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ATMOSPHERIC REFRACTION FROM THE ZENITH TO THE HORIZON
ADIR M. LUIZ' & ANTONIO S. de CASTRO?

In this paper the role of the atmospheric refraction in the measurements of
positions of artificial satellites and celestial objects is investigated, An analytically
approximated expression for the calculation of the atmospheric refraction angle as
a function of the zenithal angle referred to the position of the satellite or the
celestial object is presented. The formula obtained is valid for any virtual position
(from the zenith to the astronomical horizon). The theoretical predictions are then
compared with values obtained with other methods and published elsewhere. It is
found that there is a maximum error of 6 per cent between these theoretical
predictions and the available published data. The analytical results obtained by
direct integration are in good agreement with the resuits obtained by numerical
computation, using standard numerical methods. The formula obtained is
particularly appropriate for the determination of the refraction angle of
electromagnetic waves in the neighbourhood of the astronomical horizon. The
influence of temperature gradients is also investigated. A discussion is presented
on the maximum fluctuation of the atmospheric refraction when the direction of
propagation of the electromagnetic wave is orthogonal to the direction of the
temperature gradient.

REFRACAO ATMOSFERICA DO ZENITE ATE O HORIZONTE — In-
vestigamos o efeito da refracio atmosférica na determinagéo da posicdo aparente
de um astro ou de um satélite artificial da Terra. Determinamos analiticamente
uma expressdo aproximada para o célculo da refraciio atmosférica em fungéo do
angulo zenital referente 2 posicdo aparente do astro ou satélite. A férmula deduzi-
da neste trabalho € vilida para qualquer valor do dngulo zenital (desde zero até
909, no horizonte). Os valores obtidos mediante aplicagéo desta férmula concor-
dam razoavelmente com resultados semelhantes que j4 existem na literatura (obti-
dos por outros métodos). Verificamos que os resultados analfticos baseados no
método desenvolvido neste trabalho concordam satisfatoriamente com os resulta-
dos decorrentes dos célculos feitos no computador mediante aplicacdo de métodos
usuais para a integracdo numérica. Mostramos que a férmula aproximada obtida &
particularmente adequada para a determinagdo da refragdo decorrente de ondas
eletromagnéticas nas vizinhangas do horizonte astronémico., Discutimos a influén-
cia da temperatura sobre as variaces da refracdo atmosférica em fungio do &n-
gulo zenital. Estimamos alguns valores para as flutuagdes méximas da refraciio
atmosférica quando a direcdo da incidéncia da onda eletromagnética € ortogonal &
diregdo do gradiente de temperatura.

1. INTRODUCTION
refraction of an electromagnetic wave in the Earth’s

The measurements of artificial satellites and
celestial objects positions are limited by two important
corrections. The first one deals with the relative
motion between the Earth and the celestial object
considered. The second is related with the so called
atmospheric refraction or astronomic refraction which
is produced by the refraction of light in the
atmosphere. In the present work we will develop an
alternative theoretical approach in order to study the

atmosphere.

Let us consider the observer’s eye situated at the
point O as indicated in Fig. 1. The light ray which
comes from the celestial object A follows the
trajectory AO. The bending of the curve AO is
downward, because the refractive index grows
continuously along the path AO. Then, the celestial
object appears to be at a higher altitude A’ than the
real position A.
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The difference between the virtual position and
the real position is given by

Z=z1-Zo

where z, is the zenithal angle associated with the
virtual position A’ and z, is the angle associated with
the real position A. The correction Z is named
astronomic refraction angle, since it is to be applied to
astronomic observations involving objects outside the
atmosphere. If the objects were inside the effective
atmosphere, the correction Z would be called
atmospheric refraction angle. Henceforward, we will
use the expression astronomic refraction angle to
denote the above-mentioned correction Z.

Ptolemy was the first investigator to develop a
theory about the astronomic refraction. Cassini,
supposing a constant atmospheric density, found an
astronomic refraction angle of 20 minutes at the
astronomical horizon (z, = 90°). Newton, supposing
an isothermal atmosphere, concluded that the
maximum astronomic refraction angle is equal to 40
minutes (at the horizon).

Modermn approaches to the astronomic refraction
problem are given by Danjon (1952), Garfinkel
(1967), Mueller (1977) and Smart (1977).

According to Danjon (1952), the astronomic
refraction angle can be calculated by the expression
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where Z is given in seconds, P is the pressure in cm
Hg and t is the temperature in ©C. Under standard
atmospheric conditions (P = 76 cm Hg; t = 0 ©C) eq.
(1) becomes

Z = 60.34 tan zg, 2)

We can verify that the eqs. (1) and (2) are not
valid in the neighbourhood of the astronomical
horizon. Equations (1) and (2) do not agree with the
experimental results for angles z, greater than 700°.
The main objective of this work is to investigate the
astronomic refraction in the neighbourhood of the
astronomical horizon. In Sections 2 and 3 we will
consider an isothermal atmosphere. In Section 4 we
will investigate the influence of the temperature
variations on the determination of the astronomic
refraction angle.

2. CALCULATION OF THE ASTRONOMIC
REFRACTION ANGLE

Fermat’s principle is appropriate to the study of
the propagation of a light ray in a material medium.
According to this fundamental principle we obtain the
following differential equation for the trajectory of a
light ray in a transparent medium:

1 1

N . grad n 3)

Io n

where 1 is the curvature radius of the trajectory, n is
the refractive index of the medium and N is the unit
vector orthogonal to the trajectory at the point where
the curvature radius is ry. The demonstration of the eq.
(3) is given by Sommerfeld (1954).

By considering the symmetry of the Earth’s
gravitational field, we can suppose the atmosphere to
be spherically symmetrical. Therefore, the refractive
index n is a function which depends only on the
distance r between the considered point and the
Earth’s centre. By use of the eq. (3) Born & Wolf
(1959) obtained the following relation for the
trajectory of the light ray:

nr sin ¢ = a = constant (C))
where n is a function of r, o is a constant at every
point of the trajectory of the light ray, ¢ is the angle
between the tangent to the trajectory at a certain point
A and the radius vector which links this point with the
Earth’s centre. Equation (4) is the implicit form of the
equation of the trajectory of the light ray.

Figure 2 shows the trajectory AO of a light ray
which arrives at the observer’s eye O.
From Fig. 2 it is evident that

Z =0+ ¢-z9

Differentiating the previous equation with
respect to r yields

dz _do | do
L g A T 3 ©)
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Figure 2

Equation (4) can be written as
nr sin ¢ = n4Rg sin zg ©)

where R, is the Earth’s radius, n, is the refractive
index at the Earth’s surface and z, is the zenithal
angle of the virtual position of the celestial object. By
using polar coordinates we get

do
r g —tand @)

From the egs. (5), (6) and (7), we obtain

A i 8 a dn (8)

n (n’r? - a?)1/2

By using eq. (8), Danjon (1952) obtained the
following result (originally derived by Laplace):

Z = 60.27 tan zg - 0.0669 tan® z, ©)

where the astronomic refraction angle ought to be
. computed in seconds. Equation (9) gives the
astronomic refraction angle Z as a function of the
zenithal angle z,, in the case of the standard
atmospheric conditions. We must stress that Z diverges
to infinity at the astronomical horizon.

Danjon (1952) has obtained the following
expression for the determination of the astronomic
refraction angle in the neighbourhood of the horizon.

Z = ag[1-ay/2] V/2/a sin zo exp [X?]

f:: dx exp (-x2)

where X = (cos zy)/V2a; ay = 60”.343 and a =
0.0011078.

In this Section we will develop and alternative
approach for the determination of the astronomic
refraction angle from the zenith to the horizon. By
inserting u = nr into eq. (8), we find that

_ a du o dr
o u(u? - a?)1/2 N r(n?r? - a?)1/2 a0

In order to obtain Z it is necessary to integrate
eq. (10) from the Earth’s surface, where r = R and n
= n,, to a certain height H, where the refractive index
n is equal to n,. The integration of the first term of the
second member of eq. (10) yields

uy a du S o I
U1 u(u? - a?)l/2 n(Rg + H)
cos [ %1 an
m1Ro

where u = n1R0 and Uy = n2(R0 + H).

In order to integrate the second term of the
second member of eq. (10) it is necessary to know the
exact relation between n and r, For the sake of
simplicity we shall suppose an isothermal atmosphere
(temperature gradients are considered in Section 4)
and taking into account Boltzmann’s distribution, we
are able to write

P = po exp (- po gh/Py)

where p is the atmospheric density at a height h, pg is
the atmospheric density at the ocean level, g is the
local value of the acceleration of the gravity and Py, is
the standard value of the atmospheric pressure. By
Gladstone and Dale’s law, we can write

n =1+ kp 12)

where k is a constant. By inserting .the expression for
the atmospheric density p into eq. (12) we obtain

n = 1 + ngexp (- Bh) (13)

where B = pyg/P,. On the Earth’s surface and under
standard atmospheric conditions, we have

n, = 1.0002925; p, = 1.2932 kg/m?;

P, = 1.013 x 105 N/m?*  (14)
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where ny = 1 + n,. By using the value g = 9.81 m/s?
we get

B = 1.2523 x 10-4 m-! (15)

In order to integrate the second term of the
second member of the eq. (10) it is convenient to make
a development in a Taylor series. After some algebraic
transformations, we obtain

Ro+H
RO l.(n2r2 At a2)1/2

H a dh
% (Ry + h)(C + Dh)"2

where

= 2 2, .
C = nqRg cos? zg ;

D = 2Rqn? - 2nn4BR, (16)

The previous integral yields the result

C + DH

2n4Rysin zg
R,D-C ~

= ———— [tan-1]
(ROD - C)1I2
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From eqs. (10), (11) and (17) we find the desired
relation between the astronomic refraction angle and

Zgt
Z =1 + cos"! (sin zg) - cos"! (E/F) (18)
where

E=n1Rosinzo;F=n2(Ro+H)

In this approximation, H is much smaller than the
Earth’s radius. On the other hand, from eq. (13), we
conclude that the refractive index decays exponentially
with h. In dealing with exponential decreasing, it is a
standard procedure to take an effective value which
becomes 1/e of the maximum value of the function.
We will choose a value of H such that the term ng exp
(-Bh) becomes equal to ng/e. Thus,

H=1/B = 7985 m (19)

By using the mean Earth’s radius Ry = 6371 km
and eqgs. (14), (15), (16), (17), (18) and (19) we have

calculated the function Z = Z(z;). We have also
calculated: the astronomic refraction angle Z by direct
numerical integration of the eq. (8), using a digital
computer. The numerical integration of eq. (8) yields
the same approximated results obtained with eq. (18).
This indicate the validity of the result (18). On the
other side, the results based on the eq. (18) are in good
agreement with the results reported in the literature
(which have been obtained by experimental methods
and by different theoretical approaches). Thesé results
are also supported by the experimental data reported
by Pan (1974), as it is illustrated in Tab. 1.

Table 1. Comparison of the theoretical values based in eq.
(18) with the experimental results reported by Pan

(1974).
Zg eq. (18) Experiment
60° 1°06” 1’40
650 1'22” 2’04”
700 1’45 2’377
759 2°22” 3’34”
80° 3°29” 5’16”
859 7°05” 9°45%

3. ASTRONOMIC REFRACTION IN THE
NEIGHBOURHOOD OF THE HORIZON

Danjon (1952) obtained for Zg = 900 an
astronomic refraction angle equal to 37° 52 (under
standard conditions). For Zo = 900, according to the
eq. (18) we obtain Z = 36.7 minutes (under standard
conditions).

The values of Z = Z, in the neighbourhood of
the horizon, obtained from eq. (18) are indicated in
Tab. 2. In this table the results Z; from zy, = 89° to z,
= 900 are compared with the results Z = Z, reported

Table 2. Comparison of the theoretical values based in eq.
(18) with the results report by Ephémérides

Astronomiques (1986),

Zg Z1 Zy
89000’ 2327 25377
89010’ 25" 17” 27°03”
899020’ 27°19” 28°38”
89030’ 29’34 30°21”
89940’ 32°01” 32°14”
899050’ 34°43” 34°19”
90°00° 37°38” 36’36
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Ephémerides Astronomiques (1986). We can verify
that there is good agreement between these results. We
must stress that the errors associated with the
experimental determination of the astronomic
refraction angle might become very great, as we will
show in the next Section.

4. THE EFFECT OF TEMPERATURE ON THE
ASTRONOMIC REFRACTION

Equation (1) gives good results only in the range
from z, = 0° to z, = 709, considering constant
standard conditions. If we suppose an isobaric change
At of the temperature, according to eq. (1), we get

AZ At
Z = T t+273

Therefore, for a change At = 1 ©C, we obtain

AZIZ = - 1/273

The previous relation gives the variation of the
astronomic refraction angle for a variation of 1 ©C in
the neighbourhood of t = 0 OC. Since eq. (1) is valid
just in the range from z, = 0° to z, = 70°, we
conclude that the previous method should be only used
in this range. Henceforth, we will study the effect of
the temperature variations on the astronomic refraction
angle in the neighbourhood of the horizon.

According to Fermat’s principle, the trajectory of
the light ray obeys eq. (3). By supposing a celestial
object at the horizon, the direction AO indicated in
Fig. 1 is orthogonal to the zenithal direction referring
to the observer’s position O. Thus, we can write
expression (3) as

1 1 dn
i ndN (20)

where dn/dN is the gradient of the refractive index
(normal derivative of n in the direction orthogonal to
the direction of the incident ray). We want to know
what happens when temperature variations occur in the
atmosphere in the neighbourhood of the observer’s
position. From the ideal gases law, we have

p = PM/RT 21
where M is the mean molecular mass, T is the absolute

temperature and R is the ideal gas constant. By
differentiating eq. (21) with respect to N, we obtain

dp _ PM dT
AN = gz AN 22)

Using eq. (12) we get

1 dn _ k dp

7 dN " naN 23
From egs. (20), (22) and (23), we have

1 _  (@m-1pdT

o - nT dN @

Substituting the values n = 1.0002925, T = 273
9K and dT/dN = 1 OC in eq. (24) we find Io = 10 km.
Thus, an isobaric temperature gradient of 1 ©C in the
direction orthogonal to the horizontal direction at the
observer’s position, produces a great bending in the
trajectory of the light ray. When the temperature
gradient occurs in such a manner that the upper
atmospheric layer is warmer than the inferior one, the
bending of the trajectory of the light ray is downward.
In the opposite case, the bending is upward. The last
case occurs in deserts and gives rise to the effect of
mirage.

In the circumstance described above we conclude
that a temperature gradient of about 1 °C produces an
angular correction of 20 minutes in the computation of
the astronomic refraction angle. The temperature
corrections should be considered not only in
observations of satellites and celestial objects but also
in every precise observation which needs optical
systems immersed in the atmospheric air.

5. CONCLUSIONS

Equations (1), (2) and (9) are useful only in the
range from z, = 0° to z, = 70°. In this work we
obtained the result (18) which is valid for the entire
range from z, = 0° to z, = 90°. This result is
particularly useful for the determination of the
astronomic refraction angle in the neighbourhood of
the horizon, as we can see in Tab. 2.

In the previous Sections we discussed the
influence of the temperature variations in the
determination of the astronomic refraction angle. If the
observation of a satellite or a celestial body were made
in the neighbourhood of the zenith, the temperature
corrections would not be important at all. However, if
the observation is made in the neighbourhood of the
horizontal direction the temperature corrections will be
very important. On the other hand, we conclude that
the measurements of celestial bodies positions in the
neighbourhood of the astronomical horizon are very
difficult, since the temperature fluctuations which
occur in the atmosphere produce a great correction in
the astronomical refraction angle. The role of
temperature and pressure variations in the
determination of the atmospheric and astronomic
refraction angle is a matter which needs further
theoretical research.
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