Revista Brasileira de Geoftlsica; 1990, Vol. 8 (1), 7-16

THERMOSPHERIC MODELS: A SHORT REVIEW

C.J. ZAMLUTTI'

In this short review, thermospheric models are briefly discussed concerning their
completeness compared to the first order Navier-Stokes equations. It is concluded
that empirical models are the most reliable reference for the dynamical equilibrium
behaviour of the thermosphere. The three-dimensional time dependent models still
need some work before they reach their final stage.

MODELOS TERMOSFERICOS: UMA CURTA REVISAO — Nesta curta
revisdo, os modelos termosféricos séo questionados sumariamente no que concer-
ne 2 sua inteireza quando comparado s equagbes de primeira ordem de Navier-
Stokes. Conclui-se que os modelos empiricos sdo as referéncias mais confidveis
para o comportamento da termosfera em equilfbrio dindmico. Os modelos tridi-
mensionais dependentes do tempo ainda necessitam de refinamentos para que seu

estégio final possa ser alcangado.

1. INTRODUCTION

Thermospheric models received considerable
improvement, in the past years, since the remarkable
work of Harris & Priester (1962). Their past history
(see references therein) cannot be covered in a short
review like the present one.

The basic problem is to determine the effect of
solar radiation, magnetic storms and other energy
mechanisms on the neutral atmosphere. The
complexity is increased because part of the incident
energy is not converted into heat instantaneously and
may be either stored as chemical energy (in the ionized
particles) or delivered elsewhere (interhemispheric
trips by photoelectrons).

It is generally accepted that the hydrodynamic
equations, together with an equation of state,
constitute a reasonable mathematical description of the
problem. The equations are those of a fluid and the
neutral gas is treated as such. Atmosphere modelling
involves essentially three aspects:

a) the selection of the effective contributing terms of
the hydrodynamic equations;

b) the choice of appropriate boundary conditions;

c) the efficiency in describing the momentum and
energy sources and sinks.

In this review we take the improvement of
approximated solutions to the governing equations as a
guideline to discuss the first of the three aspects
above. References are inserted at each stage of the
development in respect to their relevant contribution.
No attempt is made to give computational details or
compare expected results with experimental data, since
this has already been done in the included references.
As a general rule, the reader can be sure that all model
attempts commented in this work were successfull in
explaining, within a reasonable limit (say 25%

accuracy), some feature of the thermospheric
behaviour. Improvements on the models became
necessary over and over again as a natural
consequence of the development of measurement
techniques with the resulting new data bases. The
reviewing does not follow a chronological order but is
organized, as far as possible, based on increasing
complexity. Our emphasis is placed on the
hydrodynamic equations and on the importance
attributed to each of their terms at the various stages of
development.

2. THE BASIC EQUATIONS

The basic equations considered for neutral
atmosphere modelling are the hydrodynamic equations:
the continuity equation, the equation of motion and the
energy equation, and the ideal gas law. The fluid
equations (Landau & Lifchitz, 1971) are:

1. the continuity equations:

ap/ot = dp - V . dpasss @D
2. the equation of motion:

d(pu)/ot = Af -V . i’momentum§ ?)
3. the energy equation:

oW/t = dW - V . benergys 3)
where p stands for mass density, t for time, d for local
time rate variation of the parameter, ¢ for flux density,
V for a balance or budget of parameters, u for the

wind velocity, f for force per unit volume and W for
energy density. Bold symbols stand for vectors and
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those  bold underlined  represent  matrices.
Unsubscripted parameters stand for neutral bulk

characteristics.
The ideal gas law is:

p = pRT/M, )]

where p is the pressure, R is the universal gas constant
and M is the mean molecular mass in a.m.u..

In order to transform the hydrodynamic equations
into forms more appropriate to computational
purposes, we consider the actual constraints imposed
by the thermospheric medium.

Equation (1) can be drastically simplified
because the ionization-recombination, molecular
dissociation, etc., occurring within the thermosphere
do not significantly alter the neutral atmosphere
density. This means that we can assume 3p = 0 in any
condition. Moreover the flux of mass can be expressed
by:

bmass = pu , &)
then the continuity equation becomes

dap/ot + V . (pu) = 0 ©6)

Equation (6), with subscripted parameters,
represents the continuity equation for a given
individual constituent of a gas mixture in the absence
of particle production and loss. Using both,
subscripted and unsubscripted, forms of eq. (6) it is
possible to identify a flux of particle species j
diffusing through the bulk flow of neutral particle. If
we call the diffusion flux ¢4;f, we have the result:

- V.dgir =-V. [pj (uj - w)] =

PLCpj/p)/ot + w . V (pj/p)] @)

(Landau & Lifchitz, 1971). The difference uj - ucan
be computed considering the balance of forces acting
on the individual species for steady state conditions
and absence of a momentum flow, i.e.:

Af=0 ®)

We turn now to eq. (2) for the motion of the
fluid. Regarding the local forces acting on a
considered unit volume we have:

Af=-Vp+pg-2p0xu+2pvni(vi-u) ©)

where g is the gravitational acceleration, £ is the

earth’s angular velocity; vy; is a coefficient indicating
the rate of transfer of momentum from particle species
i (usually ions), with velocity v;, to the neutrals. The
first three terms on the right hand side of eq. (9) are
the usual forces considered in fluid dynamics (Landau
& Lifchitz, 1971). The last term of eq. (9) is the result
of particle-particle interaction (Rishbeth & Garriott,
1969). The small centripetal acceleration Qx(Qxr)
may be subtracted from g (r being the geocentric
distance).

The flux of momentum is composed of:
¢, =puu, (10)

where u u stands for the dyadic product, and a
viscosity flux, ¢;g, expressed by

$byvis = - n [Vut + (Vo)t - (2/3) (V.w) 1], (1)

where m stands for a viscosity coefficient (Landau &
Lifchitz, 1971; Schunk, 1975) and the superscript t
denotes transposal. I stands for the identify matrix.

The total flux of momentum, to be used in €q.
(2), is then given by:

$momentum = $2 + Pvis 12)

Equation 2, with subscripted parameters,
represents the equation of motion for an individual
constituent in a gas mixture. In this case the
summation of the collision term of eq. (9) must include
the collisions of the considered neutral species with
the other neutrals.

Finally, we ought to consider the thermospheric
constraints to be imposed on eq. (3). To start with the
energy density, W is composed of an internal energy,
pe, stored as random motion within the unit volume
and an organized kinetic energy, pu®/2. The time
variation of the internal energy is expressed by:

d(pe)/dt = (Q - L) - V.(peuw) + (p/p) (dp/dt) (13)

where Q and L stand for local heating and cooling
rates per unit volume, respectively, from energy
exchange with the surroundings; V.(peu) is the
transported energy; and the last term on the right hand
side of eq. (13) is the energy variation from adiabatic
motion. Also € = CyT, where Cy is the specific heat
at constant volume.

Using the continuity equation, eq. (13) is
converted into: :

d(pe)/dt = (Q - L) - V.(peu) - p V.u (14)
The kinetic energy component was developed

using the continuity and momentum equations in the
same manner as in Landan & Lifchitz (1971) and we
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obtained:
d(pu/2)/ot = (u?/2) V.ppags + u.Af -
“-v-imomentum 15)

The kinetic energy density is irrelevant in the
context of thermospheric modelling. It may become
important when considering the effect of nuclear
explosions, provided that the appropriate collision
terms are considered. Without this component the
energy equation becomes the thermodynamic equation.

Adding up eq. (14) to eq. (15) and comparing the
result with eq. (3) gives:

dW = (Q -L) + (u?/2) V.dpass + u. Afr  (16)

benergy = [pe + Pl u + dmomentum - U an

where Afr = Af + Vp. This result is the same as that
of Gleeson & Axford (1967) when no thermal flux is
considered. With 8W = 0, we recover the equation of
conservation of energy of fluid dynamics (Landau &
Lifchitz, 1971; Grad, 1958). The effect of a heat flow
is computed by adding one more term to the right hand
side of eq. (17), namely -(AVT) (see Schunk, 1975).
Finally, the interaction between neutral and ionized
particles requires the addition of one more term to the
right hand side of eq. (16), namely

PVpi (mp + my)-1 3k (Tj - Tp)

Equation 3 with subscripted parameters,
represents the energy equation for an individual
constituent in a gas mixture. Besides the
considerations imposed on eqs. (1) and (2), the heat
flux must consider the interaction between the
considered neutral species with the other neutrals.

The above system of equations, with its inherent
limitations, constitute a simplified version to what are
called first-order equations or Navier-Stokes equations
(Schunk, 1975). They do not constitute an accurate
description for the thermosphere. Among their
shortcomings, one can mention:

a) viscosity and heat effects were considered
separated here, whereas in nature they are
intimately connected;

b) the interaction between different particle species
was considered here in a drastically simplified

form,

These aspects were discussed in Schunk (1975).
Nevertheless the Navier-Stokes equations, or even
simplified versions of them, are currently used for
thermospheric modelling with satisfactory results.

3. THE HYDROSTATIC EQUILIBRIUM

Hydrostatic equilibrium implies a null velocity
and no time variation to be imposed on the basic
equations. This constitutes the most drastic
simplification that one expects the system of the basic
equations to bear. Nevertheless, it is a very significant
zero-order approximation for neutral atmosphere
modelling and is very often used to infer first order
parameters (e.g. wind velocity).

Under hydrostatic equilibrium conditions, the
continuity equation states that the density is a function
of space only. The equation of motion reduces to:

dp/dz = - pg (18)
op/(rd0) = 0 19
op/(r sin 0 adp) = 0 20)

where r is the distance between the considered point
and the center of the earth, 0 stands for colatitude and
¢ represents longitude. This is the same as saying that
the pressure varies only in the radial direction. The
energy equation yields:

-V.AOVT)=<(@Q-L) > 1)

where the angular brackets denote daily time average.,
Equation (21) states that the heat flow tends to restore
the thermal equilibrium broken by the presence of the
daytime solar energy.

Equations (18) - (21), together with equation of
state (4), were used at the very early stage of
modelling (see Nicolet, 1960a). Equation (18),
together with eq. (4), yields the pressure
independently of the density:

P = Po exp (- g MR"" 2 T-1 ds) (22)

where p,, is the pressure at ground level. The parame-
ters g and M may also vary in eq. (22).

Though the hydrostatic equilibrium approach is a
very drastic simplification to the equations, Nicolet
(1960a) was able to associate it with the dependence
of atmospheric parameters on the solar activity,
latitude and season, which modify the actual (Q - L)
daily average.

The importance of the hydrostatic model, besides
historical, is that eq. (22) constitutes the basis for more
sophisticated models. The reason is that, where the
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wind velocities are large the density is small, and thus
eq. (18) continues being a reasonable approximation to
€q. (9). The other terms are all second order terms for
€q. (2). Therefore, the hydrostatic equilibrium may
only be broken if either large acceleration of neutral
particles occurs or else extremely high ion velocities
steady flow affects it. Both situations do not occur
regularly in the upper atmosphere.

4. TIME DEPENDENT MODELS

To understand the model attempts of this and the
next sections it is important to give to the reader some
preceding information about the atmosphere research
in the early 60’s. At those days temperature data were
obtained through eq. (21) and density data started
being derived from satellite drag. Therefore,
researchers were worried to produce temperature and
density models which conformed to a local hydrostatic
equilibrium and were consistent with the existing data.

Densities computed with the temperatures
obtained from eq. (21) were not consistent with those
obtained from satellite drag data. Moreover, data
exhibited a sinusoidal diurnal variation. To solve these
problems the models discussed next were proposed.

The earliest time dependent model considered a
time variation allowance for eq. (21) only and assumed
the thermal variation to drive perturbations in the other
parameters through eq. (22) and the equation of state
(4). Nicolet (1960b) proposed that eq. (21) be
extended to:

oW/ot = (Q-L) + V.. V T) (23)

and, moreover, that W = pe. Thus, eq. (23) discards
the irrelevant contribution of the kinetic part of the
energy. Harris & Priester (1962) extended further eq.
(23) by considering the term u. Afr from eq. (16) and
the terms peu and pu from eq. (17). Additionally they
imposed the condition Af=0 and restricted the
velocity to the component along the vertical. The
energy equation becomes then:

d(pe)/ot + u, d(pe)/dz + (pe + p)du,/dz =

(Q-L)+ V.(\ VT)

The original version assumes no time variation of
density.

To complete the system of equations composed
of eqs. (4), (22) and (24), Harris & Priester (1962)
introduced the idea of a ‘‘breathing” atmosphere,
which is otherwise expressed by the restriction:

dp/dt = 0

4)

None of these models could reproduce the
amplitude and phase of the diurnal density variation
derived from satellite drag data and the problem
claimed to have its origin in the net local heat balance
(Q - L). Grounded on the existing evidence of
correlation of the density behaviour with the magnetic
activity, Harris & Priester (1962) suggested the
existence of a corpuscular source of energy in addition
to the solar radiation energy source. The local
characteristics of the “second heat source” were
proposed by Harris & Priester (1962), although
without a consistent data or physical support.

The problematic “‘second heat source’ of Harris
& Priester led an enthusiastic research on the energy
equation which influenced the models to be
commented in the next two sections. It also draw
attention to the need of improved measurements of the
solar EUV fluxes. It is now recognized that it reflects
more the difficulties in a one-dimensional theory than
actually the influence or auroral sources of energy on
the low and middle latitudes.

5. EMPIRICAL MODELS

Satellite drag data provided enough information
about the space-time behaviour of the bulk neutral
densities, and consequently their corresponding
temperatures, before any reliable model could be
derived from the fundamental equations. Researchers
then thought to resort to mathematical techniques, like
least squares fit, to adjust analytical expressions to
describe the observed features, within the context of
simplified physical concepts.

The basic idea to build up thermospheric
empirical models is to overcome the problem created
by the energy equation, which involves a lot of
variables and whose results are not satisfactory. On
these grounds, Jacchia proposed in 1964 to give up
completely this equation and substitute it for the
analytical expression:

T = Teo - (Teo - Ty0) €xp [- s (z - 120)]  (25)

where 120 km was the chosen lower boundary
altitude, T,y the temperature at this altitude, To, the
asymptotic (exospheric) temperature, s a height-
independent parameter expressed as a function of T,
and z the considered altitude expressed in kilometers
(see Jacchia, 1964).

The history of empirical models, however,
precedes the considerations by Jacchia, since in 1951
Bates proposed a set of linearized temperature models
(Bates, 1951), and the expression given by eq. (25)
had already been proposed in Bates (1959). The
Jacchia (1964) model was inspired by a preceding
model due to Nicolet (1961), who derived the
thermosphere temperatures from their effects on the




C.J. Zamlutti 11

atmosphere density, deduced from the rate of change
of the periods of the motion of satellites.

Static models based on eqs. (4), (22) and (25)
proved to be very useful because of their easier
computer processing.

The importance of the Nicolet Model (Nicolet,
1961) was the introduction of a diffusion flux to
explain the distribution of minor constituents of the
upper atmosphere. This flux was assumed to be:

bdif = Pm ud (26)

where the subscript m refers to minor constituent and
uqy is the diffusion velocity relative to a reference
frame moving with the air bulk velocity. That velocity
was computed with the aid of eq. (9), which yields:

uq = (pm vmn)~ ' [VPm - Pme] 27

where v, is the “collision frequency” between the
minor constituent and the background gas.

The Jacchia (1964) temperature model was
consistent with both the Nicolet model and the Harris
& Priester model. This enabled Jacchia to avoid the
restriction imposed by eqs. (19) and (20) and
determine a set of empirical formulas to describe the
upper atmosphere variations which affects only the
variable Te. These expressions account for the
influence of solar cycle, solar rotation, latitude, local
time, season and geomagnetic activity on the
thermospheric parameters.

6. PROGRESS IN MODELLING

Looking for the causes responsibles for not
obtaining agreement between the solutions of the
fundamental equations and data, researchers analysed
the results obtained from the Jacchia Model and
concluded that eqs. (19) and (20) were not satisfied in
the thermosphere. This led to an improvement of the
equations actually used in thermosphere modelling
with the inclusion of other important terms. The
transition from elementary modelling to modern
modelling is commented in this section.

The CIRA (1965) model incorporated the Harris
& Priester (1962) theory and some of the Jacchia
(1964) empirical relations. This model improved the
description of the (Q - L) term relative to the Harris &
Priester model.

Lagos & Mahoney (1967) contested the validity
of neglecting horizontal transport. Dickinson &
Geisler (1968) proposed meridional velocities which
did not affect the continuity equation. Their
complementary wind u,, satisfies the equation:

V. (puy) = 0 (28)

which, neglecting higher order velocity terms,
produces from eqs. (3), (16) and (17) the
thermodynamic equation:

oW/ot = (Q-L) + (p/p)uc . Vp + VAV T)
29)

To compute the vertical velocity from eq. (28),
the meridional velocities were determined from the
solution of a form of eq. (2) proposed by Geisler
(1967). This approach considers the earth’s rotation
and ion drag in eq. (9), as well as a viscosity term
given by:

V. dyis = m (8%up/9z?) (30)

where up, is the horizontal component vector of wu.
The required meridional pressure gradients were
computed using eq. (22) in connection with the
temperature model expressed by eq. (25) and an
exospheric worldwide temperature map published by
Jacchia & Slowey (1967).

Equation (30) implies that the horizontal velocity
be much larger than the vertical velocity and also that
the vertical derivative be much larger than the
horizontal derivatives. Equation (28) expresses the
conservation of mass above a constant pressure surface
if variations of gravity and of the spherical coordinate
system metrics are neglected (Dickinson & Geisler,
1968).

The results obtained by Dickinson & Geisler
(1968) did not confirm their expectation of replacing
the “second heat” source of the Harris & Priester
(1962) model by the simple inclusion of the adiabatic
term contribution to the energy equation.

So far the proposed approaches had the
inconvenience of requiring at least eight boundary
conditions. This was pointed out by Volland & Mayr
(1970) as the responsible source of errors. These
authors proposed instead the use of a model based on
an oscillatory medium where several different waves
interfere. The approach was developed by Volland and
co-workers in a series of papers (Volland, 1966;
1969a, b; Volland & Mayr, 1970). The wavelike
approach implies a dynamical equilibrium assumption,
for which a prescribed time dependence can be used.

The oscillatory approach amounts to replacing as
much as possible differential terms by algebraic ones.
This is possible by means of a space-time Fourier
decomposition of the dependence of the parameters on
longitude and time. The resulting system of differential
equations depends only on the altitude and latitude.

The original two dimensional model of Volland

(1966) still preserved the traditional boundary

conditions of the Jacchia (1964) model. This model
was modified (Volland, 1969a) such that the only
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boundary parameters became two heat sources:

a) the solar EUV heating input;

b) the heating input produced by dissipation of tidal
waves propagating from the lower atmosphere.

Further  theoretical considerations  were
incorporated in the model by Volland (1969b) and
Volland & Mayr (1970). While these models
circumvented the source of errors from the boundary
conditions they had the shortcoming of linearizing the
hydrodynamic equations.

The simplification intrinsic to the Volland series
is that the fluid is considered incompressible for the
hydrodynamic equations and all terms in u? are
discarded in the energy equation. Moreover in eq. (16)
only pressure gradients and ion drag are considered to
affect the term u. Afr.

Volland (1969b) identified four pairs of plane
characteristics waves:

a) acoustic-gravity waves;

b) heat condution waves;

¢) ordinary viscosity waves;

d) extraordinary viscosity waves.

which can subsist in the thermosphere. Of these, four
are upgoing waves and the other four are downgoing
waves. Moreover, Volland (1969b) showed that the
ion-drag and Coriolis force have the only role of
driving the medium anisotropic. Acoustic gravity
waves are propagating waves, the other types are
evanescent waves.

The two-dimensional part of the Volland series is
important because it was successfull to obtaining
satisfactory quantitative agreement between theoretical
results and measurements. The ‘‘second heat source’’
of Harris & Priester could be eliminated by the
introduction of horizontal longitudinal winds.

Friedman (1967) proposed one of the preliminary
approaches to a three-dimensional model. His equation
of motion was simplified by neglecting friction forces
and interaction with charged components of the
atmosphere. He also assumed a constant boundary at
120 km and neglected any horizontal or vertical bulk
velocity. These last assumptions constitute weak
points in his approach. The interesting aspect of this
model was its coordinate system, which is fixed with
respect to the sun.

In the earlier 70’s three-dimensional models
received substantial improvement. However, authors
improved their earlier works without changing their
current trends. Thus Friedman (1970) included bulk
motions neglected in his preceding formulation
(Friedman, 1967). Jacchia (1971) changed the
boundary altitude from 120 km to 90 km, the
temperature profile from exponential to inverse
tangent, and made additional refinements in both

composition and the empirical formulas for the.

description of individual types of atmospheric
variations (with solar activity, geomagnetic activity
and so on). Volland & Mayr (1972a, b, c) extended

their two-dimensional theory to three dimensions,
using a spherical harmonic development, and included
corpuscular heating as a third boundary value, This
time, however, they introduced further assumptions by
replacing the differential forms of the conduction and
viscosity by algebraic ones. This severely restricts the
validity of their results. '

. A new oscillatory approach which appeared also
in the early 70’s was proposed by Lindzen and Blake
(Lindzen, 1970; Lindzen & Blake, 1970). They
introduced the concept of “equivalent gravity waves”
to simulate the vertical structure of tidal modes. Their
simplifications included the use of a hydrostatic
pressure relation to replace the vertical momentum
equation; the neglect of earth’s rotation; the neglect of
the kinetic energy in the energy equation. With these
restriction they were able to separate the vertical from
the horizontal dependence, obtaining two systems of
uncoupled differential equations. They set the lower
boundary condition at ground level and restricted the
solutions to be bounded as z — o as an upper
boundary. The restriction to this approach is that it is
only valid at the equator.

To some extent the works of Volland & Mayr
(1972a, b, c) and Lindzen (1970) are complementary
to each other. Whereas the spherical harmonic
approach (Volland & Mayr, 1972a) is valid where the
ion-neutral drag and the viscosity forces exceeds the
Coriolis force (above 140 km), an improved version of
the “equivalent gravity waves” approach (Forbes &
Hagan, 1979) constitutes a satisfactory approximation
for the lower thermosphere (100-140 km),

CIRA (1972) expressed the trust of the scientific
community still in the empirical formulas revised by
Jacchia (1971). No theoretical model contributed to
this CIRA version. Nevertheless, the theoretical works
mentioned in this section are important to the extent
they established a satisfactory system of equations to
be used in modelling and, moreover, showed the
importance of spherical harmonic development to
describe the latitudinal behaviour of the thermosphere.

7. PROGRESS OF RECENT MODELS

The availability of large data bases, resulting
from in situ satellite measurements of various
thermospheric parameters and remote probing to the
thermosphere by incoherent scatter technique, led to
the development of a new generation of thermospheric
models. We call them here modern models and
comment on their basic trends. Their common aspect is
the emphasis on a detailed study of the thermospheric
dynamics in an attempt to explain through
composition-dynamics interaction what could not be
explained by bulk thermospheric characteristics.

Hedin et al. (1974) started a new series of
empirical models following the same trend of Volland
& Mayr (1972a, b, c). They assumed that the solution




C.J. Zamlutti 13

of the hydrodynamics equations can be divided into
two parts: static and dynamical. The static part
consists of Bates temperature profile model to
substitute the energy equation (like in Jacchia series)
and the solution of the barometric equation (eq. (22))
to determine the corresponding pressures and
densities. The dynamical part consists in expressing
Teo, Tq99 and s by: a spherical harmonic development
to represent the latitudinal variations, a sinusoidal
series to describe temporal and longitudinal variations
and a polynomial series to account for solar/magnetic
activity variations. The coefficients of the resulting
expansion functions are determined by least squares
fitting with experimental data (Hedin, 1983). Diffusive
equilibrium was assumed to describe atmospheric
composition.

Although spherical harmonics are not the actual
solution of the hydrodynamic equations in the range
100-400 km, one can show that Hough functions can
be developed in spherical harmonic components
(Siebert, 1961). Therefore, the final solution of the
hydrodynamic equations can be expressed by a
spherical harmonic series without any intrinsic
theoretical inconsistency.

The static solution of the Jacchia (1977) model
uses a tan-! temperature profile instead of the Bates
profile employed by Hedin et al. (1977). The J77
version uses still the same empirical formulas of his
earlier models to describe the dynamical behaviour of
the thermosphere.

An interesting fully analytical static model was
proposed by Alcayde (1981). It accounts also for the
mesopause temperature variation as a function of both
thermospheric and mesospheric heat input. It is
intended to provide an alternative model to be used in
problem where both thermospheric and mesospheric
parameters are necessary (for instance, tidal studies).

In 1975 Dickinson and co-workers started a new
series of papers based on the numerical integration of
the complete set of the basic equations (Dickinson et
al., 1975, 1977, 1981). Numerical integration of these
equations has also been pursued more recently by
Fuller-Rowell and co-workers in another series
(Fuller-Rowell & Rees, 1980, 1981, 1983; Fuller-
Rowell, 1984; Smith et al., 1982). In both series the
intrinsic  simplifications were the use of an
incompressible fluid formulation and the neglect of the
u? terms in the energy equation.

The Dickinson series constitutes an alternative
approach to simulate dynamics using the basic
equations, The approach is also based on the
perturbation theory. These models do not use a
prescribed time dependence, like the Volland models,
but instead determine the time variation of the
atmospheric parameters from the solution of the
governing equations subjected to the known driving
energy and momentum sources. The static reference is
taken from the Hedin models. The considered energy

sources are the solar EUV and UV radiation and

particle precipitation. The considered momentum

source is ion drag. The boundary conditions assumed
are vanishing perturbations at mesopause altitudes and
vanishing vertical gradient of the perturbations at

exospheric altitudes. .

Two shortcomings of Dickinson initial works
were:

a) poor account of auroral energy sources;

b) no account for the energy source resulting from
atmospheric tides propagating from the lower
atmosphere.

The first problem was reconsidered in the most
recent papers of the series (Roble et al., 1982, 1983).

To compute the thermospheric composition, three
major constituents: atomic oxygen, molecular oxygen
and molecular nitrogen are considered in the
Dickinson series. These species are assumed to be in
thermal equilibrium, which reduces the problem to the
simultaneous solution of the continuity equation and
the momentum equation for all three constituents, with
the need of matrix methods to determine the final
solution (Dickinson et al., 1972, 1984).

The Fuller-Rowell series deals also with
numerical simulation of the dynamical behaviour of
the thermosphere. It is similar to the Dickinson
approach as far as the time dependence is concemed.
The statical reference is taken from the Jacchia
models. The energy sources considered are solar UV
and EUV radiation and particle precipitation. The
momentum source considered is ion drag., The
boundary conditions are vanishing perturbations at 80
km altitude and vanishing vertical gradient of the
perturbations at exospheric altitude.

The Fuller-Rowell series also did not account for
the energy delivered by atmospheric oscillations
propagating from the lower atmosphere.

In the Fuller-Rowell series all neutral species are
assumed to be in thermal equilibrium., They are
divided into two categories: light and heavy species.
This reduce the problem to the solution of omne
conservation equation for the mean molecular mass
and two equations of motion to determine the two
constituents velocities (Fuller-Rowell & Rees, 1983).

Forbes (1982a, b) undertook the matter of
continuing and improving the Volland approach, His
method uses the complete set of hydrodynamic
equations for an incompressible fluid with no u? terms
in the energy equation. The driving mechanisms
considered for the tidal oscillations were the solar UV
and EUV radiation. Integration was carried out from
ground level up to 400 km altitude. The perturbations
on the atmospheric parameters were assumed to vanish
at the lower boundary and the vertical gradient of
these perturbations were considered to vanish at the
upper boundary. Mean zonal winds as well as
meridional temperature gradients and a detailed
account for damping mechanisms were also
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considered. No account was made of high latitude

energy sources. The static solution considered was that

of Hedin models.

A shortcoming of Forbes series is the neglect of
appropriate auroral sources. This may represent a
considerable factor during geomagnetic storms, as
emphasized by the works of Straus (Straus & Schulz,
1976; Straus, 1978).

The Forbes series considers the minor constituent
diffusion model of Nicolet (see eqs. (26) and (27)) to
explain the composition of all neutral species, except
molecular nitrogen which is the major specie.

Another attempt to model the thermospheric
dynamics came from Creekmore et al. (1975) and was
pursued more recently by Fontanari et al. (1982). This
is an improved version of the Blum & Harris (1975)
approach and determines the time variation of density
and winds for a prescribed temperature field. The
shortcoming of this approach, as discussed by Fuller-
Rowell & Rees (1980), is the use of an empirical
temperature field which is unable to reproduce a
transient situation which occurs, for instance, during a
magnetic storm.

In this section, the three basic options, available
for users of thermospheric models, were well
identified. Thus:

a) Empirical models may be used when one seeks the
average value of the thermospheric parameters
expected for the actually existing thermospheric
conditions,

b) Spectral analysis models can be chosen when the
regular wavelike behaviour of the thermosphere is
under consideration.

¢) Theoretical models are prefered when transient
responses, of the thermosphere, to unpredicted
excitation actually occurred.

8. DISCUSSION

If people once thought about a model to predict
the thermospheric behaviour exactly, they now see
how far we are from this expectation. The reasons are
manifold, starting with the heating efficiency of the
solar UV and EUV radiation and going to the
statistical nature of particle precipitation and their
subsequent behaviour,

The thermospheric models proposed so far are
cither incomplete as far as the equations are
concerned, or else incomplete in the consideration of
all important sources of momentum and energy.
Empirical models, which are very reliable, are only
valid for steady state situations.

Three questions arise relative to thermospheric
modelling:

a) Which system of equations is an actually
appropriate system to describe the thermospheric
behaviour?

b) What sources and sinks need to be considered as

effective in the thermosphere?

c) What type of solution is more convenient to
describe thermospheric dynamics?

Regarding the first question, a significant
theoretical work was presented by Schunk (1975). In
practice, two basic guidelines have been attempted:

I) to treat the coupled system of equations for both
neutral and ionized particles (Stubbe, 1970);

II) to consider the system of equations for neutral
particles only and assume ionized particle models.

The first approach implies a considerable
computational work and was not pursued further on.
The second needs the definition of a ‘heating
efficiency’” which was considered in great detail
recently by Torr et al. (1980). Ionized particle models,
however, do not reproduce transient situations.

As far as the second question is concerned,
considerable work was done by Torr et al. (1980)
relative to solar UV and EUV, by Fuller-Rowell and
co-workers relative to high latitude energy sources and
by Groves (1983a, b) and Groves & Forbes (1984)
relative to the energy delivered by tidal oscillations.

The third question is also an open question. Two
basic approaches survived in recent modelling:

1) spectral analysis to determine the effective
oscillatory modes in the atmospheric space time
dynamics;

2) a time stepping procedure solution to account for
any arbitrary time dependence of the sources of
energy and momentum,

A recent effort on the first approach was done by
Forbes (1982a, b). The second approach received
substantial improvements with the works of Roble et
al. (1982, 1983). Although the first approach is more
appropriate to dynamical equilibrium situations, it
cannot be ruled out since the regular input of energy is
periodic in time anyway.

Empirical models have long been considered as
more reliable than theoretical models to describe the
regular behaviour of the thermosphere. The reason is
that they overcome, at least, the problems of our
second question,

A back and forth interative procedure to treat the
coupled system of equations for ionized and neutral
particles is now possible using parallel type
computation. This constitutes an alternative to extend
the idea proposed by Stubbe (1970) which has not
been explored so far.

9. CONCLUSION

In this work we briefly reviewed the most
significant guidelines that thermosphere modelling
have followed since the remarkable work of Harris &
Priester (1962). We focussed on the building up
procedure on which more and more terms were
included until the model equations approach the
theoretical basic equations,



C.J. Zamlutti 15

Although considerable progress has been made,
there is not still a complete model including all term of
the theoretical equations as well as all source
mechanisms., Empirical models are to date the most
reliable reference for the dynamical equilibrium
behaviour of the thermosphere since the proposed
three-dimensional time dependent models are still
incomplete as far as momentum and energy balances
are concerned,

Theoretical models continue being improved and

soon will be complete. Nevertheless, they are
impractical to most of the users since they require
huge computer facilities and large computer time to be
used. At present we classify them as “state of art”
models.,
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