OBTENCION DE LAS CARACTERISTICAS DE UNA CUENCA A PARTIR DE SONDAJES MT

A.M. OSELLA¹ & P. MARTINELLI²

En el presente trabajo se estudia la respuesta electromagnética generada en una cuenca, modelada como una estructura en multicapas con contornos irregulares. Se calcula la impedancia superficial y la componente vertical del campo magnético para el modo transverso eléctrico y se varían los parámetros del modelo para analizar su sensibilidad.

DETERMINATION OF THE CHARACTERISTICS OF A BASIN FROM MT SOUNDINGS – In the present work the magnetotelluric response due to the presence of a basin is studied by modeling a n-layer structure with irregular boundaries. The superficial impedance and the vertical component of the magnetic field are calculated for the TE mode and the parameters of the model are varied in order to analyse the sensibility.

1. INTRODUCCION

Es sabido que a partir del análisis de registros MT se puede obtener información sobre la distribución de conductividades. Usualmente la interpretación de dichos datos se hace usando la hipótesis de tierra en capas horizontales (modelo 1D), para el cual se han desarrollado distintos métodos de inversión. Ahora bien, no siempre las estructuras estudiadas pueden ser aproximadas por modelos 1D y resultan necesarios modelos bi o tridimensionales. Para estos casos, los métodos de inversión han sido muy poco desarrollados, de allí que resulte interesante estudiar primero la respuesta de distintas estructuras como paso previo para hallar métodos de inversión para este tipo de situaciones. Varios problemas 2-D han sido estudiados, p.e., respuestas topográficas suponiendo un semi-espacio con conductividad finita y contorno irregular (Oshiman & Rikitake, 1985; Wannamaker et al., 1986); modelo de tierra de dos capas con interfase no plana de variación periódica (Hughes & Wait, 1975a, b; Mann, 1964) respuestas debidas a un basamento con una discontinuidad de tipo escalón (Schnegg et al., 1986) o a un cuerpo de conductividad finita ubicado entre capas de distintas conductividades (Hejlt et al., 1984; Adam, 1987). En el presente trabajo se analizará el comportamiento de los campos electromagnéticos en presencia de una estructura de capas con contornos irregulares que podría representar una cuenca. Se calcularán la impedancia superficial y la componente vertical del campo magnético sobre la superficie en función de la frecuencia y de la posición y se variarán

los valores de los parámetros del modelo para estudiar su sensibilidad.

2. DESCRIPCION DEL MODELO

En la Fig. 1 se muestra el modelo propuesto y se indica el sistema de referencia usado (y eje de simetría, z positiva hacia abajo). Cada interfase está dada por una función $f_i(x)$ que vamos a suponer simétrica. De hecho, dado que el campo externo es uniforme, siempre es posible considerarla simétrica respecto de algún origen, en la medida en que éste esté lejos de la zona de interés. Más aún, podemos tomarla periódica (es decir, suponer que la estructura se repite indefinidamente) siempre que se tome la longitud de onda correspondiente mucho mayor que las dimensiones involucradas.

En el caso bidimensional la solución se puede expresar como combinación lineal de dos modos desacoplados: $TE(\overline{E}//y)$ y $TM(\overline{H}//y)$.

Según la hipótesis usual el campo externo para el rango de períodos de interés (T ~ 0,1-100 seg) se puede suponer horizontal y uniforme espacialmente, con una dependencia temporal del tipo $e^{-i\omega t}$. Por lo tanto sólo aparecerá componente vertical de campo magnético, H_z, en el modo TE. Dado que H_z es un buen indicador de la bidimensionalidad se analizará dicho modo.

Para hallar la respuesta electromagnética para el modo TE se deben resolver las ecuaciones de Maxwell que, en el dominio de las frecuencias y con las hipóte-

Revista Brasileira de Geofísica; 1991, Vol. 9 (1), 1-10

¹ Miembro de la carrera del Investigator del CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Dto. de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 1, 1428 Buenos Aires, Argentina.

² Becaria de CONICET, Dto. de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 1, 1428 Buenos Aires, Argentina.

Figura 1. Modelo propuesto para la distribución de conductividades. Figure 1. Proposed model.

 $\overline{\nabla}$, $\overline{H} = 0$

sis de cuasiestacionariedad resultan, en cada etapa:

i) En el aire:

 $\overline{\nabla}$. $\overline{E} = 0$

(1)

 $\overline{\nabla} \ x \ \overline{E} = i \omega \ \mu_0 \ \overline{H} \qquad \overline{\nabla} \ x \ \overline{H} = 0$

Para el campo \overline{H} se debe hallar una solución de $\overline{\nabla}^2 \overline{H} = 0$. Una solución de esta ecuación se puede dar en términos de una serie de Fourier. Debido a que la estructura es simétrica respecto a x = 0, se debe tomar una solución simétrica para H_x con lo cual resulta H_z antisimétrica). Por lo tanto resulta:

$$H_{x} = H_{0} \left[1 + \sum_{n \ge 0} A_{n} k_{n} e^{k_{n} z} \cos(k_{n} x)\right]$$
(2a)

$$H_{z} = H_{0} \sum_{n \ge 0} A_{n} k_{n} e^{k_{n} z} \operatorname{sen} (k_{n} x)$$
(2b)

donde $k_n = 2\pi n/\lambda$ es el número de onda y la longitud de onda λ se elige de tal forma que sea bastante mayor que las longitudes características en este problema.

ii) Dentro de la tierra, en el medio i de resistividad ρ_i y permeabilidad μ_0 se tiene:

$$\overline{\nabla}$$
, $\overline{E} = 0$ $\overline{\nabla}$, $\overline{H} = 0$

(3)

$$x E = i\omega \mu_0 \overline{H}$$
 $\nabla x \overline{H} = \overline{E} / \rho_i$

con lo que \overline{E} y \overline{H} cumplen que:

$$\nabla^2 \overline{\mathbf{E}} + \gamma^2 \overline{\mathbf{E}} = 0 \tag{4a}$$

$$\nabla^2 \overline{H} + \gamma^2 \overline{H} = 0 \tag{4b}$$

con

V

$$\gamma_i^2 = i\omega \mu_0 / \rho_i$$

La solución a este sistema está dada por:

$$E_{y,i} = i\omega \ \mu_0 \ H_0 \ \sum_{n \ge 0} (B_{i,n} \ e^{R_n^1 z} + C_{i,n} \ e^{-R_n^1 z}) \ \cos(k_n x)$$
(5a)

$$H_{x,i} = -H_0 \sum_{n \ge 0} R_n^i (B_{i,n} e^{R_n^i z} - C_{i,n} e^{-R_n^i z}) \cos(k_n x)$$
(5b)

$$H_{z,i} = -H_0 \sum_{n \ge 0} k_n (B_{i,n} e^{R_n^i z} + C_{i,n} e^{-R_n^i z}) \operatorname{sen} (k_n x)$$
 (5c)

donde
$$R_n^i = (k_n^2 - \gamma_i^2)^{1/2}$$

con $B_{i,4} = 0$ (condición para que los campos no diverjan cuando $z \rightarrow \infty$). Estas soluciones son válidas en la medida en que se cumpla la condición de Rayleigh en cada interfase, lo cual es una buena aproximación en MT.

De suponer $\mu = \mu_0$ para i = 1,2,3 y 4 y debido a

que no hay corrientes superficiales en las interfases, se deduce que el vector \overline{H} es continuo y por lo tanto pedir continuidad de las componentes de \overline{H} tangencial y normal a la superficie de separación es equivalente a pedir continuidad de H_X y H_Z . Además es continua la componente tangencial de \overline{E} , es decir, es continua E_V . Aplicando las condiciones de contorno en cada interfase se obtienen los coeficientes A_n (ver Apéndice). Luego de evaluados los A_n se pueden calcular a través de las siguientes expresiones los campos en z=0 en función de la intensidad del campo primario:

$$H_{x} = H_{0} \left(1 + \sum_{n \ge 0} A_{n} k_{n} \cos\left(k_{n} x\right)\right)$$
(7a)

Z(w

$$H_{z} = H_{0} \sum_{n \ge 0} k_{n} A_{n} \operatorname{sen} (k_{n} x)$$
(7b)

$$E_{y} = i\omega \mu_{0} H_{0} \sum_{n \ge 0} A_{n} \cos(k_{n}x)$$
(7c)

Así la impedancia superficial resulta:

$$) = E_{y}/H_{x} = -i\omega \mu_{0} \frac{\sum_{n \ge 0} A_{n} \cos (k_{n}\dot{x})}{1 + \sum_{n \ge 0} A_{n} k_{n} \cos (k_{n}x)}$$
(8a)

Para varios casos que corresponden a distintos contrastes de resistividad entre las capas:

Caso M			Caso N			Caso O					
ρ1	-	50	Ωm	ρ1	-	50	Ωm	P1	-	100	Ωm
P2	-	100	Ωm	P2	-	250	Ωm	P2	=	50	Ωm
ρ3	1002	250	Ωm	P3	-	100	Ωm	ρ3	-	250	Ωm
ρ4	-	1500	Ωm	ρ4	-	1500	Ωm	P4	=	1500	Ωm

se analizó el comportamiento de la resistividad aparente ρ_{ap} , la fase de la impedancia, ϕ_p , el módulo de la componente vertical, $|H_z/H_0|$ y su fase, ϕ_H .

3.1. Caso M: resistividades estrictamente crecientes

Se estudió la sensibilidad de la respuesta a los siguientes cambios en el valor de los parámetros.

3.1.i. Sensibilidad al valor de los Di

Para estudiar el efecto de curvatura de las interfases se varió el valor de los D_i , dejando fijo el valor del resto de los parámetros, como se indica en la Tabla 1 (casos M₀, M₁, M₂ y M₃).

- Tabla 1. Variación en los parámetros que definen la bidimensionalidad de las interfases.
- Table 1. Variations of the parameters which define the bidimensional of the interfaces.

Caso	D ₁ (m)	D ₂ (m)	D ₃ (m)
Mo	0	0	0
M ₁ , N ₁ , O ₁	500	750	1000
M2, N2, O2	300	450	600
M ₃ , N ₃ , O ₃	700	1050	1400

La Fig. 2 muestra la resistividad aparente (Fig. 2a) y la fase (2b) en función del período T para los ca-

la resistividad aparente:

 $\rho_{ap}(\omega) = Z(\omega)^2 / \omega \mu_0 \tag{8b}$

y la fase de $Z(\omega)$ dada por:

 $\phi_{\rho} = \arctan\left[\operatorname{Im}(Z)/\operatorname{Real}(Z)\right] \tag{8c}$

Finalmente, la componente vertical del campo magnético está dada por:

$$H_{z}/H_{o} = \sum_{n \ge 0} A_{n} k_{n} \operatorname{se}(k_{n}x)$$
(9a)

y su fase por:

$$\phi_{\rm H} = \arctan\left[\mathrm{Im}(\mathrm{H_z/H_0})/\mathrm{Real}(\mathrm{H_z/H_0}) \right]$$
(9b)

El valor de los coeficientes A_n no depende de la intensidad del campo externo (H_0), sólo depende de la distribución de conductividades bajo la superficie terrestre; lo mismo pasa con los coeficientes $Z(\omega)$ $y|H_Z/H_0|$, lo cual se debe a que las tres componentes de campo en la superficie terrestre son proporcionales a H_0 .

3 APLICACIONES

Casos analizados.

Las superficies de separación están descriptas por curvas del tipo:

$$f_i(x) = p_i + D_i/[1 + (x/G_i)^2]$$
 $i = 1,2,3$

que son funciones suaves y simétricas en x.

Los parámetros que definen las interfases son los siguientes:

sos M_0 (modelo plano), M_1 , M_2 y M_3 . Se observa que, si bien ρ_{ap} varía en amplitud, las curvas mantienen la forma, mientras que la variación en la fase es pequéna.

La Fig. 3 muestra la dependencia de ρ_{ap} con x para T = 0,1 seg (Fig. 3a), 1 seg (Fig. 3b) y 10 seg (Fig. 3c). Se observa que las resistividades toman el

Figure 2. ρ_{ap} vs. T (2a) and ϕ_{p} vs. T (2b) for different values of D_{i} (Table 1, case M).

Figura 2. Dependencia de ρ_{ap} (2a) y ϕ_{ρ} (2b) con el período, para distintos valores de D_i (Tabla 1, caso M).

valor mínimo para x = 0 aumentando hasta hacerse máximo al borde de la cuenca.

En la Fig. 4 se ha graficado $|H_z/H_0|$ (Fig. 4a) y ϕ_H (Fig. 4b) como función de T para x = 2 km, que es aproximadamente donde se hace máximo y se observa que la amplitud es sensible al valor de los D_i.

La dependencia con x para T = 0,1 seg (Fig. 5a) y 1 seg (Fig. 5b) muestra las características de la estructura: es cero en el centro, aumenta y luego tiende a cero al borde de la cuenca, cuando recobra el comportamiento 1D.

3.1.ii. Dependencia con las resistividades de las capas y las profundidades

Dejando fijo el valor de los restantes parámetros se variaron las resistividades de las capas como se indica en la Tabla 2 (casos M_4 , M_5 , M_6 y M_7). Es decir, se estudió sucesivamente la sensibilidad a cambios en

- Figura 3. Dependencia de ρ_{ap} con x para distintos valores de D_i (Tabla 1), para T = 0,1 seg (3a), 1 seg (3b) y 10 seg (3c) (caso M).
- Figure 3. ρ_{ap} vs. x for different values of D_i (Table 1) for T = 0.1 sec (3a), 1 sec (3b) and 10 sec (3c) (case M).

Figura 4. Dependencia de H_Z/H_0 (4a) y ϕ_H (4b) con T para distintos valores de D_i (Tabla 1, caso M).

Figure 4. H_Z/H_O (4a) and ϕ_H (4b) vs. T for different values of D; (Table 1, case M).

- Figura 5. Dependencia de H_Z/H_O con x para distintos valores de D_i (Tabla 1, caso M), para T = 0,1 seg (5a) y 1 seg (5b).
- Figure 5. H_Z/H_O vs. x for different values of D_i (Table 1, case M), for T = 0.1 sec (5a) and 1 sec (5b).

 ρ_2 y ρ_3 dejando ρ_1 y ρ_4 fijos (teniendo en cuenta que la mayor sensibilidad del método es a ρ_2 y ρ_3).

En estos casos, como se mantiene la forma de las interfases, sólo se analizó el efecto sobre ρ_{ap} . La sensibilidad de la fase es muy pequéna.

La Fig. 6a muestra la sensibilidad a cambios en ρ_2 (casos M₁, M₄ y M₅) y la Fig. 6b a cambios en ρ_3 (casos M₁, M₆ y M₇).

Tabla 2. Variaciones de las resistividades de las capas.

Table 2. Variations of the layer resistivities.

Caso	ρ ₁ (Ωm)	ρ_2 (Ω m)	ρ ₃ (Ωm)	$\rho_4 (\Omega m)$
M ₄	50	70	250	1500
M5	50	130	250	1500
M	50	100	220	1500
M ₇	50	100	280	1500

3.1.iii. Sensibilidad al valor de los parámetros pi

Se varió el valor de p_1 y p_2 dejando D_i , G_i y ρ_i fijos, según se indica en la Tabla 3 (casos M_8 , M_9 , M_{10} y M_{11}).

La Fig. 7 muestra el efecto producido por cambios en p_1 (Fig. 7a) y p_2 (Fig. 7b).

Tabla 3. Variaciones de las profundidades de las capas.

Table 3. Variations of the layer depths.

_			successive statements where the successive statements are successive at the successive statements and successive statements are successive at the succ	the second se	-
	Caso	p ₁ (m)	p ₂ (m)	p ₃ (m)	
	M ₈	300	1300	6000	
	M ₉	500	1300	6000	
	M ₁₀	400	1000	6000	
	M ₁₁	400	1600	6000	

3.2. Casos N y O: Resistividades alternadas

Para analizar como depende la sensibilidad de la respuesta a la curvatura de las interfases del contraste de resistividad entre los distintos medios, se varió el valor de los D_i en la misma forma que para el caso M (ver Tabla 1, casos N_1 , N_2 , N_3 y O_1 , O_2 , O_3).

Figura 6. Sensibilidad de ρ_{ap} al valor de ρ_2 (6a) y de ρ_3 (6b) (ver Tabla 2, caso M).

Figure 6. Sensibility of ρ_{ap} to ρ_2 (6a) and to ρ_3 (6b) (see Table 2, case M).

Figura 7. Sensibilidad de ρ_{ap} al valor de p_1 (7a) y de p_2 (7b) (ver Tabla 3, caso M).

Figure 7. Sensibility of ρ_{ap} to p_1 (7a) and to p_2 (7b) (see Table 3, case M).

Nuevamente se encuentra que las cantidades más sensibles a la forma de las interfases son ρ_{ap} y $|H_z/H_o|$.

- Figura 8. Dependencia de ρ_{ap} con x para distintos valores de D_i (Tabla 1), para T = 0,1 seg (8a), 1 seg (8b) y 10 seg (8c) (caso N).
- Figure 8. ρ_{ap} vs. x for different values of D_i (Table 1) for T = 0.1 sec (8a), 1 sec (8b) and 10 sec (8c) (case N).

En la Fig. 8 se muestran las curvas de resistividad aparente para T = 0,1 seg (Fig. 8a), 1 seg (Fig. 8b) y 10 seg (Fig. 8c), correspondientes al caso N. Se observa que para T = 0,1 seg la sensibilidad de la resistividad aparente es mayor que para el caso M, nientras que para T = 1 y 10 seg es menor. De todos modos el efecto producido por las variaciones en los D_i depende del valor del resto de los parámetros. Por ejemplo, si para la estructura correspondiente al caso N se disminuye la profundidad a la cual se encuentra el basamento tomándose $p_3 = 4000$ m (caso N₄), la sensibilidad, para T = 1 y 10 seg, aumenta, como se muestra en la Fig. 9.

- Figura 9. Dependencia de ρ_{ap} con x para T = 0,1 seg (9a), 1 seg (9b) y 10 seg (9c) (caso N₄).
- Figure 9. ρ_{ap} vs. x for T = 0.1 sec (9a), 1 sec (9b) and 10 sec (9c) (case N_d).

Finalmente la menor sensibilidad de ρ_{ap} a la bidimensionalidad se tiene para el caso O (ver Fig. 10).

El comportamiento de $|H_Z/H_0|$ para los casos M, N y O es similar, lo cual está relacionado con que las variaciones en D_i que se eligieron son las mismas para los tres casos.

- Figura 10. Dependencia de ρ_{ap} con x para distintos valores de D_i (Tabla 1), para T = 0,1 seg, (10a), 1 seg (10b) y 10 seg (10c) (caso O).
- Figure 10. ρ_{ap} vs. x for different values of D_i (Table 1) for T = 0.1 sec (10a), 1 sec (10b) and 10 sec (10c) (case O).

CONCLUSIONES

Del análisis de los gráficos se observa que variaciones en un 40% en la curvatura de las interfases producen variaciones máximas en las curvas de resistividad aparente del orden de 8-15% y en la componente vertical del campo magnético de 25-40%. Por lo tanto, la sensibilidad en la determinación del valor de los parámetros dependerá de la precisión con que se obtengan los espectros reales a analizar, que típicamente no es menor que el 10 ó 15%. Los mejores indicadores de la bidimensionalidad del modelo son la dependencia de ρ_{ap} y H_z con x. El comportamiento de estas cantidades se diferencia perfectamente del caso plano. La sensibilidad de la componente vertical al valor de los parámetros D_i es mayor que la de la resistividad aparente, no produciendo cambios aparentes en la fase.

La resistividad aparente en función del período no es un buen indicador de los parámetros D_i , pues cambios en los valores de este parámetro producen diferencias en las curvas de resistividad aparente similares a las que producen los cambios en los valores de p_1 , p_2 , $\rho_2 \circ \rho_3$.

De los expuesto se deduce que, dado que la resistividad aparente resulta más sensible a los valores de resistividad de las capas antes que a sus formas, resulta conveniente primero ajustar los valores de resistividad y profundidad de las capas usando los espectros de resistividad aparente y luego determinar la forma de las capas a través del análisis de la componente vertical.

REFERÊNCIAS

- ADAM, A. 1987 Tectonic effects in the magnetotelluric field and their numerical modeling. Gerl. Beitr. Geophys., 96: 17-25.
- HJELT, S.E., KAIKKONEN, P. & PIETILA, R. 1984 -On the interpretation of VLF resistivity measurements. Geoexploration, 23: 171-179.
- HUGHES, W.J. & WAIT, J.R. 1975a Effective wave tilt and surface impedance over a laterally inhomogeneous two-layer earth. Radio Sci., 10: 1001-1008.
- HUGHES, W.J. & WAIT, J.R. 1975b Electromagnetic induction over a two-layer earth with a sinusoidal overburden. Pure Appl. Geophys., 113: 591-599.

MANN, J.E. - 1964 - Magnetotelluric theory of a sinusoidal

interface. J. Geophys. Res., 69: 3517-3524.

- OSHIMAN, N. & ŘIKITAKE, T. 1985 Electromagnetic induction in an irregular layer overlaying the Earth, the second paper: a semi-infinite conductivity having an ondulatory surface. J. Geomag. Geoelectr., 37: 643-653.
- SCHENEGG, P., FISHER, G., LE QUANG, B. & WEAVER, J.T. – 1986 – Investigation of a buried vertical fault with natural and controlled source AMT. Ann Geophysicae, 4: 139-144.
- WANNAMAKER, P., STODT, J. & RIJO, L. 1986 Two dimensional topographic responses in magnetotelluric models using finite elements. Geophysics, 51: 2131-2144.

Versão recebida em: 17/08/89 Versão revista e aceita em: 02/10/90 Editor Associado: L. Rijo

APÉNDICE

Obtención de los coeficientes A_n para una estructura de N + 1 capas, con interfases dadas por funciones $f_i(x)$ de periodicidad λ .

Aplicando las condiciones de contorno en cada capa se obtienen las siguientes ecuaciones:

$$\sum_{n=0}^{M} (B_{i,n} e^{R_n^i f_i(x)} + C_{i,n} e^{R_n^i f_i(x)}) \cos (k_n x)$$

$$= \sum_{n=0}^{M} (B_{i+1,n} e^{R_n^{i+1} f_i(x)} +$$

$$C_{i+1,n} e^{-R_n^{i+1} f_i(x)} \cos(k_n x)$$
 (A-1)

$$\sum_{n=0}^{M} R_n^i (B_{i,n} e^{R_n^i f_i(x)} - C_{i,n} e^{R_n^i f_i(x)})$$

 $= \sum_{n=0}^{M} R_{n}^{i+1} (B_{i+1,n} e^{R_{n}^{i+1}} f_{i}(x) -$

$$C_{i+1,n} e^{-R_n^{i+1} f_i(x)} \cos(k_n x)$$
 (A-2)

Debido a la convergencia de la serie pueden despreciarse los términos con n > M, debiendo evaluarse en cada caso el valor de M (M < 9 para los cálculos realizados en el presente trabajo), siendo el tiempo de CPU del orden de 2 seg en una Vax 11-750.

Multiplicando las ecuaciones (A-1) y (A-2) por cos (k₁x) ($0 \le 1 \le M$) e integrando entre - $\lambda/2$ y $\lambda/2$ se obtiene:

$$\sum_{n} (I1_{\ln} B_{in} + I2_{\ln} C_{in}) = \sum_{n} (I3_{\ln} B_{i+1,n} + I4_{\ln} C_{i+1,n})$$
(A-3)

cos (k_nx)

$$\sum_{n} R_{n}^{1} (I1_{\ln} B_{in} - I2_{\ln} C_{in}) = \sum_{n} R_{n}^{i+1} (I3_{\ln} B_{i+1,n} - I4_{\ln} C_{i+1,n})$$
(A-4)

donde

$$I1_{ln} = \int_{-\lambda/2}^{\lambda/2} \exp(R_n^i f_i(x)) \cos(k_l x) \cos(k_n x) dx$$

(A-5)

$$I2_{ln} = \int_{-\lambda/2}^{\lambda/2} \exp(-R_n^i f_i(x)) \cos(k_l x) \cos(k_n x) dx$$

$$I3_{1n} = \int_{-\lambda/2}^{\lambda/2} \exp(R_n^{i+1} f_i(x)) \cos(k_1 x) \cos(k_n x) dx$$

$$I4_{ln} = \int_{-\lambda/2}^{\lambda/2} \exp(-R_n^{i+1}f_i(x)) \cos(k_l x) \cos(k_n x) dx$$

(A-8)

Se definen los vectores $\overline{B}^i = \{ B^i_n \}; \ \overline{C}^i = \{ C^i_n \}$

y las siguientes matrices:

$$\overline{\Pi}^{i} = \{\Pi_{1n}\} \qquad \overline{\Pi}^{2i} = \{\Pi_{2n}\}$$

$$\overline{\Pi}^{i} = \{\Pi_{3n}\} \qquad \overline{\Pi}^{i} = \{\Pi_{n}^{i} \Pi_{1n}\} \qquad \overline{\overline{M}}^{2i} = \{-R_{n}^{i} \Pi_{2n}\}$$

$$\overline{\overline{M3}}^{i} = \{R_{n}^{i+1} \Pi_{3n}\} \qquad \overline{\overline{M4}}^{i} = \{-R_{n}^{i+1} \Pi_{4n}\}$$

Reescribiendo las ecuaciones (A-3) y (A-4) resulta:

$$\overline{\Pi}^{i} \overline{B}^{i} + \overline{\Pi}^{i} \overline{C}^{i} - \overline{\Pi}^{i} \overline{B}^{i+1} - \overline{\Pi}^{i} \overline{C}^{i+1} = 0$$

(A-9)

(A-10)

$$\overline{\mathbf{M1}^{i}} \overline{\mathbf{B}^{i}} + \overline{\mathbf{M2}^{i}} \overline{\mathbf{C}^{i}} - \overline{\mathbf{M3}^{i}} \overline{\mathbf{B}^{i+1}} - \overline{\mathbf{M4}^{i}} \overline{\mathbf{C}^{i+1}} = 0$$

para $1 \le i \le N - 1 y$

$$\overline{\mathbf{K}} \,\overline{\mathbf{A}} + \overline{\mathbf{R}}^{1} \,(\overline{\mathbf{B}}^{1} - \overline{\mathbf{C}}^{1}) = -\overline{\mathbf{I}}$$
 (A-13)

$$\overline{\mathbf{A}} + \overline{\mathbf{B}}^1 + \overline{\mathbf{C}}^1 = 0 \tag{A-14}$$

definiendo $\overline{\overline{K}} = \{k_n \delta_{ln}\}; \ \overline{\overline{R}}^1 = \{R_n^1 \delta_{ln}\} \ y \ \overline{1} = \{\delta_{1n}\}$

De las ecuaciones (A-11), (A-12), (A-13) y (A-14) se pueden obtener los coeficientes An. Resolviendo (A-9) y (A-10) desde la capa N hasta la superficie se obtiene una relación entre \overline{B}^1 y \overline{C}^1 dada por:

$$\overline{\Pi}^{N} \overline{B}^{N} + \overline{\overline{I2}}^{N} \overline{C}^{N} - \overline{\overline{I4}}^{N} \overline{C}^{N+1} = 0 \qquad (A-11)$$

$$\overline{\mathbf{M}}\overline{\mathbf{I}}^{\mathbf{N}} \overline{\mathbf{B}}^{\mathbf{N}} + \overline{\mathbf{M}}\overline{\mathbf{2}}^{\mathbf{N}} \overline{\mathbf{C}}^{\mathbf{N}} - \overline{\mathbf{M}}\overline{\mathbf{4}}^{\mathbf{N}} \overline{\mathbf{B}}^{\mathbf{N}+1} = 0$$
(A-12)

C

$$\overline{\mathbf{MAT}}^{\mathbf{O}} = -(\overline{\mathbf{I}} + \overline{\mathbf{MAT}}^{\mathbf{1}}) [\overline{\mathbf{K}} (\overline{\mathbf{MAT}}^{\mathbf{1}} + \overline{\mathbf{I}}) + \overline{\mathbf{R}}^{\mathbf{1}} (\overline{\mathbf{MAT}}^{\mathbf{1}} - \overline{\mathbf{I}})]^{-1}$$

Cálculo de MAT¹

 $\overline{\mathbf{C}}^{\mathbf{N}} = \overline{\mathbf{M}}\overline{\mathbf{A}}\overline{\mathbf{T}}^{\mathbf{N}} \overline{\mathbf{B}}^{\mathbf{N}}$

con

a) i = N. De la ecuaciones (A-11) y (A-12) se tiene:

 $\overline{\mathrm{MAT}}^{\mathrm{N}}(\overline{\mathrm{I1}}^{\mathrm{N}},\overline{\mathrm{I2}}^{\mathrm{N}},\overline{\mathrm{I4}}^{\mathrm{N}},\overline{\mathrm{M1}}^{\mathrm{N}},\overline{\mathrm{M2}}^{\mathrm{N}},\overline{\mathrm{M4}}^{\mathrm{N}}) =$

 $(\overline{14}^{N^{-1}} \overline{12}^N - \overline{M4}^{N^{-1}} \overline{M2}^N)^{-1} \cdot (\overline{M4}^{N^{-1}} \overline{M1}^N -$

Además se tiene para z = 0.

 $\overline{IAUX}^{N-1} = \overline{I3}^{N-1} + \overline{I4}^{N-1} \overline{IMAT}^N$

las ecuaciones (A-9) y (A-10) resultan:

 $\overline{M1}^{N-1} \overline{B}^{N-1} + \overline{M2}^{N-1} \overline{C}^{N-1} -$

 $\overline{MAUX}^{N-1}\overline{C}^N = 0$

 $\overline{\Pi}^{\mathbf{N}-1} \overline{\mathbf{B}}^{\mathbf{N}-1} + \overline{\Pi}^{\mathbf{N}-1} \overline{\mathbf{C}}^{\mathbf{N}-1} - \overline{\Pi}^{\mathbf{N}} \overline{\mathbf{U}} \overline{\mathbf{X}}^{\mathbf{N}-1} \overline{\mathbf{C}}^{\mathbf{N}} = 0$

lo cual es equivalente a las ecuaciones (A-11) y (A-12), de modo que:

 $\overline{C}^{N-1} = \overline{MAT}^{N-1} \overline{B}^{N-1}$

 $\overline{M}\overline{A}\overline{U}\overline{X}^{N-1} = \overline{M3}^{N-1} + \overline{M4}^{N-1}\overline{M}\overline{AT}^N$

b) para i = N-1. Si llamamos

donde

$$+ \overline{\overline{R}}^{1} (\overline{B}^{1} - \overline{C}^{1}) = - \overline{I}$$
 (A-13)

9

onde MAT depende de los I1, ... I4, M

$$\overline{44}$$
. Combinando esta relación con (A-1)
A-14) se tiene finalmente que:
 $A = \overline{MAT}^{O} \overline{1}$ (A
on

donde
$$\overline{MAT}$$
 depende de los $\overline{I1}$, ... $\overline{I4}$, $\overline{M1}$, ... $\overline{M4}$. Combinando esta relación con (A-13) y(A-14) se tiene finalmente que: $\overline{A} = \overline{MAT}^{O} \overline{I}$ (A-16)

donde
$$\overline{MAT}$$
 depende de los $\overline{\overline{11}}$, ... $\overline{\overline{14}}$, $\overline{\overline{M1}}$, $\overline{\overline{M4}}$. Combinando esta relación con (A-13) (A-14) se tiene finalmente que:

para i = N, pues $\overline{B}^{N+1} = 0$.

 $\overline{I4}^{N^{-1}}\overline{I1}^N$ (A-17)

 $\overline{\mathbf{C}}^1 = \overline{\mathbf{M}}\overline{\mathbf{A}}\overline{\mathbf{T}}^1\overline{\mathbf{B}}^1$

$$MAT^{N-1} = (IAUX^{N-1^{-1}} I2^{N-1} -$$

$$\overline{\mathbf{M}}\overline{\mathbf{A}}\overline{\mathbf{U}}\overline{\mathbf{X}}^{\mathbf{N}-1^{-1}} \overline{\mathbf{M}}\overline{\mathbf{2}}^{\mathbf{N}-1})^{-1}.$$

$$(\overline{\mathbf{M}}\overline{\mathbf{A}}\overline{\mathbf{U}}\overline{\mathbf{X}}^{\mathbf{N}-1}^{-1} \overline{\mathbf{M}}\overline{\mathbf{1}}^{\mathbf{N}-1} - \overline{\mathbf{I}}\overline{\mathbf{A}}\overline{\mathbf{U}}\overline{\mathbf{X}}^{\mathbf{N}-1}^{-1} \overline{\mathbf{I}}\overline{\mathbf{1}}^{\mathbf{N}-1})$$
(A-18)

Esta ecuación es equivalente a la ecuación (A-17) si I4 y M4 son reemplazadas por \overline{IAUX} y \overline{MAUX} respectivamente.

c) para i = N - 2. Tenemos

$$\overline{C}^{N-2} = \overline{MAT}^{N-2} \overline{B}^{N-2}$$

donde

$$MAT^{N-2} = (IAUX^{N-2^{-1}}I2^{N-2} -$$

$$(\overline{\text{MAUX}}^{N-2^{-1}} \overline{\overline{\text{M1}}}^{N-2} - \overline{\text{IAUX}}^{N-2^{-1}} \overline{\overline{\text{I1}}}^{N-2})$$
(A-19)

con

$$\overline{\overline{\mathsf{MAUX}}}^{\mathbf{N}-2} = \overline{\overline{\mathsf{M3}}}^{\mathbf{N}-2} + \overline{\overline{\mathsf{M4}}}^{\mathbf{N}-2} \overline{\overline{\mathsf{MAT}}}^{\mathbf{N}-1}$$

(A-20)

$$\overline{IAUX}^{N-2} = \overline{I3}^{N-2} + \overline{I4}^{N-2} \overline{MAT}^{N-1}$$
 (A-21)

En general, para i = N-k, con 0 < k < N, se tiene:

$$\overline{C}^{N-k} = \overline{MAT}^{N-k} \overline{B}^{N-k}$$

donde

$$MAT^{N-k} = (\overline{IAUX}^{N-k^{-1}}\overline{I2}^{N-k} -$$

$$(\overline{MAUX}^{N-k}^{1} \overline{MI}^{N-k} - \overline{IAUX}^{N-k}^{1} \overline{II}^{N-k})$$

(A-22)

$$\overline{\mathbf{MAUX}}^{\mathbf{N}-\mathbf{k}} = \overline{\mathbf{M3}}^{\mathbf{N}-\mathbf{k}} + \overline{\mathbf{M4}}^{\mathbf{N}-\mathbf{k}} \overline{\mathbf{MAT}}^{\mathbf{N}-\mathbf{k}+1}$$
(A-23)

$$\overline{IAUX}^{N-k} = \overline{I3}^{N-k} + \overline{I4}^{N-k} \overline{MAT}^{N-k+1}$$
(A-24)

r

Con MAT^N, MAT^{N-1} se puede calcular a través de la ecuación (A-18); luego, a partir de MAT^{N-k+1}, se pueden calcular MAUX^{N-k}, IAUX^{N-k} y MAT^{N-k} (ec. A-22, A-23 y A-24, respectivamente). Finalmente, resolviendo de i = N hasta i = 0, se llega a la ecuación A-16.

strategical to be a set of

Revista Brasileira de Geofísica; 1991, Vol. 9 (1), 1-10