the framework of ray theory and
if we ignore the free surface) be expressed as (Hubral,
1983):

u (Xp,¥nsZ = 0,t) = Re { ug(xp,yn) W(t - R(xp,yp))} »

14
where

1
uo(Xp,yn) == K; (IT K¢) cosp (15)

L

B is the emergence angle of the normal ray at (xp,yp).
W(t) is the analytic signal of the compressional source
wavelet w(t), i.e.,

W(t) = w(t) - iH [w(t)] (16)
H denotes the Hilbert transform
H [w(t)] =% PV % “:_(") dr (17)

K; = Ki(Xp,yp) is the (real) normal-incidence
reflection coefficient at NIP. This may vary as a
function of (xp,,yn). ((ITK¢) = INK¢(Xxp,yn)) is the
product of all the (real) transmission coefficients
encountered by the primary compressional wave on its
two-way path along the normal incidence ray from
(Xp,¥n) to NIP and back. It will be a positive quantity
often close to unity.

Geometrical Spreading

L is the geometrical spreading factor in formula
(15) which, in a forward modelling approach, would,
in general, be computed by dynamic ray tracing
(Cerveny, 1977) along the normal incidence ray. Such
a computation is, however, not required in the
following procedure.

With respect to the normal ray the factor L is
given by the expression (Hubral, 1983; Krey, 1983):

2
T T (18)
where
Qp =det A (19a)

and
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A =Knip-KN , (19b)

with KNyp and Ky being two fundamental 2 x 2
wavefront curvature matrices specified below.
The square root in expression (18) is defined by

VIQal sgn(trA) Qp >0
VoK = (20)
i\/iQ Al QA <O
with the sign-function given as
-1 ,X<O0
sgn(x) = 21n
+ 1 ,X>0

trA denotes the trace of the matrix A. Note that the
solution (14) is invalid if Q p is zero.

KNnip and Kp relate to the two-way time
surfaces t = R(x,y) and t = D(x,y) as follows
(Bortfeld, 1989):

Vi

KN = KN(xp,yn) =
2cos?p

(22a)
?R(x,y) 9?R(x,y) |
9x* X 9y
3’R(x,y) 3%R(x,y)
ax dy ay?
Vi
KNIp = KNIP(%n,¥n) = o
(22b)

[ °D(x,y) *D(x,y) |
Ix2 9X 3y

3°D(x,y) 9°D(x,y)
Bx By ayz
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where all derivatives are taken at (xp,yp). vq is the
compressional near-surface velocity, which is assumed
to be known. .

‘ The wavefront curvature matrices Knyp and KN
can be associated with two hypothetical waves. KNyp
(Xn,yn) can be viewed as pertaining to the wavefront
emerging at (Xp,,yp), which has its origin in a
hypothetical point-source at NIP. Kp (Xp,¥n), on the
other hand, can be viewed as pertaining to the
wavefront emerging at (xp,ypn) which has its origin in
a hypothetical wave originating at all points of R
simultaneously. Alternatively one can view Kjypp and
K as pertaining to two ‘‘eigenwaves”, which have
the unique property that, when propagating down and
up the normal incidence ray, they start and emerge at
the surface with the same wavefront (Hubral, 1983).

The definition (20) of the square root in formula
(18) has some interesting consequences concerning
solution (14). Provided that the velocity above the
reflector is constant and the reflection coefficient
Ky (Xp,yn) at NIP is positive, the reflected
zero-offset pulse at (x;,,yp) may either have the shape
w(t), -w(t) or H[w(t)].

It is well known that the reflected pulse shape
depends on the number of caustics along the normal
ray, which are usually counted in forward ray
modelling. In order to guarantee a correct true
amplitude recovery of the source pulse, we assume
that no caustics exist in a laterally inhomogeneous
medium,

As indicated above, no CMP data nor any
traveltimes for interpreted reflections are required for
the theory described here. However, with the recorded
3D zero-offset data also the macro-velocity model is
expected to be given. This implicitly defines
consequently the time-surface D(x,y) and the curvature
matrix KNyp (Xp,¥n), thus making the computation
of the spreading factor L at any location (X;,ypn)
possible without identifying primary reflections from
reflector R nor tracing a normal ray to it. We will not
enter here into a discussion concerring the
computation of the macro-velocity model. This surely
cannot be derived from the zero-offset data but
requires borehole or CMP measurements.

THEORY OF MODIFIED - DIFFRACTION
STACK MIGRATION

We now provide a mathematical formulation of
the summation method, which we prefer to call
“modified diffraction stack’. For simplicity we make
use of analytic signals, i.e. operate with the complex
version of the vertical-component of the displacement
vector of the compressional primary reflection
recorded at (xp,yn). This is given as the expression
within the parenthesis of formula (14)

Seismic reflection tomography

U(xn’ Yoo t) = ug (Xp, yn) W(t - R (xp, yn))
(23)

Diffraction Stack

With respect to the zero-offset location (xp,yp)
we define

g(x,y) = D(x,y) - R(x,y) (24)

We know that in the vicinity of (xp,y,) we have

1 4
g(x,y) = 5 [X-Xp, y-Ynl A[X-Xp,y- Yn]T

(25)
where T denotes the transpose and
A = (Kngp - KN) 2cos?p A 2cos?p
\4 \4| (26)
Formula (25) results because
8(Xp, Yn) = V 8(Xp, yn) = 0 27)

For a rectangle

Mp = {(xy)lIx-xh < €q,ly-ygl < €5}
(28)

centred at (Xp,yp) let us consider the following
integral to be representative for a “diffraction stack’
for the zero-offset reflections from reflector R in
rectangle M;,.

Ul (xn’YIpT) = [[ dx dy U(X,Y,T + D(X’Y))
Mn

= N{f dx dy ug (x,y) W(r + D(x,y) - R(x,y))
n

= h{f dx dy ug (x,y) W(r + g (x,y)) (29)

n

The index i indicates that the resulting
“diffraction-stack signal’ obtained by the right-hand
side expression is to be transferred into the apex of the
diffraction-time-surface D(x,y) at the output trace at
location (xj,y;j). The arguments x,, yn, on the other
hand, in the left-hand side of formula (29) should be
taken as an indication that the integral (29) will get its
main contribution from the zero-offset reflections in
the vicinity of (xp,y,). Though we allow that r in
integral (29) may take on any value, we remark that in
the discrete implementation of formula (29) only a
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finite range of values for v needs to be considered.
This we already indicated above, when we shortly
summarized the modified diffraction stack. In this
connection it should also be made clear that in the
practical implementation of the algorithm, we will use
instead of M, the interior of a sufficiently large circle
centered at (Xj,yj) as we assume no a priori
knowledge with respect to the point of tangency of
R(x,y) and D(x,y).

The t-Fourier transform of the above expression
(29) can be written

Ui (Xn,ytp“’) =

W(o) Nflf dx dy ug (x,y) exp [io g(x,y)] (30)
n
Where we have used the notation
W(w) = f© dr exp [-ior] W(r) (31)

We also have interchanged the order of space and
time integration and used the shifting property of the
Fourier transform. The integral in (30) is of the form
studied by Hubral & Tygel (1989). It shows that, for
large positive 0 >> 1,

0j (xp»yn»0) = W(w) ug (xp,yn) \/(IQA [g;r_i] ;

il (32)

with

Ui (KoY @) = U Gpoymo-@)  » (@ < 0)
(33a)

and

Qp =det A (33b)

Also the square root in equation (32) turns out to
be

m = cosf V §Iv1 VQA = cosp /V1 %
(34)

with the root of Qa being defined in expression (20).
L, as one observes, is the geometric spreading factor
of the zero-offset reflection at (xp,,yp). Substituting
equation (34) into formula (32), one finds for 0 >> 1
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01 (Xn,)’naw) = W(m) Ug (xna yn) v V1/§ -12:
(0 > 0)
35)
1 [211' .
cosp @ i

Substituting the expression (15) for ugy (xp,¥n)
yields

" 1
Ui(xn,¥ns0) = W(o) [Kr(IKy) — cosp]

L v1l cosp

w .
[Sill  (36)
= W(o K(I Kp VVZ[S11, (0 > 0)
or ‘

Ke(IT Kp) VV,7Z W(o) = [ 210 (nynse)

(0 > 0) €7)

The Fourier transform pair for analytic signals
F(t) is

F(t) = 51; J7 de exp [iot] F (o) (38a)

F (o) = [°, dtexp [-iot] F(t) (38b)

Indicating this relationship by F(w) < F(t), one
notes that

-iw d 1
[reaaii) U; (Xp»¥ns®) © - + = Ui (xn.yn,t)](39)

Hence one finds
Ky (I Ky) VV,7Z W(E) = - % :ll—t Ui (KnsYnot)
(40)
or taking real parts

1 d
Ky (T Kp) VVIZW() = - = = i (n:¥nst)

@1
where u; = Re Uj.
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Introducing the definition w¢,(t) for the true
amplitude signal

K, (IT K¢) w(t) = wiqa(t) 42)
one obtain the final result
1 d
W (t) o — — [u; (x »Yn»t)]
ta z \/71_/_2, ac Ui ¥n Yn
43)

where
Ui (Xp,ynot) = [f dx dy u(x,y,t + D(x,y))

M, (44)

It is interesting to observe that in a true-
amplitude trace (42) there appears only the source
pulse w(t), even though the zero-offset reflections
could have been pulses of the form -w(t) and H[w(t)],
due to caustics encountered along the normal ray. As
the above theory shows, the modified diffraction stack
migration removes the geometrical spreading loss in
the time-migration of the reflections. It also
reconstitutes the original source pulse w(t) in the case
of a constant background velocity model. This very
much helps the interpretation as the sign of K is also
correctly recovered. In the case of caustics on normal
rays in a laterally inhomogeneous velocity medium the
correct source pulse need however not be correctly
reconstituted by the above procedure.

CONCLUSIONS

Rather than having entered into the broad general
subject of tomography, we treated only one aspect in
some rather detail, namely the reflection mode
diffraction tomography for zero-offset recordings. We
first treated the case of a Born-type scatterer.
Thereafter we extended the method to a laterally
inhomogeneous model. In a laterally inhomogeneous
earth, where compressional zero-offset reflections
from smoooth subsurface reflectors are well
approximated by ray theory, one can construct
so-called “‘true-amplitude-time-migrated”> reflections
by nothing more than a diffraction stack, followed by
a scaled time derivation of the resulting stack trace. To
make this migration method operationally efficient one
has to implement (a) a very quick ray tracing from the
various subsurface points of the macro-velocity model
to the measurement surface and (b) a very fast
traveltime interpolation in order to obtain all the
diffraction time surfaces required for the stack. Very
efficient algorithms, for achieving such goals exist
(Goldin, 1986).

Of course, in cases with a small lateral change of
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velocity the RMS-velocity may often be good enough
to define the diffraction time surfaces. Then there is no
need for any ray tracing at all.

An important aspect, of course, is the
performance of the presented migration method in the
presence of random noise. Here first computational
experiments (Miirz, 1985; Krey, 1987) show that the
modified diffraction stack favourably enhances the
signal-noise ratio, just as one would expect from any
stacking process.
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