# GLOBAL INVERSION OF PHASE AND GROUP VELOCITIES OF FUNDAMENTAL MODE RAYLEIGH WAVES IN THE PERIOD RANGE 20 TO 100 SEC

## João Willy Correa Rosa<sup>1\*</sup> & Keiiti Aki<sup>2</sup>

We have applied to the extensive phase and group velocity data compiled in a first stage of this work (Rosa, 1986; Rosa & Aki, 1991) the stochastic inverse method in order to obtain the global distribution of Rayleigh wave phase velocity values. This is the first attempt to invert globally a data set consisting entirely of R<sub>1</sub>, which does not suffer from polar passages which tend to complicate the waveform by multipath interferences. The resultant anomalies of the phase velocity correlate well with major tectonic features and with previous regional studies made for similar periods. It was demonstrated that these results at relatively longer periods can now be used for determining the moment tensor of events in most regions around the globe. Shorter period results, however, cannot be used in this fashion, due to large residual data variance. In the case of our group velocity study, we found that since the standard deviation of the regionalized values were very similar to those obtained in the phase velocity regionalization (Rosa, 1986; Rosa & Aki, 1991), the large, unacceptable error bounds achieved after the application of the stochastic inversion to the group velocity data, are related to the larger errors involved in the measurement of group velocity. This makes it much harder to obtain geophysical meaningful results from group velocity data.

INVERSÃO GLOBAL DE VELOCIDADES DE FASE E DE GRUPO DE ONDAS RAYLEIGH, NO MODO FUNDAMENTAL, COM PERÍODO ENTRE 20 E 100 SEGUNDOS - O método de inversão estocástica foi aplicado ao grande banco de dados de velocidade de fase e de grupo, de ondas Rayleigh no modo fundamental, com valores de período variando entre 20 e 100 segundos, coletado na primeira parte desta pesquisa (Rosa, 1986; Rosa & Aki, 1991). O objetivo do processo de inversão era a obtenção da distribuição global de valores de velocidade de fase. Neste sentido, nosso trabalho representa a primeira tentativa de obtenção de um modelo global deste tipo baseado apenas em dados de ondas  $R_1$ , que não sofrem passagens pelos polos do percurso, o que normalmente tende a complicar os resultados, devido a efeitos de interferência na propagação das ondas. As anomalias de velocidade de fase obtidas no processo de inversão correlacionam-se bem com as principais feições tectônicas conhecidas na Terra e confirmam os resultados de estudos similares realizados em algumas das faixas de período estudadas. Demonstra-se aqui que os resultados nas faixas superiores do intervalo de período estudado podem agora ser usados para a determinação do tensor de momento de eventos localizados na maior parte do globo. Por outro lado, resultados para as faixas inferiores do intervalo de período estudado não podem ser usados para os mesmos objetivos, devido à grande variância residual associada aos resultados destas faixas. No caso do mesmo estudo realizado com os dados de velocidade de grupo, concluímos que, como o "standard deviation" dos valores regionalizados é similar ao dos valores regionalizados de velocidade de fase (Ro-

<sup>1.</sup> Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

<sup>2.</sup> Department of Geological Sciences, University of Southern California, Los Angeles, CA 90089-0740, USA

<sup>\*</sup> Present address: Instituto de Geociências, Departamento de Geologia Geral e Aplicada, Universidade de Brasília, 70910 Brasília, DF

sa, 1986; Rosa & Aki, 1991), os valores elevados e inaceitáveis de erros associados aos resultados do processo de inversão estocástica dos dados de velocidade de grupo, estão ligados aos grandes erros envolvidos na medida desta grandeza, se compararmos este processo às medidas de velocidade de fase. Assim, é muito mais difícil, em geofísica, obter resultados precisos em estudos de velocidade de grupo de ondas superficiais, do que em estudos da velocidade de fase destas ondas.

### INTRODUCTION

In the first part of our work on fundamental mode Rayleigh waves in the period range 20 to 100 seconds (Rosa, 1986; Rosa & Aki, 1991), we compiled worldwide data of phase and group velocity measurements. We formed this data set using phase velocity from the existing literature, and by newly made phase and group velocity measurements for paths from a set of 45 globally distributed earthquakes with well known focal mechanism and depth to W.W.S.S.N. stations. These data were used to establish a set of regionalized phase and group velocity global models for these waves. We have now an extensive data set and initial models for both phase velocity and group velocity, which enable us to use linearized inversion scheme in order to determine the lateral distribution of phase velocity and group velocity.

Global studies on surface waves have, until now, been restricted to longer periods, which can be done using data from existing digital seismograph stations: I.D.A. and G.D.S.N., which includes S.R.O., A.S.R.O. and D.W.W.S.S.N.. This task has been pursued by two research groups, one at the California Institute of Technology (Nakanishi & Anderson, 1982, 1983, 1984a, b; Tanimoto & Anderson, 1984, 1985 and Tanimoto, 1985) and the other at Harvard University (Woodhouse & Dziewonski, 1984). The period range covered by such studies, as well as the source and amount of data used, are summarized in Tab. 1, and compared with those of our studies. Notice that our data set is much larger than others.

It is important to stress the fact that the work presented here is the first attempt to invert globally a data set consisting entirely of  $R_1$ , which do not suffer from polar passages which tend to complicate the waveform by multipath interferences. Furthermore, the  $R_1$  data set does not suffer from the non-uniqueness of the great circle phase velocity data (e.g. Nakanishi & Anderson, 1983), which cannot fully describe the Earth's lateral heterogeneity.

#### **INVERSION METHOD**

The stochastic inverse for linear problems was introduced by Franklin (1970) and first used by Jordan (1972) in seismology. It was then used by Aki et al. (1977) for determination of the three-dimensional velocity distribution underneath a seismic network using the travel time data observed for teleseismic events. This method has been further extended to the inversion of local earthquake travel time data by Aki & Lee (1976). Since then, it has been improved and widely used in various areas (see reviews by Aki, 1977, 1979, 1981, 1982). In order to eliminate nonuniqueness of the solution Jackson (1979) included a priori information about the solutions in the formulation of the problem. More recently, Tarantola & Valette (1982) considered the stochastic inversion of data for nonlinear problems.

In this work, we apply the stochastic inverse to our dataset in order to determine the worldwide distribution of phase and group velocity of fundamental mode Rayleigh waves for the 20 to 100 sec period range.

We shall first describe the inversion method, comment on the analysis of error, and discuss the appropriate choice for the damping constant. The effect of the damping constant used in the stochastic inversion is discussed in terms of the assumed a priori model variance. In this discussion, we shall make use of abundant examples of three-dimensional inversion of body wave travel time data, in order to arrive at the appropriate damping constant.

We follow the inversion procedure using a block model introduced by Aki et al. (1977). Assuming ray theory, the phase arrival time t<sup>c</sup> for a path between two points  $x_1$  and  $x_2$  can be calculated in terms of the phase velocity c(x) at a point x along the path as

$$t^{c} = \int_{x_{1}}^{x_{2}} dx/c(x)$$
 (1)

where dx is the incremental path length.

Let us designate the observed phase arrival time for the i-th path as  $t_i^0$ , and the calculated arrival time for the initial model  $t_i^0$ . We shall use the phase and group velocity models of Rosa & Aki (1991) based on Jordan's (1981) regionalized model with block size of  $10^\circ$  by  $10^\circ$  as our initial model. The residual travel time  $\Delta t_i$  is then defined as

 $\Delta t_i = t_i^o - t_i^c \tag{2}$ 

| Reference                           | Period range<br>(sec)                                                                                           | Type of study                 | Number of paths | Recording<br>network |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|----------------------|
| Nakanishi & Anderson<br>(1982)      | 152-252                                                                                                         | Rayleigh wave group velocity  | 215             | I.D.A.               |
| Nakanishi & Anderson                | 100-330                                                                                                         | Love wave                     | 200             | I.D.A.               |
| (1983)                              |                                                                                                                 | Rayleigh wave phase velocity  | 250             | G.D.S.N.             |
|                                     | particular and the second s |                               |                 |                      |
| Nakanishi & Anderson                | 100-330                                                                                                         | Love wave                     | 408             | I.D.A.               |
| (1984a,b)<br>also                   |                                                                                                                 | Rayleigh wave group velocity  | 399             | G.D.S.N.             |
| Tanimoto & Anderson                 |                                                                                                                 | Love wave                     | 289             |                      |
| (1984, 1985)<br>and Tanimoto (1985) |                                                                                                                 | Rayleigh wave phase velocity  | 414             |                      |
| Woodhouse & Dziewonski              | greater than                                                                                                    | Love and Rayleigh             | 870             | I.D.A.               |
| (1984)                              | 135 sec                                                                                                         | as well as body waveform data |                 | G.D.S.N.             |
| This work                           | 20-100                                                                                                          | Rayleigh wave phase velocity  | 2147            | w.w.s.s.n.           |

Table 1. Some recent studies on global distribution of phase and group velocity of surface waves.

We attribute the cause of these travel time residuals to the perturbation in velocity along the path. Dividing the Earth's surface into blocks, we can write

$$\Delta t_{i} = \sum_{i} g_{ij} m_{j} + e_{i}$$
(3)

where  $g_{ij}$  is the time spent by the i-th ray path in the j-th block, and  $m_j$  is the fractional slowness perturbation for this block. Since ray theory was used to define eq. (3), the block size is constrained by the wavelength of the seismic waves used.  $g_{ij}$  is obtained by calculating the length of the ray in each block and the velocity value assigned to the region to which the block belongs.  $e_i$  represents the errors due to measurement errors and higher order terms neglected in the linearization of the problem.

 $\mathbf{d} = \mathbf{G}\mathbf{m} + \mathbf{n} \tag{4}$ 

In matrix form, eq. (3) can be written as where d is a vector containing the residual time  $\Delta t_i$  observed

for the i-th path, G is a matrix with elements  $g_{ij}$ , m is the vector consisting of elements  $m_j$ , and n is the error vector with elements  $e_i$ . To obtain the stochastic inverse operator L, following the notation of Aki & Richards (1980), we assume that both m and n are stochastic processes, with zero mean (<m> = <n> =0), and define their covariance matrices by

$$< mm^{t} > = R_{mm}$$
  
 $< nn^{t} > = R_{nn}$ 

where the suffix t means taking the transpose of a matrix.

An inverse operator L is then calculated in a way that the averaged differences between m and Ld are minimized in the least squares sense.

$$L = (G^{t}R_{nn}^{-1}G + R_{mm}^{-1})^{-1} G^{t}R_{nn}^{-1}$$
(5)

This form is convenient to use in this problem, where

the data set is larger than the set of model parameters. Aki et al. (1977) assume that

$$\mathbf{R}_{\mathbf{n}\mathbf{n}} = \sigma_{\mathbf{n}}^2 \mathbf{I} \tag{6}$$

and

 $R_{mm} = \sigma_m^2 I \tag{7}$ 

Equation (6) means that the measurement errors are independent and share the common variance and eq. (7) implies that all the parameters to be determined share the same model variance  $\sigma_m^2$ ; and they are all statistically independent.

Using eqs. (6) and (7) in eq. (5) and introducing damping constant  $\theta^2 = \sigma_n^2 / \sigma_m^2$ , we can rewrite

$$\mathbf{L} = (\mathbf{G}^{\mathsf{t}}\mathbf{G} + \boldsymbol{\theta}^{2}\mathbf{I})^{-1} \mathbf{G}^{\mathsf{t}}$$
(8)

so that the estimate m' of the solution is obtained by operating L on the data vector d,

$$\mathbf{m}^{\prime} = \mathbf{L} \, \mathbf{d} \tag{9}$$

The resolution and the errors of the solution m' due to random noise in the data can be assessed (Backus & Gilbert, 1967, 1968, 1970) by checking the resolution and the covariance matrix:

$$\mathbf{R} = \mathbf{L} \mathbf{G} \tag{10}$$

 $C = \sigma_{\hat{n}}^2 L L^t \tag{11}$ 

We can also define the covariance matrix that includes all the errors in the solution (Jackson, 1979)

$$<(m' - m)(m' - m)^{t}> =$$
  
(R - I)  $<$ mm<sup>t</sup>> (R - I)<sup>t</sup> + L  $<$ nn<sup>t</sup>> L<sup>t</sup> (12)

For the special case  $R_{nn} = \sigma_n^2 I$  and  $R_{mm} = \sigma_m^2 I$ , this simplifies to

$$<(m' - m)(m' - m)^{t}> = \sigma_{n}^{2} (G^{t}G + \theta^{2}I)^{-1}$$
 (13)

The best choice, according to the stochastic inverse, for the damping constant is given by  $\theta^2 = \sigma_n^2/\sigma_m^2$ . The error in the solution due to the linearization of the problem together with measurement errors have to be considered in the estimation of the noise variance  $\sigma_n^2$ . This is estimated from the residual for the estimated solution m'.

e = d - Gm'

and its magnitude

$$e^{t}e = d^{t}d - 2m'^{t}G^{t}d + m'^{t}G^{t}Gm'$$
(14)

 $\sigma_n^2$  is estimated by dividing  $|e|^2$  by the number of degrees of freedom, that is, the number of data minus the number of model parameters, as done by Aki & Lee (1976) and Zandt (1978). On the other hand,  $\sigma_m^2$  must be specified with an a priori assumption of the model. This introduces some subjectivity to the inversion process.

Table 2 shows the data variance, model variance and the damping constant used in several published three-dimensional inversion studies of travel time data for body-waves, using the method of Aki et al. (1977), along with the work of Biswas (written communication, 1983), who studied south-central Alaska using teleseismic data.

The damping constant  $\theta^2$  assumed by these authors are shown in Tab. 2. They are obtained by the relation  $\theta^2 = \sigma_n^2 / \sigma_m^2$  where  $\sigma_n^2$  was, in some cases, estimated from the reading error in the measurements of arrival time, and  $\sigma_m$  was assumed by the author.

We were initially puzzled by a considerable discrepancy between the assumed value of  $\sigma_m$  and the root mean square of the solution, listed at the 6th and 7th lines of Tab. 2 for crust and mantle, respectively.

Examining the residual, e = d - Gm', we soon realized that some of the authors have underestimated  $\sigma_n^2$  by considering only the reading error. The square root  $\sigma_n^*$  of the noise variance estimated from the residual is also listed in Tab. 2. The square root of the model variance corresponding to  $\sigma_n^*$  is calculated by the equation  $\sigma_m = \theta^2/\sigma_n^{*2}$ , and is listed at the 5th line of Tab. 2. Their values compare better with the root mean square of the solution.

An interesting feature of the inversion results may be observed in Tab. 2. It is clear that the velocity variations are greater in the crust than in the upper mantle, and that the velocity variations increase with the decrease in block size as shown in Tab. 2. As shown in Tab. 3 for other studies, the crust presents, in general, a velocity variation greater than the mantle. We list also in Tab. 4 the root mean square velocity variations, the average diagonal element of the resolution matrix and the average standard error of the solution due to random error in the data. The depth range, lateral block size and number of resolved blocks are also listed for each layer. It is clear from these results that there is a decrease of the velocity variation with depth.

The above review of the results of threedimensional velocity studies using the stochastic inversion is useful in our application to Rayleigh waves, since it shows how to estimate the noise

| Hirahara<br>1977<br>Japan<br>0.15<br>1.0<br>2.58<br>0.78 | <ul> <li>Hirahara</li> <li>1981</li> <li>Japan</li> <li>0.10</li> <li>0.7</li> <li>2.21</li> </ul> | Zandt<br>1978<br>Santa<br>Rosa<br>0.005<br>0.1<br>1.41                                                                                                                             | Zandt<br>1978<br>San<br>Jose<br>0.005<br>0.1                                                                                                                                                                                                                                                                                                         | Zandt<br>1978<br>Bear<br>Valley<br>0.005<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li><b>bH</b> <sup>(2)</sup></li> <li><b>1</b>:45</li> <li><b>1</b>:45</li> <li><b>0</b>:91</li> <li><b>0</b>:77</li> <li><b>0</b>:77</li> <li><b>0</b>:77</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                  | orie & Aki<br>1982<br>Kanto<br>District<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Taylor<br>1983<br>Nevada<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Biswas<br>1983<br>Alaska<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Japan<br>0.15<br>1.0<br>2.58<br>0.78                     | Japan<br>0.10<br>0.7<br>2.21                                                                       | Santa<br>Rosa<br>0.005<br>0.1<br>1.41                                                                                                                                              | San<br>Jose<br>0.005<br>0.1                                                                                                                                                                                                                                                                                                                          | Bear<br>Valley<br>0.005<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.11<br>1.11<br>0.91<br>0.77<br>0.77<br>0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kanto<br>District<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nevada<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alaska<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.15<br>1.0<br>2.58<br>0.78                              | 0.10<br>0.7<br>0.2.21                                                                              | Rosa<br>0.005<br>0.1<br>1.41                                                                                                                                                       | Jose<br>0.005<br>0.1                                                                                                                                                                                                                                                                                                                                 | Valley<br>0.005<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.91<br>0.77<br>0.77<br>0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | District<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.15<br>1.0<br>2.58<br>0.78                              | 0.10<br>0.7<br>0.2.21                                                                              | 0.005<br>0.1<br>1.41                                                                                                                                                               | 0.005                                                                                                                                                                                                                                                                                                                                                | 0.005<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.0<br>2.58<br>0.78                                      | 0.7<br>02-cs<br>02-cs<br>2.21<br>001-2.21<br>001-125                                               | 0.1<br>1.41                                                                                                                                                                        | 0.54 <b>1.0</b><br>0.40<br>0.40                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.58<br>0<br>0.78                                        | 22-50<br>20-72<br>2.21<br>2.21<br>2.21                                                             | 1.41                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.58<br>0.78                                             | 2.21<br>2.21                                                                                       | 1.41                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.58<br>0.78                                             | 2.21                                                                                               | 1.41                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.78                                                     | <sup>7</sup> 100-125                                                                               |                                                                                                                                                                                    | 1.41                                                                                                                                                                                                                                                                                                                                                 | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.78                                                     |                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                          | 1.01                                                                                               | 0.14                                                                                                                                                                               | 0.26                                                                                                                                                                                                                                                                                                                                                 | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                          |                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                          |                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.02                                                     | 3.21                                                                                               | 2.01                                                                                                                                                                               | 3.64                                                                                                                                                                                                                                                                                                                                                 | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.96                                                     | 2.40                                                                                               | 2.92                                                                                                                                                                               | 3.24                                                                                                                                                                                                                                                                                                                                                 | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 00.5                                                     | 021 0221                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                          |                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.45                                                     | 1.57                                                                                               | 2.71                                                                                                                                                                               | 1.90                                                                                                                                                                                                                                                                                                                                                 | 2.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 00                                                       | 935-629                                                                                            | 120                                                                                                                                                                                | 8.F. ()                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6 20                                                     |                                                                                                    |                                                                                                                                                                                    | 0.40                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                          |                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20                                                       | 20                                                                                                 | 25 km                                                                                                                                                                              | 25 km                                                                                                                                                                                                                                                                                                                                                | 25 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50                                                       | 01 0-20                                                                                            | 10 km                                                                                                                                                                              | 10 km                                                                                                                                                                                                                                                                                                                                                | 10 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 65 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 50                                                       | 20-40                                                                                              | 0.20                                                                                                                                                                               | 0.26                                                                                                                                                                                                                                                                                                                                                 | 10 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - (A VIN                                                 | 12 > 1/2                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -(2 */ *,                                                | 0)2/112                                                                                            |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                          |                                                                                                    | Та                                                                                                                                                                                 | ble 3                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 01                                                       |                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 1 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zandt, 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20                                                       | 08-01                                                                                              | 0.70                                                                                                                                                                               | 0.57                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 191 6 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ey ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Redr Vall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                          |                                                                                                    | 0.64                                                                                                                                                                               | 69.0V                                                                                                                                                                                                                                                                                                                                                | VRMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\theta^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Block s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | size (km)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ees                                                      |                                                                                                    | Region                                                                                                                                                                             | Cr                                                                                                                                                                                                                                                                                                                                                   | ust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mantl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e (sec/%) <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>2</sup> Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 100.19                                                   | LASA, U                                                                                            | JSA                                                                                                                                                                                | 3. n.                                                                                                                                                                                                                                                                                                                                                | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zandt, 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6                                                        | Central                                                                                            | California                                                                                                                                                                         | 2.                                                                                                                                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                          | Norsar,                                                                                            | Norway                                                                                                                                                                             | 1.                                                                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | at seast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| agy, 197                                                 | 7 Hawaii                                                                                           |                                                                                                                                                                                    | 3.                                                                                                                                                                                                                                                                                                                                                   | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 701                                                      | New Ma                                                                                             | drid, USA                                                                                                                                                                          | . 1.                                                                                                                                                                                                                                                                                                                                                 | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zandt 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                          | Southern                                                                                           | a California                                                                                                                                                                       | 2.                                                                                                                                                                                                                                                                                                                                                   | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                          | 0a - Tohoku                                                                                        | district, NE J                                                                                                                                                                     | apan 3.                                                                                                                                                                                                                                                                                                                                              | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ie follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                          | 1.96<br>1.45<br>20<br>-<br><(Δ V/V<br>e<br>6<br>agy, 197<br>7                                      | 1.96 2.40<br>1.45 1.57<br>$2^{0}$ $2^{0}$<br>$ 1^{0}$<br>$<(\Delta V/V_{0})^{2}>1/2$<br>e<br>LASA, U<br>A Central<br>Norsar,<br>agy, 1977 Hawaii<br>7 New Ma<br>Southern<br>Tohoku | 1.96       2.40       2.92         1.45       1.57       2.71 $2^{0}$ $2^{0}$ $25 \text{ km}$ - $1^{0}$ $10 \text{ km}$ $< (\Delta V/V_{0})^{2} > 1/2$ Ta         e       Region         6       Central California<br>Norsar, Norway         agy, 1977       Hawaii         7       New Madrid, USA<br>Southern California<br>Tohoku district, NE J | 1.96       2.40       2.92       3.24         1.45       1.57       2.71       1.90 $2^{0}$ $2^{0}$ $25 \text{ km}$ $25 \text{ km}$ - $1^{0}$ $10 \text{ km}$ $10 \text{ km}$ <( $\Delta V/V_{0}$ ) <sup>2</sup> >1/2       Table 3         e       Region $\Delta$ $LASA, USA$ 1.3         6       Central California       2.         Norsar, Norway       1.3         7       New Madrid, USA       1.3         7       Noku district, NE Japan       3.3 | 1.96       2.40       2.92       3.24       3.00         1.45       1.57       2.71       1.90       2.26 $2^{0}$ $2^{0}$ $25 \text{ km}$ $25 \text{ km}$ $25 \text{ km}$ $ 1^{0}$ $10 \text{ km}$ $10 \text{ km}$ $10 \text{ km}$ $< (\Delta V/V_{0})^{2} > 1/2$ Table 3         E         AV RMS<br>Crust         6         LASA, USA       1.29         6       Central California       2.18         Norsar, Norway       1.20       agy, 1977         agy, 1977       Hawaii       3.92         7       New Madrid, USA       1.78         Southern California       2.34         Tohoku district, NE Japan       3.19 | 1.96       2.40       2.92       3.24       3.00         1.45       1.57       2.71       1.90       2.26 $2^{0}$ $2^{0}$ $25 \text{ km}$ $25 \text{ km}$ $25 \text{ km}$ $ 1^{0}$ $10 \text{ km}$ $10 \text{ km}$ $10 \text{ km}$ $<(\Delta V/V_{0})^{2} > 1/2$ Table 3         e       Region $\Delta V \text{ RMS } (\%)$<br>Crust Manther         6       Central California       2.18       1.10         Norsar, Norway       1.20       0.82       1.20         agy, 1977       Hawaii       3.92       1.31         7       New Madrid, USA       1.78       1.45         Southern California       2.34       1.71         Tohoku district, NE Japan       3.19       1.19 | 1.96       2.40       2.92       3.24       3.00       3.50         1.45       1.57       2.71       1.90       2.26       1.35         20       20       25 km       25 km       25 km       30 km         -       10       10 km       10 km       10 km       - $< (\Delta V/V_0)^2 > 1/2$ Table 3         A V RMS (%) $\theta^2$ Crust Mantle (sec/%) <sup>2</sup> 6       Central California       2.18       1.10       0.02         Norsar, Norway       1.20       1.20       0.02       agy, 1977         7       New Madrid, USA       1.78       1.45       0.02         Southern California       2.34       1.71       0.01         Tohoku district, NE Japan       3.19       1.19       0.05 | 1.96       2.40       2.92       3.24       3.00       3.50       3.17         1.45       1.57       2.71       1.90       2.26       1.35       2.54         20       20       25 km       25 km       25 km       25 km       30 km       20 km         -       10       10 km       10 km       10 km       10 km       -       10 km         C( $\Delta V/V_o)^2 > 1/2$ Table 3         AV RMS (%) $\theta^2$ Block s         Crust Mantle (sec/%) <sup>2</sup> Max         6       LASA, USA       1.29       0.82       0.02       20         AV RMS (%) $\theta^2$ Block s         Max         AV RMS (%) $\theta^2$ Block s         Crust Mantle (sec/%) <sup>2</sup> Max         AV RMS (%) $\theta^2$ Block s         AV RMS (%) $\theta^2$ Block s         Crust Mantle (sec/%) <sup>2</sup> Max         6       Central California       2.18       1.10       0.02       25         Norsar, Norway       1.20       1.20 |

where  $\Delta V RMS = \langle (\Delta V/V_0)^2 \rangle^{1/2}$ 

Revista Brasileira de Geofísica; 1991, Vol. 9 (2), 249-273 asiminado esta anticipado esta anticipado esta a construcción de la construcción de

| Reference             | Layer            | RMS Vel<br>Variations | Average<br>Resolution | Aver STD dev<br>due to Random | Depth<br>(km) | Block Size<br>(km) | Resolved<br>Blocks   |
|-----------------------|------------------|-----------------------|-----------------------|-------------------------------|---------------|--------------------|----------------------|
| · Calatili · Topici   | ok Alista        | (%)                   | A Brush               | error (%)                     | alaqifi       | pale 19            | Ash Sect             |
| Aki et al., 1976      | 1                | 1.45                  | 0.56                  |                               | 0-20          | 20 x 20            | 23                   |
|                       | 2                | 1.11                  | 0.59                  | 20 A B C                      | 20-50         | 20 x 20            | 40                   |
|                       | 3                | 0.91                  | 0.52                  |                               | 50-80         | 20 x 20            | 60                   |
|                       | 4                | 0.77                  | 0.52                  |                               | 80-100        | 20 x 20            | 77                   |
|                       | 5                | 0.77                  | 0.59                  | 262.0                         | 110-140       | 20 x 20            | 79                   |
| Husebye et al., 1976  | 1                | 2.18                  | 0.54                  | L.Ó                           | 0-25          | 25 x 25            | 29                   |
| E. (15. 1. 1679)      | 2                | 1.14                  | 0.40                  | - · · · ·                     | 25-50         | 25 x 25            | 35                   |
|                       | 3                | 1.18                  | 0.40                  | ·                             | 50-75         | 30 x 30            | 37                   |
|                       | 4                | 1.00                  | 0.37                  | 14-1                          | 75-100        | 30 x 30            | 48                   |
|                       | 5                | 1.09                  | 0.38                  | <u>.</u>                      | 100-125       | 30 x 30            | 55                   |
| Aki et al., 1977      | 1 05.            | 1.36                  | 0.46                  | 104 - 101<br>6 <b>7</b> 4     | 0-17          | 20 x 20            | 36                   |
|                       | 2                | 1.02                  | 0.40                  | -                             | 17-36         | 20 x 20            | 48                   |
|                       | 3                | 1.09                  | 0.52                  | -                             | 36-66         | 20 x 20            | 70                   |
|                       | 4                | 1.09                  | 0.51                  | -                             | 66-96         | 20 x 20            | 80                   |
|                       | 5                | 1.39                  | 0.55                  | 13.4                          | 96-126        | 20 x 20            | 81                   |
| Hirahara, 1977        | 1 02.4           | 1.96                  | 0.48                  | 0.71                          | 0-50          | 2° x 2°            | 31                   |
|                       | 2                | 2.05                  | 0.54                  | 0.58                          | 50-150        | 2° x 2°            | 40                   |
|                       | 3                | 1.74                  | 0.47                  | 0.63                          | 150-250       | 2° x 2°            | 39                   |
|                       | 4                | 1.25                  | 0.39                  | 0.56                          | 250-350       | 2° x 2°            | 43                   |
|                       | 5                | 1.08                  | 0.38                  | 0.61                          | 350-450       | 20 x 20            | 47                   |
|                       | 6                | 1.17                  | 0.40                  | 0.64                          | 450-550       | 2° x 2°            | 54                   |
|                       | 7                | 1.17                  | 0.42                  | 0.71                          | 550-650       | 2° x 2°            | 61                   |
|                       |                  |                       |                       |                               |               |                    |                      |
| Mitchell et al., 1977 | 1                | 2.05                  | 0.37                  | 0.25                          | 0-20          | 50 x 50            | 15                   |
|                       | 2                | 1.47                  | 0.26                  | 0.20                          | 20-40         | 50 x 50            | 22                   |
|                       | 3                | 1.34                  | 0.65                  | 0.24                          | 40-97         | 50 x 50            | 33                   |
|                       | 4                | 1.55                  | 0.69                  | 0.27                          | 97-154        | 50 x 50            | 39                   |
|                       |                  |                       |                       |                               |               |                    |                      |
| Zandt, 1978           | 1                | 3.70                  | 0.37                  | 0.72                          | 0-10          | 10 x 10            | 62                   |
| Bear Valley           | 2                | 2.06                  | 0.57                  | 0.70                          | 10-30         | 20 x 20            | 43                   |
| Children in State     | 3                | 2.05                  | 0.69                  | 0.64                          | 30-60         | 25 x 25            | 46                   |
|                       | 4                | 2.44                  | 0.66                  | 0.69                          | 60-90         | 25 x 25            | 53                   |
| Zandt, 1978           | 1                | 4.02                  | 0.43                  | 1.45                          | 0-10          | 10 x 10            | 63                   |
| San Jose              | 2                | 2.23                  | 0.64                  | 1.32                          | 10-30         | 20 x 20            | 42                   |
|                       | 3                | 2.05                  | 0.75                  | 1.12                          | 30-60         | 25 x 25            | 45                   |
|                       | 4                | 1.74                  | 0.68                  | 1.23                          | 60-90         | 25 x 25            | 53                   |
|                       | 0.00             | 18.1                  | 54.1                  |                               |               |                    |                      |
| Zandt, 1978           | 01 <sup>02</sup> | 2.57                  | 0.27                  | 0.70                          | 0-10          | 10 x 10            | tə llə <b>39</b> 11M |
| Santa Rosa            | 2                | 3.23                  | 0.46                  | 0.73                          | 10-30         | 20 x 20            | 32                   |
|                       | 3                | 3.08                  | 0.65                  | 0.66                          | 30-60         | 25 x 25            | 33                   |
|                       | 4                | 2.28                  | 0.56                  | 0.72                          | 60-90         | 25 x 25            | 40                   |
|                       |                  |                       |                       |                               | Wind States   | WAY - SWY          | VA BIBIN             |

Table 4

Revista Brasileira de Geofísica; 1991, Vol. 9 (2), 249-273 a pointante of status A

## Table 4 (cont.)

| Reference        | Layer     | RMS Vel<br>Variations<br>(%) | A verage<br>Resolution                    | Aver STD dev<br>due to Random<br>error (%) | Depth<br>(km) | Block Size<br>(km) | Resolved<br>Blocks |
|------------------|-----------|------------------------------|-------------------------------------------|--------------------------------------------|---------------|--------------------|--------------------|
| Raikes, 1980     | 1         | 2.34                         | - ( %)                                    | 0.39                                       | 0-40          | 40 x 40            | 87                 |
|                  | 2         | 1.57                         |                                           | 0.40                                       | 40-100        | 45 x 45            | 99                 |
|                  | 3         | 1.84                         | 2.609 <u>6</u> 6146<br>3 <sup>°</sup> 205 | 0.33                                       | 100-180       | 55 x 55            | 88                 |
| Hirahara, 1981   | 1         | 2.40                         | 0.38                                      | 1.07                                       | 0-33          | 10 x 10            | 79                 |
| 19.727           | 2         | 1.86                         | 0.43                                      | 0.94                                       | 33-66         | 10 x 10            | 98                 |
|                  | 3         | 1.60                         | 0.33                                      | 0.95                                       | 66-100        | 10 x 10            | 101                |
|                  | 4         | 1.77                         | 0.28                                      | 0.92                                       | 100-150       | 10 x 10            | 105                |
|                  | 5         | 1.46                         | 0.45                                      | 0.98                                       | 150-200       | 10 x 10            | 98                 |
|                  | 6         | 1.27                         | 0.42                                      | 1.01                                       | 200-300       | 20 x 20            | 27                 |
|                  | 7         | 1.28                         | 0.35                                      | 0.76                                       | 300-400       | 20 x 20            | 27                 |
|                  | 8         | 1.69                         | 0.26                                      | 0.65                                       | 400-500       | $20 \times 20$     | 14                 |
|                  | 9         | 1.48                         | 0.15                                      | 0.60                                       | 500-600       | 2° x 2°            | 8                  |
| Horie & Abi 10   | 0.82 1    | 3 50                         | 0.56                                      | 0.77                                       | 0.22          | 20 v 20            | 24                 |
| none & Aki, 1    | 202 1     | 2.30                         | 0.30                                      | 0.77                                       | 0-32          | $30 \times 30$     | 34                 |
|                  | 3         | 1.09                         | 0.49                                      | 0.00                                       | 52-05         | $30 \times 30$     | 32                 |
|                  | 3         | 0.01                         | 0.37                                      | 0.90                                       | 08-121        | $30 \times 30$     | 19                 |
|                  | 5         | 0.91                         | 0.02                                      | 0.27                                       | 131-164       | 30 x 30            | 4                  |
| Taylor, 1983     | 1.320     | 4.08                         | 0.43                                      | 0.817                                      | 0-5           | 10 x 10            | 18                 |
|                  | 2         | 2.69                         | 0.55                                      |                                            | 5-17          | $10 \times 10$     | 35                 |
|                  | - 3       | 2.51                         | 0.66                                      |                                            | 17-32         | $10 \times 10$     | 66                 |
|                  | 4         | 2.06                         | 0.67                                      | 101 902.0                                  | 32-70         | $10 \times 10$     | 67                 |
|                  | 5         | 2.94                         | 0.55                                      | 0.25                                       | 70-100        | 20 x 20            | 33                 |
| Hasami at al 1   | 08/ 1     | 2 10                         | 0.63                                      | un Steds sill Yorl                         | 0.32          | 20 x 20            | 50                 |
| masenn et al., 1 | 207 1     | 1 54                         | 0.05                                      | 0.93                                       | 22-65         | $30 \times 30$     | 56                 |
|                  | 2         | 1.54                         | 0.07                                      | 0.93                                       | 52-05         | $30 \times 30$     | 50                 |
|                  | C 3 3 8 1 | 1.23                         | 0.39                                      | 0.99                                       | 00 121        | 30 x 30            | 33                 |
| 46.116           | 4         | 1.00                         | 0.41                                      | 0.99                                       | 98-131        | 30 X 30            | 49                 |
|                  | 5         | 0.09                         | 0.23                                      | 0.78                                       | 151-104       | 30 X 30            | 24                 |
|                  |           | 0.10                         | 0.04                                      | 0.47                                       | 104-17/       | 30 x 30            | 578                |
|                  |           |                              | 10.000                                    | 1                                          | 1353.2        | 1                  |                    |

variance, and how the lateral heterogeneities vary with depth. We have applied eq. (14) to estimate the noise variance in our data set, and found that different damping was needed while studying different periods, during the application of the stochastic inversion. We shall discuss the results of these analyses in the next sections.

# APPLICATION OF THE STOCHASTIC INVERSION TO THE PHASE VELOCITY DATA

The operator L of eq. (8) was obtained for each

period, using the decomposition by the Cholesky algorithm (Strang, 1980). We have tried several damping constans for each period. In all cases, we required that each block was sampled by at least ten rays. In order to eliminate some anomalous observations, we rejected residual travel time data, with an absolute value more than four percent of the total travel time. For each run, corresponding to a given damping constant, we calculated the following parameters for each block: the number of hits in each block studied; the percentage velocity perturbation; the

Revista Brasileira de Geofísica; 1991, Vol. 9 (2), 249-273 (1) positivos ab pristicos a presesta prese

Period 20 sec. For this period: initial data variance =  $683.8181 \text{ sec}^2$ ; No. of observations = 751; No. blocks = 209; average path lenght = 5377.750 km.

| Region       | Number of<br>blocks<br>studied   | RMS vel<br>variations<br>(%) | Average<br>resolution | Aver total<br>STD dev<br>(%)  | Aver STD dev<br>due to Random<br>error (%) | Aver STD dev<br>due to poor<br>resol (%) | % total error<br>due to poor<br>resol |
|--------------|----------------------------------|------------------------------|-----------------------|-------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------|
| a            | 41                               | 3.726                        | 0.912                 | 2,609                         | 2.306                                      | 1.163                                    | 19.871                                |
| b            | 73                               | 4.742                        | 0.865                 | 3.205                         | 2.671                                      | 1.667                                    | 27.041                                |
| с            | 22                               | 3.192                        | 0.896                 | 2.890                         | 2.531                                      | 1.333                                    | 21.277                                |
| p            | 18                               | 4,992                        | 0.901                 | 2.810                         | 2.500                                      | 1.248                                    | 19.727                                |
| q            | 38                               | 3.685                        | 0.926                 | 2,422                         | 2.224                                      | 0.924                                    | 14.552                                |
| S            | 0117 01                          | 2.767                        | 0.874                 | 3.108                         | 2.648                                      | 1.555                                    | 25.049                                |
|              |                                  |                              |                       |                               | - 1.77                                     |                                          | 2.5                                   |
|              | 0.2                              | 1505-071                     | For the abov          | e run: $\sigma_{\rm m} = 9$ . | 2%                                         |                                          |                                       |
|              | $\theta^2 = 25,000 \text{ sec}$  | <sup>2</sup> residu          | al variance $= 21$    | $13.6642 \text{ sec}^2$       | variance improv                            | ement = 68.75%                           |                                       |
|              |                                  |                              |                       |                               |                                            |                                          |                                       |
| a            | 41                               | 3.366                        | 0.855                 | 2,418                         | 2.022                                      | 1.278                                    | 27,958                                |
| b            | 73                               | 4.082                        | 0.793                 | 2.885                         | 2,243                                      | 1.738                                    | 36.283                                |
| с            | 22                               | 2.916                        | 0.830                 | 2,662                         | 2,193                                      | 1.461                                    | 30,106                                |
| р            | 18                               | 4.409                        | 0.836                 | 2.605                         | 2,174                                      | 1.399                                    | 28,842                                |
| q            | 38                               | 3.467                        | 0.872                 | 2,293                         | 2.005                                      | 1.080 5801                               | 22,203                                |
| S            | 17                               | 2.445                        | 0.802                 | 2.822                         | 2.246                                      | 1.650                                    | 34,165                                |
|              |                                  |                              |                       | 0.37                          | 8/1.1                                      |                                          | 0 112 00                              |
|              | 0.2                              |                              | For the abov          | e run: $\sigma_{\rm m} = 6$ . | 6%                                         |                                          | 2                                     |
|              | $\theta^2 = 50,000 \text{ sec}$  | <sup>2</sup> residu          | al variance $= 21$    | $8.6743 \text{ sec}^2$        | variance improv                            | ement = 68.02%                           |                                       |
|              |                                  |                              |                       |                               |                                            | 201 29                                   |                                       |
| a            | 41                               | 3.149                        | 0.812                 | 2.291                         | 1.842                                      | 1.320                                    | 33,209                                |
| b            | 73                               | 3.672                        | 0.742                 | 2.685                         | 1,989                                      | 1.740                                    | 42.014                                |
| c            | 22                               | 2.728                        | 0.781                 | 2.511                         | 1,978                                      | 1.505                                    | 35,921                                |
| D            | 18                               | 4.052                        | 0.787                 | 2.465                         | 1.967                                      | 1.451                                    | 34.658                                |
| q            | 38                               | 3.295                        | 0.829                 | 2.200                         | 1.854                                      | 1.156                                    | 27 597                                |
| s            | 17                               | 2.270                        | 0.750                 | 2.639                         | 2.004                                      | 1.667                                    | 39.871                                |
|              |                                  |                              |                       |                               |                                            |                                          | 0,10,12                               |
|              | 1.81 1.977                       | . 2.03                       | For the abov          | e run: $\sigma_{\rm m} = 5$ . | 4%                                         |                                          |                                       |
|              | $\theta^2 = 75,000 \text{ sec}$  | <sup>2</sup> residua         | al variance $= 22$    | $23.5098 \text{ sec}^2$       | variance improv                            | ement = 67.31%                           |                                       |
|              |                                  |                              |                       |                               |                                            |                                          |                                       |
| a            | 41                               | 2,989                        | 0.777                 | 2,196                         | 1.712                                      | 1.338                                    | 37,121                                |
| b            | 0873 08                          | 3.381                        | 0.701                 | 2.540                         | 1.813                                      | 1.725                                    | 46.116                                |
| C            | 22                               | 2.585                        | 0.740                 | 2.397                         | 1.823                                      | 1.521                                    | 40.262                                |
| D            | 18                               | 3.794                        | 0.747                 | 2.358                         | 1.817                                      | 1.471                                    | 38 902                                |
| q            | 38                               | 3.153                        | 0.793                 | 2.127                         | 1.739                                      | 1,199                                    | 31.781                                |
| S            | 17                               | 2.145                        | 0.709                 | 2,506                         | 1.834                                      | 1.662                                    | 44.019                                |
|              |                                  |                              | C.                    | 9 Stop                        | 6.0 - 9.0                                  | 12.5                                     |                                       |
|              |                                  |                              | For the above         | e run: $\sigma_{\rm m} = 4$ . | 8%                                         |                                          |                                       |
|              | $\theta^2 = 100,000 \text{ sec}$ | c <sup>2</sup> residu        | al variance $= 22$    | $28.1161 \text{ sec}^2$       | variance improv                            | vement = 66.64%                          | mb We have                            |
|              |                                  |                              |                       |                               |                                            |                                          |                                       |
| a            | 41                               | 2.748                        | 0.720                 | 2.059                         | 1.529                                      | 1 348                                    | 42 846                                |
| b            | 73                               | 2.982                        | 0.639                 | 2,337                         | 1.576                                      | 1,682                                    | 51.842                                |
| anomaic<br>c | 22                               | 2,374                        | 0.677                 | 2.232                         | 1.604                                      | 1.523                                    | 46.572                                |
| sb smit i    | 18                               | 3,419                        | 0.683                 | 2,202                         | 1,608                                      | 1.477                                    | 44 981                                |
| a da ga anta | 38 38 370 3700                   | 2,926                        | 0.733                 | 2,015                         | 1.568                                      | 1.243                                    | 38.076                                |
| sibaa        | qzərioo <mark>17</mark> 000 don  | 1,959                        | 0.646                 | 2.315                         | 1.601                                      | 1 636                                    | 40 078                                |
| he follows   | we calculated th                 | g/constant,                  | şiyen dampir          | 2.010                         | 30-60                                      | ATAO YIQO                                | 77.720                                |
|              |                                  |                              |                       |                               |                                            |                                          |                                       |

Period 30 sec. For this period: initial data variance =  $418.0665 \text{ sec}^2$ ; No. of observations = 1669; No. blocks = 448; average path lenght = 6176.123 km.

| Region 1 P      | Number of<br>blocks<br>studied | RMS vel<br>variations<br>(%) | Average<br>resolution | Aver total<br>STD dev<br>(%) | Aver STD dev<br>due to Random<br>error (%) | Aver STD dev<br>due to poor<br>resol (%) | % total error<br>due to poor<br>resol |
|-----------------|--------------------------------|------------------------------|-----------------------|------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------|
| 0 <b>a</b> 1.80 | 54                             | 2.839                        | 0.926                 | 1.982                        | 1.738                                      | 0.869                                    | 19.251                                |
| ь               | 137                            | 3.420                        | 0.864                 | 2.689                        | 2.141                                      | 1.505                                    | 31.316                                |
| 0 C . [ ]       | 62                             | 2.977                        | 0.834                 | 2.898                        | 2.162                                      | 1.764                                    | 37.082                                |
| p               | 51                             | 2.991                        | 0.825                 | 2.927                        | 2.067                                      | 1.890                                    | 41.663                                |
| 40. <b>p</b>    | 110                            | 3.800                        | 0.860                 | 2.583                        | 1.981                                      | 1.494                                    | 33.454                                |
| SSS             | 34                             | 2.223                        | 0.873                 | 2.505                        | 2.007                                      | 1.367                                    | 29.789                                |

For the above run:  $\sigma_m = 7.9\%$ 

 $\theta^2 = 25,000 \text{ sec}^2$  residual variance = 158.0148 sec<sup>2</sup> variance improvement = 62.20%

| 33,6 <b>8</b> | 54  | 2.497 | 0.882       | 1.841 028.0 | 1.549 | 0.934 | 25.732 |
|---------------|-----|-------|-------------|-------------|-------|-------|--------|
| <b>b</b> 2.24 | 137 | 2.811 | 0.801       | 2.386       | 1.791 | 1.486 | 38.803 |
| C             | 62  | 2.566 | 0.771       | 2.520       | 1.781 | 1.667 | 43.759 |
| p             | 51  | 2.327 | 2.206 767.0 | 2.510       | 1.717 | 1.692 | 45.427 |
| q             | 110 | 3.322 | 0.805       | 2.274       | 1.674 | 1.413 | 38.623 |
| 0s1.08        | 34  | 1.910 | 0.816       | 2.234       | 1.707 | 1.333 | 35.576 |

For the above run:  $\sigma_m = 5.7\%$ 

 $\theta^2 = 50,000 \text{ sec}^2$  residual variance = 161.9616 sec<sup>2</sup> variance improvement = 61.26%

| 54  | 2.288                              | 0.846                                                                                                                                                     | 1.750                                                                      | 1.428                                                                                                    | 0.916                                                                                                                                  | 30.159                                                                                                                                                               |
|-----|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 137 | 2.469                              | 0.756                                                                                                                                                     | 2.206                                                                      | 1.592                                                                                                    | 1.452                                                                                                                                  | 43.363                                                                                                                                                               |
| 62  | 2.341                              | 0.727                                                                                                                                                     | 2.306                                                                      | 1.571                                                                                                    | 1.594                                                                                                                                  | 47.797                                                                                                                                                               |
| 51  | 2.035                              | 0.726                                                                                                                                                     | 2.288                                                                      | 1.530                                                                                                    | 1.587                                                                                                                                  | 48.100                                                                                                                                                               |
| 110 | 2.057                              | 0.764                                                                                                                                                     | 2.101                                                                      | 1.503                                                                                                    | 1.361                                                                                                                                  | 41.997                                                                                                                                                               |
| 34  | 1.754                              | 0.774                                                                                                                                                     | 2.077                                                                      | 1.536                                                                                                    | 1.304                                                                                                                                  | 39.416                                                                                                                                                               |
|     | 54<br>137<br>62<br>51<br>110<br>34 | 54         2.288           137         2.469           62         2.341           51         2.035           110         2.057           34         1.754 | 542.2880.8461372.4690.756622.3410.727512.0350.7261102.0570.764341.7540.774 | 542.2880.8461.7501372.4690.7562.206622.3410.7272.306512.0350.7262.2881102.0570.7642.101341.7540.7742.077 | 542.2880.8461.7501.4281372.4690.7562.2061.592622.3410.7272.3061.571512.0350.7262.2881.5301102.0570.7642.1011.503341.7540.7742.0771.536 | 542.2880.8461.7501.4280.9161372.4690.7562.2061.5921.452622.3410.7272.3061.5711.594512.0350.7262.2881.5301.5871102.0570.7642.1011.5031.361341.7540.7742.0771.5361.304 |

| For | the | above | run: | $\sigma_{m}$ | = | 4.7% |
|-----|-----|-------|------|--------------|---|------|
|-----|-----|-------|------|--------------|---|------|

 $\theta^2 = 75,000 \text{ sec}^2$  residual variance = 165.1805 sec<sup>2</sup> variance improvement = 60.49%

| 42,4( <b>B</b> | 54 -0.1 | 2.135 | 0.817 | 1.681 | 1.338 | 0.974 | 33.571 |
|----------------|---------|-------|-------|-------|-------|-------|--------|
| b              | 137     | 2.238 | 0.720 | 2.078 | 1.455 | 1.419 | 46.650 |
| c              | 62      | 2.186 | 0.693 | 2.159 | 1.429 | 1.537 | 50.689 |
| p. 5.68        | 51      | 1.855 | 0.693 | 2.140 | 1.405 | 1.517 | 50.245 |
| <b>q</b> 9.12  | 110     | 2.870 | 0.732 | 1.981 | 1.386 | 1.323 | 44.573 |
| S              | 34      | 1.648 | 0.740 | 1.966 | 1.417 | 1.280 | 42.370 |

For the above run:  $\sigma_m = 4.1\%$ 

 $\theta^2 = 100,000 \text{ sec}^2$  residual variance = 168.0143 sec<sup>2</sup> variance improvement = 59.81%

| a              | 54  | 1,916 | 0.768 | 1.580 | 1.208 | 0.983 | 38 711 |
|----------------|-----|-------|-------|-------|-------|-------|--------|
| 59.85 <b>d</b> | 137 | 1.935 | 0.664 | 1.901 | 1.271 | 1.362 | 51.330 |
| 59.100         | 62  | 1.973 | 0.640 | 1.959 | 1.243 | 1.450 | 54.791 |
| 57.49 <b>q</b> | 51  | 1.628 | 0.641 | 1.944 | 1.235 | 1.423 | 53.625 |
| 56.13 <b>p</b> | 110 | 2.605 | 0.681 | 1.818 | 1.227 | 1.266 | 48.479 |
| 52.678         | 34  | 1.503 | 0.687 | 1.812 | 1.254 | 1.240 | 46.844 |
|                |     |       |       |       |       |       |        |

For the above run:  $\sigma_m = 3.4\%$ 

 $\theta^2 = 150,000 \text{ sec}^2$  residual variance = 172.9529 sec<sup>2</sup> variance improvement = 58.63%

Period 40 sec. For this period: initial data variance =  $399.0022 \text{ sec}^2$ ; No. of observations = 1865; No. blocks = 479; average path lenght = 6426.467 km.

| $56$ $151$ $65$ $53$ $121$ $33$ $\theta^{2} = 50,000 \text{ set}$ $56$ $151$ $65$ $53$ $121$ $33$ $\theta^{2} = 100,000 \text{ set}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.569<br>2.780<br>3.024<br>2.407<br>2.823<br>2.406<br>cc <sup>2</sup> residual<br>2.174<br>2.283<br>2.403<br>1.835<br>2.336                                                                                                                                       | 0.883<br>0.793<br>0.792<br>0.794<br>0.798<br>0.835<br>For the above a<br>variance = 190<br>0.820<br>0.715<br>0.719                                                                                                                                                                                                  | 1.978<br>2.618<br>2.581<br>2.563<br>2.478<br>2.296<br>run: $\sigma_{\rm m} = 6.29$<br>.5725 sec <sup>2</sup><br>1.798<br>2.256 | 1.655<br>1.906<br>1.846<br>1.821<br>1.778<br>1.794<br>%<br>variance improv<br>1.428 | 1.011 $1.681$ $1.665$ $1.660$ $1.571$ $1.316$ ement = 52.24% $1.044$ | 26.160<br>41.225<br>41.610<br>41.925<br>40.190<br>32.881 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|
| $151 \\ 65 \\ 53 \\ 121 \\ 33 \\ \theta^2 = 50,000 \text{ set} \\ 56 \\ 151 \\ 65 \\ 53 \\ 121 \\ 33 \\ \theta^2 = 100,000 \text{ set} \\ \theta^2 = 10,000 \text{ set} \\ \theta^2 = 10,000 \text{ set} \\ \theta^2 = 10,000 \text{ set}$ | 2.780<br>3.024<br>2.407<br>2.823<br>2.406<br>ec <sup>2</sup> residual<br>2.174<br>2.283<br>2.403<br>1.835<br>2.336                                                                                                                                                | 0.793<br>0.792<br>0.794<br>0.798<br>0.835<br>For the above a<br>variance = 190<br>0.820<br>0.715<br>0.719                                                                                                                                                                                                           | 2.618<br>2.581<br>2.563<br>2.478<br>2.296<br>run: $\sigma_{\rm m} = 6.29$<br>5725 sec <sup>2</sup><br>1.798<br>2.256           | 1.906<br>1.846<br>1.821<br>1.778<br>1.794<br>%<br>variance improv<br>1.428          | 1.681 $1.665$ $1.660$ $1.571$ $1.316$ ement = 52.24% $1.044$         | 41.225<br>41.610<br>41.925<br>40.190<br>32.881           |
| $65 \\ 53 \\ 121 \\ 33 \\ \theta^2 = 50,000 \text{ se} \\ 56 \\ 151 \\ 65 \\ 53 \\ 121 \\ 33 \\ \theta^2 = 100,000 \text{ se} \\ 65 \\ 53 \\ 121 \\ 33 \\ \theta^2 = 100,000 \text{ se} \\ 0.000 \text{ se}$                                                                                                                                                                   | 3.024<br>2.407<br>2.823<br>2.406<br>ec <sup>2</sup> residual<br>2.174<br>2.283<br>2.403<br>1.835<br>2.336                                                                                                                                                         | 0.792<br>0.794<br>0.798<br>0.835<br>For the above r<br>variance = 190<br>0.820<br>0.715<br>0.719                                                                                                                                                                                                                    | 2.581<br>2.563<br>2.478<br>2.296<br>run: $\sigma_{\rm m} = 6.29$<br>5725 sec <sup>2</sup><br>1.798<br>2.256                    | 1.846<br>1.821<br>1.778<br>1.794<br>%<br>variance improv<br>1.428                   | 1.665<br>1.660<br>1.571<br>1.316<br>ement = 52.24%<br>1.044          | 41.610<br>41.925<br>40.190<br>32.881<br>33.692           |
| $53$ $121$ $33$ $\theta^2 = 50,000 \text{ set}$ $56$ $151$ $65$ $53$ $121$ $33$ $\theta^2 = 100,000 \text{ set}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.407<br>2.823<br>2.406<br>ec <sup>2</sup> residual<br>2.174<br>2.283<br>2.403<br>1.835<br>2.336                                                                                                                                                                  | 0.794<br>0.798<br>0.835<br>For the above a<br>variance = 190,<br>0.820<br>0.715<br>0.719                                                                                                                                                                                                                            | 2.563<br>2.478<br>2.296<br>run: $\sigma_{\rm m} = 6.29$<br>.5725 sec <sup>2</sup><br>1.798<br>2.256                            | 1.821<br>1.778<br>1.794<br>%<br>variance improv<br>1.428                            | 1.660<br>1.571<br>1.316<br>ement = 52.24%<br>1.044<br>1.575          | 41.925<br>40.190<br>32.881<br>33.692                     |
| $121$ 33 $\theta^{2} = 50,000 \text{ se}$ 56 151 65 53 121 33 $\theta^{2} = 100,000 \text{ se}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.823<br>2.406<br>ec <sup>2</sup> residual<br>2.174<br>2.283<br>2.403<br>1.835<br>2.336                                                                                                                                                                           | 0.798<br>0.835<br>For the above a<br>variance = 190,<br>0.820<br>0.715<br>0.719                                                                                                                                                                                                                                     | 2.478<br>2.296<br>run: $\sigma_m = 6.29$<br>.5725 sec <sup>2</sup><br>1.798<br>2.256                                           | 1.778<br>1.794<br>%<br>variance improv<br>1.428                                     | 1.571<br>1.316<br>ement = 52.24%<br>1.044                            | 40.190<br>32.881<br>33.692                               |
| $   \begin{array}{r}     33 \\     \theta^2 &= 50,000 \text{ set} \\     56 \\     151 \\     65 \\     53 \\     121 \\     33 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.406<br>ec <sup>2</sup> residual<br>2.174<br>2.283<br>2.403<br>1.835<br>2.336                                                                                                                                                                                    | 0.835<br>For the above a<br>variance = 190<br>0.820<br>0.715<br>0.719                                                                                                                                                                                                                                               | 2.296<br>run: $\sigma_m = 6.29$<br>.5725 sec <sup>2</sup><br>1.798<br>2.256                                                    | 1.794<br>%<br>variance improv<br>1.428                                              | 1.316<br>ement = 52.24%<br>1.044                                     | 32.881<br>33.692                                         |
| $\theta^2 = 50,000 \text{ set}$<br>56<br>151<br>65<br>53<br>121<br>33<br>$\theta^2 = 100,000 \text{ set}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ec <sup>2</sup> residual<br>2.174<br>2.283<br>2.403<br>1.835<br>2.336                                                                                                                                                                                             | For the above a<br>variance = 190.<br>0.820<br>0.715<br>0.719                                                                                                                                                                                                                                                       | run: $\sigma_m = 6.29$<br>.5725 sec <sup>2</sup><br>1.798<br>2.256                                                             | %<br>variance improv<br>1.428                                                       | ement = 52.24%<br>1.044                                              | 33.692                                                   |
| $56$ $151$ $65$ $53$ $121$ $33$ $9^{2} = 100,000 \text{ so}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.174<br>2.283<br>2.403<br>1.835<br>2.336                                                                                                                                                                                                                         | 0.820<br>0.715<br>0.719                                                                                                                                                                                                                                                                                             | 1.798<br>2.256                                                                                                                 | 1.428                                                                               | 1.044                                                                | 33.692                                                   |
| $ \begin{array}{r} 151\\ 65\\ 53\\ 121\\ 33\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.283<br>2.403<br>1.835<br>2.336                                                                                                                                                                                                                                  | 0.715<br>0.719                                                                                                                                                                                                                                                                                                      | 2.256                                                                                                                          | 11120                                                                               | 1.044                                                                | 55.072                                                   |
| $ \begin{array}{r} 65 \\ 53 \\ 121 \\ 33 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.403<br>1.835<br>2.336                                                                                                                                                                                                                                           | 0.719                                                                                                                                                                                                                                                                                                               |                                                                                                                                | 1.543                                                                               | 1.567                                                                | 48 249                                                   |
| $53 \\ 121 \\ 33 \\ 3^2 = 100,000 \ solution{} solution{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.835<br>2.336                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                     | 2.221                                                                                                                          | 1.505                                                                               | 1.539                                                                | 48 028                                                   |
| 121<br>33<br>$0^2 = 100,000$ so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.336                                                                                                                                                                                                                                                             | 0.722                                                                                                                                                                                                                                                                                                               | 2.206                                                                                                                          | 1.506                                                                               | 1.511                                                                | 46.926                                                   |
| 33<br>$0^2 = 100,000 \text{ so}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                   | 0.728                                                                                                                                                                                                                                                                                                               | 2.140                                                                                                                          | 1.467                                                                               | 1.445                                                                | 45 572                                                   |
| $\theta^2 = 100,000 \text{ so}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.046                                                                                                                                                                                                                                                             | 0.763                                                                                                                                                                                                                                                                                                               | 2.035                                                                                                                          | 1.509                                                                               | 1.278                                                                | 39.470                                                   |
| $e^2 = 100,000 \text{ so}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   | For the above                                                                                                                                                                                                                                                                                                       | -4.49                                                                                                                          | 2                                                                                   |                                                                      |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ec <sup>2</sup> residua                                                                                                                                                                                                                                           | 1  variance = 196                                                                                                                                                                                                                                                                                                   | .6412 $\sec^2$                                                                                                                 | variance improv                                                                     | vement = 50.72%                                                      | ,                                                        |
| 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.046                                                                                                                                                                                                                                                             | 0 770                                                                                                                                                                                                                                                                                                               | 1 (95                                                                                                                          | 1 007                                                                               | 1.040                                                                |                                                          |
| 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 013                                                                                                                                                                                                                                                             | 0.772                                                                                                                                                                                                                                                                                                               | 1.085                                                                                                                          | 1.287                                                                               | 1.048                                                                | 38.666                                                   |
| 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.015                                                                                                                                                                                                                                                             | 0.668                                                                                                                                                                                                                                                                                                               | 2.031                                                                                                                          | 1.340                                                                               | 1.486                                                                | 52.473                                                   |
| 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 559                                                                                                                                                                                                                                                             | 0.671                                                                                                                                                                                                                                                                                                               | 2.020                                                                                                                          | 1.318                                                                               | 1.457                                                                | 52.031                                                   |
| 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 095                                                                                                                                                                                                                                                             | 0.679                                                                                                                                                                                                                                                                                                               | 1.054                                                                                                                          | 1.332                                                                               | 1.428                                                                | 50.458                                                   |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.836                                                                                                                                                                                                                                                             | 0.711                                                                                                                                                                                                                                                                                                               | 1.882                                                                                                                          | 1.290                                                                               | 1.370                                                                | 49.173                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                   | For the above r                                                                                                                                                                                                                                                                                                     | $\pi m = 3.7\%$                                                                                                                | 11010                                                                               | 1:240                                                                | 44.000                                                   |
| $^{2} = 150,000$ se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ec <sup>2</sup> residual                                                                                                                                                                                                                                          | 1  variance = 201                                                                                                                                                                                                                                                                                                   | $.3351 \text{ sec}^2$                                                                                                          | variance improv                                                                     | ement = 49.54%                                                       |                                                          |
| 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.790                                                                                                                                                                                                                                                             | 0.734                                                                                                                                                                                                                                                                                                               | 1.602                                                                                                                          | 1,186                                                                               | 1.043                                                                | 42 401                                                   |
| 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.828                                                                                                                                                                                                                                                             | 0.621                                                                                                                                                                                                                                                                                                               | 1.911                                                                                                                          | 1.214                                                                               | 1,424                                                                | 55.514                                                   |
| 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.848                                                                                                                                                                                                                                                             | 0.629                                                                                                                                                                                                                                                                                                               | 1.883                                                                                                                          | 1.193                                                                               | 1.396                                                                | 54.948                                                   |
| 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.386                                                                                                                                                                                                                                                             | 0.630                                                                                                                                                                                                                                                                                                               | 1.878                                                                                                                          | 1.212                                                                               | 1.371                                                                | 53.237                                                   |
| 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.935                                                                                                                                                                                                                                                             | 0.641                                                                                                                                                                                                                                                                                                               | 1.827                                                                                                                          | 1.179                                                                               | 1.317                                                                | 51.941                                                   |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.684                                                                                                                                                                                                                                                             | 0.670                                                                                                                                                                                                                                                                                                               | 1.773                                                                                                                          | 1.227                                                                               | 1.222                                                                | 47.479                                                   |
| 2 200 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                 | For the above r                                                                                                                                                                                                                                                                                                     | un: $\sigma_{\rm m} = 3.2\%$                                                                                                   |                                                                                     |                                                                      |                                                          |
| z = 200,000  se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c <sup>2</sup> residual                                                                                                                                                                                                                                           | variance $= 205$ .                                                                                                                                                                                                                                                                                                  | .3084 sec <sup>2</sup>                                                                                                         | variance improv                                                                     | ement = 48.55%                                                       |                                                          |
| 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.579                                                                                                                                                                                                                                                             | 0.674                                                                                                                                                                                                                                                                                                               | 1.481                                                                                                                          | 1.043                                                                               | 1.025                                                                | 47.871                                                   |
| 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.580                                                                                                                                                                                                                                                             | 0.560                                                                                                                                                                                                                                                                                                               | 1.722 +00.0                                                                                                                    | 1.040                                                                               | 1.332                                                                | 59.851                                                   |
| 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.569                                                                                                                                                                                                                                                             | 0.570                                                                                                                                                                                                                                                                                                               | 1.698                                                                                                                          | 1.026                                                                               | 1.306                                                                | 59.145                                                   |
| 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.169                                                                                                                                                                                                                                                             | 0.569                                                                                                                                                                                                                                                                                                               | 1.700                                                                                                                          | 1.049                                                                               | 1.289                                                                | 57.496                                                   |
| 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.722                                                                                                                                                                                                                                                             | 0.582                                                                                                                                                                                                                                                                                                               | 1.656                                                                                                                          | 1.022                                                                               | 1.240                                                                | 56.124                                                   |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.467                                                                                                                                                                                                                                                             | 0.607                                                                                                                                                                                                                                                                                                               | 1.622                                                                                                                          | 1.066                                                                               | 1.177                                                                | 52.672                                                   |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53<br>121<br>33<br>$2^{2} = 150,000 \text{ so}$<br>56<br>151<br>65<br>53<br>121<br>33<br>$2^{2} = 200,000 \text{ so}$<br>56<br>151<br>65<br>53<br>121<br>33<br>$2^{2} = 200,000 \text{ so}$<br>56<br>151<br>65<br>53<br>121<br>33<br>$2^{2} = 300,000 \text{ so}$ | $53 = 1.559$ $121 = 2.095$ $33 = 1.836$ $2^{2} = 150,000 \sec^{2} = residual$ $56 = 1.790$ $151 = 1.828$ $65 = 1.848$ $53 = 1.386$ $121 = 1.935$ $33 = 1.684$ $2^{2} = 200,000 \sec^{2} = residual$ $56 = 1.579$ $151 = 1.580$ $65 = 1.569$ $53 = 1.169$ $121 = 1.722$ $33 = 1.467$ $= 300,000 \sec^{2} = residual$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$     |

Period 50 sec. For this period: initial data variance =  $419.6517 \text{ sec}^2$ ; No. of observations = 1867; No. blocks = 482; average path lenght = 6540.800 km.

| Region          | Number of<br>blocks<br>studied | RMS vel<br>variations<br>(%) | Average resolution | Aver total<br>STD dev<br>(%) | Aver STD dev<br>due to Random<br>error (%) | Aver STD dev<br>due to poor<br>resol (%) | % total error<br>due to poor<br>resol |
|-----------------|--------------------------------|------------------------------|--------------------|------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------|
| a               | 56                             | 2.761                        | 0.883              | 2.065                        | 1.725                                      | 1.058                                    | 26.268                                |
| b               | 151                            | 2.713                        | 0.792              | 2.745                        | 1.991                                      | 1.772                                    | 41.673                                |
| C               | 65                             | 3.116                        | 0.792              | 2.700                        | 1.928                                      | 1.746                                    | 41.856                                |
| р               | 54                             | 2.717                        | 0.787              | 2.716                        | 1.916                                      | 1.774                                    | 42.659                                |
| q e             | 122                            | 2.734                        | 0.793              | 2.613                        | 1.853                                      | 1.671                                    | 40.917                                |
| 02 <b>8</b> .08 | 34                             | 3.055                        | 0.826              | 2.467                        | 1.916                                      | 1.435                                    | 33.809                                |

For the above run:  $\sigma_m = 6.4\%$ 

 $\theta^2 = 50,000 \text{ sec}^2$  residual variance = 208.3203 sec<sup>2</sup> variance improvement = 50.36%

| a   | 56  | 2.295 | 0.820 | 1.876 | 1.488 | 1.089 | 33.688 |
|-----|-----|-------|-------|-------|-------|-------|--------|
| b   | 151 | 2.223 | 0.714 | 2.361 | 1.608 | 1.645 | 48.588 |
| C   | 65  | 2.495 | 0.719 | 2.320 | 1.571 | 1.610 | 48.173 |
| р   | 54  | 2.228 | 0.714 | 2.330 | 1.576 | 1.608 | 47.632 |
| q   | 122 | 2.266 | 0.724 | 2.250 | 1.526 | 1.527 | 46.098 |
| S S | 34  | 2.454 | 0.751 | 2.178 | 1.600 | 1.388 | 40.588 |

| For the above run: $\sigma_m$ | - | = 4.6% |
|-------------------------------|---|--------|
|-------------------------------|---|--------|

 $\theta^2 = 100,000 \text{ sec}^2$  residual variance = 214.7183 sec<sup>2</sup> variance improvement = 48.83%

| a               | 56  | 2.037 | 0.773 | 1.757000.0 | 1.342 | 1.092 | 38.623 |
|-----------------|-----|-------|-------|------------|-------|-------|--------|
| <b>b</b> \ 2    | 151 | 1.962 | 0.661 | 2.145      | 1.402 | 1.558 | 52.744 |
| C.              | 65  | 2.157 | 0.669 | 2.110      | 1.376 | 1.523 | 52.122 |
| 51. <b>q</b> 30 | 54  | 1.961 | 0.663 | 2.120      | 1.390 | 1.516 | 51.104 |
| as pso          | 122 | 2.023 | 0.675 | 2.051      | 1.347 | 1.445 | 49.624 |
| 48.834          | 34  | 2.145 | 0.698 | 2.009      | 1.417 | 1.351 | 45.191 |

## For the above run: $\sigma_m = 3.8\%$

 $\theta^2 = 150,000 \text{ sec}^2$  residual variance = 219.7206 sec<sup>2</sup> variance improvement = 47.64%

| a.84         | 56  | 1.861 | 0.735 | 1.670 | 1.237 | 1.086 | 42.339 |
|--------------|-----|-------|-------|-------|-------|-------|--------|
| 59. <b>d</b> | 151 | 1.786 | 0.621 | 1.997 | 1.264 | 1.491 | 55.739 |
| c            | 65  | 1.932 | 0.630 | 1.966 | 1.245 | 1.458 | 55.010 |
| р            | 54  | 1.779 | 0.623 | 1.978 | 1.262 | 1.451 | 53.833 |
| q            | 122 | 1.860 | 0.637 | 1.916 | 1.225 | 1.387 | 52.356 |
| 50 875       | 34  | 1.938 | 0.656 | 1.890 | 1.290 | 1.319 | 48.695 |

## For the above run: $\sigma_m = 3.3\%$

 $\theta^2 = 200,000 \sec^2$  residual variance = 223.9850  $\sec^2$  variance improvement = 46.63%

| a               | 56  | 1.626 | 0.675 | 1.544 | 1.088 | 1.067 | 47.788 |
|-----------------|-----|-------|-------|-------|-------|-------|--------|
| 0 <b>b</b> .00  | 151 | 1.549 | 0.560 | 1.798 | 1.012 | 1.393 | 60.019 |
| 57. 326         | 65  | 1.635 | 0.570 | 1.773 | 1.071 | 1.364 | 59.177 |
| 80 <b>p</b> .28 | 54  | 1.532 | 0.562 | 1.787 | 1.090 | 1.361 | 58.020 |
| S q Ne          | 122 | 1.643 | 0.579 | 1.735 | 1.061 | 1.304 | 56.501 |
| S. 8            | 34  | 1.661 | 0.592 | 1.723 | 1.115 | 1.265 | 53.881 |
|                 |     |       |       |       |       |       |        |

For the above run:  $\sigma_m = 2.8\%$ 

 $\theta^2 = 300,000 \sec^2$  residual variance = 231.1445  $\sec^2$  variance improvement = 44.92%

260

## Table 9

Period 60 sec. For this period: initial data variance =  $421.5191 \text{ sec}^2$ ; No. of observations = 1779; No. blocks = 456; average path lenght = 6662.692 km.

| Region           | Number of<br>blocks<br>studied    | RMS vel<br>variations<br>(%)            | Average<br>resolution               | Aver total<br>STD dev<br>(%)                          | Aver STD dev<br>due to Random<br>error (%) | Aver STD dev<br>due to poor<br>resol (%) | % total err<br>due to poo<br>resol |
|------------------|-----------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------|
| a                | 55                                | 2.066                                   | 0.770                               | 1.819                                                 | 1.380                                      | 1.142                                    | 39.380                             |
| b                | 147                               | 2.139                                   | 0.672                               | 2.180                                                 | 1.458                                      | 1.563                                    | 51.443                             |
| 67 C 1           | 60                                | 1.890                                   | 0.709                               | 2.058                                                 | 1.438                                      | 1.425                                    | 47.971                             |
| р                | 50                                | 1.684                                   | 0.710                               | 2.053                                                 | 1.486                                      | 1.372                                    | 44.634                             |
| <b>q</b>         | 111                               | 1.970                                   | 0.724                               | 1.977                                                 | 1.434                                      | 1.304                                    | 43.528                             |
| S                | 33                                | 2.007                                   | 0.730                               | 1.982                                                 | 1.498                                      | 1.261                                    | 40.459                             |
|                  | $\theta^2 = 150,000  \text{s}$    | ec <sup>2</sup> residua                 | For the above $r$                   | run: $\sigma_{\rm m} = 3.9$                           | %<br>variance improv                       | vement - 15 040                          | 6                                  |
|                  |                                   | ion i i i i i i i i i i i i i i i i i i | 11 variance = 251                   | .0554 800                                             | variance impro-                            | vement – 45.04 /                         |                                    |
| a                | 55                                | 1.877                                   | 0.732                               | 1.726                                                 | 1.269                                      | 1.133                                    | 43.076                             |
| b                | 147                               | 1.926                                   | 0.630                               | 2.033                                                 | 1.315                                      | 1.502                                    | 54.629                             |
| C                | 60                                | 1.713                                   | 0.668                               | 1.929                                                 | 1.305                                      | 1.381                                    | 51.225                             |
| р                | 50                                | 1.501                                   | 0.666                               | 1.934                                                 | 1.353                                      | 1.343                                    | 48.242                             |
| q                | 111                               | 1.814                                   | 0.683                               | 1.864                                                 | 1.309                                      | 1.278                                    | 46.991                             |
| S                | 33                                | 1.827                                   | 0.686                               | 1.877                                                 | 1.365                                      | 1.255                                    | 44.699                             |
|                  | <b>A</b> 2                        |                                         | For the above a                     | $\sigma_{\rm m} = 3.4$                                | %                                          |                                          |                                    |
|                  | $\theta^2 = 200,000 \text{ so}$   | ec <sup>2</sup> residua                 | l variance = 235                    | .9013 sec <sup>2</sup>                                | variance improv                            | vement = $44.03\%$                       | 2                                  |
| 38. <b>8</b> 23  | 550                               | 1.735                                   | 0.700                               | 1.653                                                 | 1.184                                      | 1.121                                    | 46.021                             |
| b                | 147                               | 1.768                                   | 0.596                               | 1.922                                                 | 1.209                                      | 1.452                                    | 57.115                             |
| <b>9</b> 20      | 60                                | 1.581                                   | 0.635                               | 1.831                                                 | 1.206                                      | 1.342                                    | 53.767                             |
| <b>p</b>         | 50                                | 1.371                                   | 0.630                               | 1.841 00.0                                            | 1.252                                      | 1.317                                    | 51.130                             |
| <b>P</b>         | 111                               | 1.697                                   | 0.649                               | 1.776                                                 | 1.213                                      | 1.253                                    | 49.753                             |
| S                | 33                                | 1.698                                   | 0.649                               | 1.794 00.0                                            | 1.264                                      | 1.243                                    | 48.034                             |
|                  | $A^2 = 250,000$                   | - <sup>2</sup>                          | For the above r                     | un: $\sigma_{\rm m} = 3.19$                           | %                                          |                                          |                                    |
|                  | $0^{-}_{2} = 250,000 \text{ set}$ | ec <sup>-</sup> organ residua           | 1  variance = 239                   | .6021 sec <sup>2</sup>                                | variance improv                            | vement = 43.16%                          | )                                  |
| 0.6 <b>a</b> ,26 | 55                                | 1.623                                   | 0.672                               | 1.592                                                 | 1.114                                      | 1.108                                    | 48.463                             |
| 55. <b>d</b> 3-5 | 147                               | 1.645                                   | 0.568                               | 1.832                                                 | 1.126                                      | 1.409                                    | 59.154                             |
| 55.010           | 60                                | 1.477                                   | 0.607                               | 1.751                                                 | 1.128                                      | 1.309                                    | 55.854                             |
| р                | 50                                | 1.271                                   | 0.600                               | 1.765                                                 | 1.171                                      | 1.292                                    | 53.538                             |
| q                | 1110.1                            | 1.604                                   | 0.620                               | 1.705                                                 | 1.137                                      | 1.230                                    | 52.052                             |
| S                | 33                                | 1.600                                   | 0.618                               | 1.725                                                 | 1.182                                      | 1.229                                    | 50.775                             |
|                  | $\theta^2 = 300,000 \text{ set}$  | c <sup>2</sup> residua                  | For the above r<br>l variance = 242 | un: $\sigma_{\rm m} = 2.89$<br>.8998 sec <sup>2</sup> | %<br>variance improv                       | $v_{ement} = 42.37\%$                    |                                    |
|                  | ,                                 |                                         |                                     |                                                       |                                            |                                          |                                    |
| a                | 550                               | 1.533                                   | 0.648                               | 1.541                                                 | 1.056                                      | 1.095                                    | 50.545                             |
| b                | 147                               | 1.544                                   | 0.543                               | 1.759                                                 | 1.058                                      | 1.372                                    | 60.880                             |
|                  | 60                                | 1.392                                   | 0.582                               | 1.685                                                 | 1.063                                      | 1.279                                    | 57.626                             |
| C                | 50                                | 1.192                                   | 0.573                               | 1.702                                                 | 1.103                                      | 1.269                                    | 55.598                             |
| с<br>р           | 50                                |                                         |                                     |                                                       |                                            |                                          |                                    |
| c<br>p<br>q      | 111                               | 1.528                                   | 0.595                               | 1.645                                                 | 1.073                                      | 1.209                                    | 54.022                             |

 $\theta^2 = 350,000 \text{ sec}^2$  residual variance = 245.8863 sec<sup>2</sup> variance improvement = 41.67%

Period 70 sec. For this period: initial data variance =  $448.7001 \text{ sec}^2$ ; No. of observations = 1650; No. blocks = 445; average path lenght = 6756.104 km.

| Region | Number of<br>blocks<br>studied | RMS vel<br>variations<br>(%) | A verage resolution              | Aver total<br>STD dev<br>(%)                                    | Aver STD dev<br>due to Random<br>error (%) | Aver STD dev<br>due to poor<br>resol (%) | % total error<br>due to poor<br>resol |
|--------|--------------------------------|------------------------------|----------------------------------|-----------------------------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------|
| a      | 55                             | 1.971                        | 0.717                            | 1.752                                                           | 1.268                                      | 1.171                                    | 44.692                                |
| b      | 141                            | 1.912                        | 0.619                            | 2.039                                                           | 1.300                                      | 1.524                                    | 55.849                                |
| С      | 59                             | 1.676                        | 0.662                            | 1.929                                                           | 1.302                                      | 1.389                                    | 51.881                                |
| р      | 49                             | 1.615                        | 0.653                            | 1.952                                                           | 1.342                                      | 1.380                                    | 49.979                                |
| q      | 108                            | 1.839                        | 0.677                            | 1.864                                                           | 1.300                                      | 1.290                                    | 47.885                                |
| S      | 33                             | 1.880                        | 0.672                            | 1.897                                                           | 1.353                                      | 1.297                                    | 46.750                                |
|        | $A^2 - 200,000$                | noo <sup>2</sup> mooidu      | For the abov                     | e run: $\sigma_{\rm m} = 3$ .                                   | 4%                                         |                                          |                                       |
|        | 0 – 200,000 §                  | iesidu                       | al variance – 2.                 | 29.8752 sec-                                                    | variance improv                            | vement = 48.77%                          | 2                                     |
| a      | 55                             | 1.827                        | 0.684                            | 1.676                                                           | 1.180                                      | 1.157                                    | 47.630                                |
| b      | 141                            | 1.747                        | 0.585                            | 1.927                                                           | 1.195                                      | 1.471                                    | 58.261                                |
| С      | 59                             | 1.534                        | 0.628                            | 1.831                                                           | 1.203                                      | 1.351                                    | 54.460                                |
| р      | 49                             | 1.496                        | 0.616                            | 1.857                                                           | 1.241                                      | 1.350                                    | 52.803                                |
| q      | 108                            | 1.716                        | 0.642                            | 1.777                                                           | 1.205                                      | 1.264                                    | 50.635                                |
| S      | 33                             | 1.775                        | 0.635                            | 1.810                                                           | 1.251                                      | 1.280                                    | 49.959                                |
|        |                                |                              | For the above                    | e run: $\sigma_m = 3.1$                                         | 0%                                         |                                          |                                       |
|        | $\theta^2 = 250,000$ s         | sec <sup>2</sup> residu      | al variance $= 23$               | $33.9635 \text{ sec}^2$                                         | variance improv                            | wement = $47.86\%$                       | )                                     |
| 2      | 55                             | 1 712                        | 0.656                            | 1 614                                                           | 1 110                                      | 1 140                                    | 50.059                                |
| b      | 141                            | 1.618                        | 0.050                            | 1.014                                                           | 1.110                                      | 1.142                                    | 50.058                                |
| C      | 50                             | 1.018                        | 0.500                            | 1.037                                                           | 1.115                                      | 1.420                                    | 60.246                                |
| n      | 49                             | 1.424                        | 0.599                            | 1.733                                                           | 1.124                                      | 1.318                                    | 56.569                                |
| P      | 108                            | 1.401                        | 0.580                            | 1.780                                                           | 1.139                                      | 1.322                                    | 55.156                                |
| s      | 33                             | 1.690                        | 0.604                            | 1.739                                                           | 1.130                                      | 1.241                                    | 52.920                                |
|        |                                |                              | For the above                    | $run: \sigma_m = 2$                                             | 8%                                         |                                          | 0 2010 9 0                            |
|        | $\theta^2 = 300,000 \text{ s}$ | ec <sup>2</sup> residu       | al variance $= 23$               | $37.6208 \text{ sec}^2$                                         | variance improv                            | vement = 47.04%                          | 8                                     |
| a      | 55                             | 1.617                        | 0 632                            | 1 561                                                           | 1.051                                      | 1 127                                    | 52 122                                |
| b      | 141                            | 1.514                        | 0.532                            | 1.764                                                           | 1.046                                      | 1 388                                    | 61 021                                |
| c      | 59                             | 1.336                        | 0.574                            | 1.687                                                           | 1.059                                      | 1.280                                    | 58 252                                |
| D      | 49                             | 1.323                        | 0.559                            | 1.715                                                           | 1.092                                      | 1.207                                    | 57 160                                |
| r<br>a | 108                            | 1.537                        | 0.588                            | 1 646                                                           | 1.052                                      | 1.297                                    | 54 974                                |
| S      | 33                             | 1.620                        | 0.577                            | 1.679                                                           | 1.101                                      | 1.243                                    | 54.833                                |
|        |                                |                              | For the above                    | $\sigma_{\rm run}: \sigma_{\rm m} = 2.0$                        | 5%                                         |                                          |                                       |
|        | $\theta^2 = 350,000 \text{ s}$ | ec <sup>2</sup> residua      | al variance $= 24$               | $0.9366 \text{ sec}^2$                                          | variance improv                            | vement = 46.30%                          | 9                                     |
|        | 5.5                            | 1 507                        | 0 (10                            |                                                                 |                                            |                                          |                                       |
| a      | 55                             | 1.537                        | 0.610                            | 1.515                                                           | 1.001                                      | 1.112                                    | 53.914                                |
| D      | 141                            | 1.42/                        | 0.511                            | 1.701                                                           | 0.989                                      | 1.354                                    | 63.392                                |
| с      | 59                             | 1.263                        | 0.552                            | 1.631                                                           | 1.005                                      | 1.262                                    | 59.897                                |
| р      | 49                             | 1.258                        | 0.536                            | 1.659                                                           | 1.034                                      | 1.274                                    | 58.924                                |
| q      | 108                            | 1.468                        | 0.566                            | 1.594                                                           | 1.013                                      | 1.199                                    | 56.579                                |
| S      | 33                             | 1.559                        | 0.554                            | 1.627                                                           | 1.044                                      | 1.226                                    | 56.766                                |
|        | $\theta^2 = 400,000 \text{ s}$ | ec <sup>2</sup> residua      | For the above al variance $= 24$ | $\sigma_{\rm run}: \sigma_{\rm m} = 2.5$ $3.9740 \ {\rm sec}^2$ | 5%<br>variance improv                      | ement = 45.63%                           |                                       |

Period 80 sec. For this period: initial data variance =  $493.0962 \text{ sec}^2$ ; No. of observations = 1533; No. blocks = 442; average path lenght = 6884.480 km.

| Region | Number of<br>blocks<br>studied  | RMS vel<br>variations<br>(%) | Average resolution | Aver total<br>STD dev<br>(%) | Aver STD dev<br>due to Random<br>error (%) | Aver STD dev<br>due to poor<br>resol (%) | % total error<br>due to poor<br>resol |
|--------|---------------------------------|------------------------------|--------------------|------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------|
| a      | 54                              | 2.080                        | 0.706              | 1.874                        | 1.340                                      | 1.273                                    | 46.145                                |
| b      | 140                             | 1.879                        | 0.607              | 2.171                        | 1.364                                      | 1.642                                    | 57.232                                |
| с      | 59                              | 1.594                        | 0.652              | 2.049                        | 1.371                                      | 1.489                                    | 52.804                                |
| р      | 49                              | 1.646                        | 0.640              | 2.080                        | 1.409                                      | 1.493                                    | 51.494                                |
| q      | 107                             | 1.900                        | 0.664              | 1.990                        | 1.371                                      | 1.397                                    | 49.283                                |
| S      | 33                              | 1.831                        | 0.654              | 2.040                        | 1.419                                      | 1.432                                    | 49.267                                |
|        |                                 |                              | For the above      | ve run: $\sigma_m = 3$ .     | 5%                                         |                                          |                                       |
|        | $\theta^2 = 200,000$ se         | c <sup>2</sup> residu        | al variance = 2    | 51.1567 sec <sup>2</sup>     | variance impro                             | vement = $49.06\%$                       | 6                                     |
| а      | 54                              | 1.936                        | 0.672              | 1.790                        | 1.244                                      | 1.254                                    | 49.104                                |
| ь      | 140                             | 1.721                        | 0.573              | 2.048                        | 1.252                                      | 1.581                                    | 59.588                                |
| с      | 59                              | 1.479                        | 0.618              | 1.943                        | 1.265                                      | 1.446                                    | 55.379                                |
| р      | 49                              | 1.532                        | 0.604              | 1.975                        | 1.300                                      | 1.455                                    | 54.278                                |
| q      | 107                             | 1.768                        | 0.630              | 1.894                        | 1.268                                      | 1.366                                    | 52.021                                |
| S      | 33                              | 1.720                        | 0.617              | 1.941                        | 1.308                                      | 1.405                                    | 52.362                                |
|        |                                 |                              | For the abov       | ve run: $\sigma_m = 3$ .     | 2%                                         |                                          |                                       |
|        | $\theta^2 = 250,000$ se         | c <sup>2</sup> residu        | al variance = 2    | $55.5379 \text{ sec}^2$      | variance impro                             | vement = $48.18\%$                       | 6                                     |
| а      | 54                              | 1.819                        | 0.644              | 1.721                        | 1.168                                      | 1.235                                    | 51.534                                |
| b      | 140                             | 1.599                        | 0.544              | 1.951                        | 1.165                                      | 1.530                                    | 61.525                                |
| с      | 59                              | 1.389                        | 0.589              | 1.858                        | 1.180                                      | 1.409                                    | 57.483                                |
| р      | 49                              | 1.441                        | 0.573              | 1.891                        | 1.212                                      | 1.422                                    | 56.591                                |
| q      | 107                             | 1.664                        | 0.600              | 1.816                        | 1.187                                      | 1.338                                    | \$54.290                              |
| S      | 33                              | 1.628                        | 0.586              | 1.861                        | 1.220                                      | 1.379                                    | 54.895                                |
|        |                                 |                              | For the abov       | e run: $\sigma_m = 2$ .      | 9%                                         |                                          |                                       |
|        | $\theta^2 = 300,000 \text{ se}$ | c <sup>2</sup> residu        | al variance $= 2$  | $59.4882 \text{ sec}^2$      | variance improv                            | vement = $47.37\%$                       | 6                                     |
| a      | 54                              | 1.720                        | 0.619              | 1.663                        | 1.104                                      | 1.217                                    | 53.591                                |
| b      | 140                             | 1.500                        | 0.520              | 1.871                        | 1.093                                      | 1.487                                    | 63.170                                |
| с      | 59                              | 1.316                        | 0.563              | 1.787                        | 1.112                                      | 1.376                                    | 59.262                                |
| р      | 49                              | 1.366                        | 0.546              | 1.820                        | 1.140                                      | 1.393                                    | 58.565                                |
| q      | 107                             | 1.579                        | 0.575              | 1.751                        | 1.119                                      | 1.313                                    | 56.225                                |
| S      | 33                              | 1.550                        | 0.559              | 1.794                        | 1.147                                      | 1.355                                    | 57.034                                |
|        |                                 |                              | For the abov       | e run: $\sigma_m = 2$ .      | 7%                                         |                                          |                                       |
|        | $\theta^2 = 350,000$ se         | c <sup>2</sup> residu        | al variance $= 2$  | 63.0964 sec <sup>2</sup>     | variance improv                            | vement = $46.64\%$                       | 0                                     |
| a      | 54                              | 1.634                        | 0.597              | 1.612                        | 1.050                                      | 1.200                                    | 55.369                                |
| b      | 140                             | 1.419                        | 0.498              | 1.803                        | 1.034                                      | 1.449                                    | 64.596                                |
| с      | 59                              | 1.254                        | 0.541              | 1.727                        | 1.054                                      | 1.347                                    | 60.801                                |
| р      | 49                              | 1.303                        | 0.523              | 1.759                        | 1.079                                      | 1.366                                    | 60.283                                |
| q      | 107                             | 1.507                        | 0.552              | 1.694                        | 1.062                                      | 1.289                                    | 57.910                                |
| S      | 33                              | 1.483                        | 0.535              | 1.736                        | 1.085                                      | 1.332                                    | 58.879                                |
|        |                                 |                              | For the abov       | e run: $\sigma_m = 2.0$      | 6%                                         |                                          |                                       |
|        | $\theta^2 = 400,000$ se         | c <sup>2</sup> residu        | al variance = 2    | $66.4241 \text{ sec}^2$      | variance improv                            | wement = $45.97\%$                       | 2                                     |

Period 90 sec. For this period: initial data variance =  $551.8558 \text{ sec}^2$ ; No. of observations = 1276; No. blocks = 424; average path lenght = 7220.475 km.

| Region | Number of<br>blocks<br>studied  | RMS vel<br>variations<br>(%) | Average<br>resolution            | Aver total<br>STD dev<br>(%)                           | Aver STD dev<br>due to Random<br>error (%) | Aver STD dev<br>due to poor<br>resol (%) | % total error<br>due to poor<br>resol |
|--------|---------------------------------|------------------------------|----------------------------------|--------------------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------|
| a      | 53                              | 2.002                        | 0.653                            | 1.784                                                  | 1.216                                      | 1.278                                    | 51,305                                |
| b      | 131                             | 1.579                        | 0.560                            | 2.015                                                  | 1.219                                      | 1.570                                    | 60.747                                |
| с      | 58                              | 1.471                        | 0.590                            | 1,948                                                  | 1.224                                      | 1 490                                    | 58 480                                |
| р      | 46                              | 1.795                        | 0.570                            | 1,997                                                  | 1.258                                      | 1.525                                    | 58 296                                |
| q      | 103                             | 1.663                        | 0.603                            | 1,904                                                  | 1,242                                      | 1.408                                    | 54 716                                |
| S      | 33                              | 1.618                        | 0.552                            | 2.039                                                  | 1.266                                      | 1.574                                    | 59 609                                |
|        |                                 |                              | 10008-00.00                      |                                                        |                                            | 11071                                    | 57:007                                |
|        | Q2 _ Q50 000                    | 2                            | For the above                    | e run: $\sigma_{\rm m} = 3$ .                          | 1%                                         |                                          |                                       |
|        | $0^2 = 250,000$                 | sec <sup>2</sup> residu      | al variance $= 23$               | $38.4564 \text{ sec}^2$                                | variance impro-                            | vement = $56.79\%$                       | 6                                     |
| a      | 53                              | 1.880                        | 0.624                            | 1.716                                                  | 1.140                                      | 1.258                                    | 53,730                                |
| b      | 131                             | 1.466                        | 0.531                            | 1.921                                                  | 1.134                                      | 1.521                                    | 62,689                                |
| с      | 58                              | 1.393                        | 0.561                            | 1.862                                                  | 1.142                                      | 1,448                                    | 60.447                                |
| р      | 46                              | 1.682                        | 0.539                            | 1.909                                                  | 1,171                                      | 1.485                                    | 60 483                                |
| q      | 103                             | 1.560                        | 0.573                            | 1.825                                                  | 1,160                                      | 1 378                                    | 56.961                                |
| S      | 33                              | 1.494                        | 0.521                            | 1.947                                                  | 1.173                                      | 1.532                                    | 61,900                                |
|        |                                 |                              | E. d. t                          | the above cin                                          | - C-1                                      |                                          |                                       |
|        | $A^2 - 300,000$                 | 2                            | For the above                    | run: $\sigma_{\rm m} = 2.3$                            | 8%                                         |                                          |                                       |
|        | 0 - 300,000 \$                  | residu                       | al variance = $24$               | 3.2100 sec <sup>2</sup>                                | variance improv                            | y = 55.93%                               | 2                                     |
| a      | 53                              | 1.780                        | 0.599                            | 1.659                                                  | 1.077                                      | 1.239                                    | 55,769                                |
| b      | 131                             | 1.376                        | 0.506                            | 1.844                                                  | 1.064                                      | 1.479                                    | 64.332                                |
| с      | 58                              | 1.330                        | 0.536                            | 1.791                                                  | 1.075                                      | 1.411                                    | 62,107                                |
| р      | 46                              | 1.590                        | 0.513                            | 1.836                                                  | 1.099                                      | 1.449                                    | 62.334                                |
| q      | 103                             | 1.477                        | 0.547                            | 1.760                                                  | 1.093                                      | 1.350                                    | 58,867                                |
| S      | 33                              | 1.394                        | 0.495                            | 1.870                                                  | 1.098                                      | 1.494                                    | 63.810                                |
|        |                                 |                              | For the above                    | run: $\sigma_m = 2.6$                                  | 5%                                         |                                          |                                       |
|        | $\theta^2 = 350,000 \text{ s}$  | ec <sup>2</sup> residu       | al variance = 24                 | $7.4798 \text{ sec}^2$                                 | variance improv                            | ement = 55.15%                           |                                       |
| 9      | 53                              | 1 605                        | 0 577                            | 1 (00                                                  | 1.004                                      | 1                                        |                                       |
| a<br>b | 121                             | 1.095                        | 0.577                            | 1.609                                                  | 1.024                                      | 1.220                                    | 57.523                                |
| 0      | 59                              | 1.302                        | 0.484                            | 1.779                                                  | 1.006                                      | 1.442                                    | 65.754                                |
| n      | 16                              | 1.270                        | 0.514                            | 1.730                                                  | 1.018                                      | 1.379                                    | 63.544                                |
| P      | 40                              | 1.515                        | 0.490                            | 1.773                                                  | 1.039                                      | 1.418                                    | 63.935                                |
| q      | 103                             | 1.409                        | 0.524                            | 1.703                                                  | 1.036                                      | 1.325                                    | 60.522                                |
| 5      | 55                              | 1.510                        | 0.472                            | 1.805                                                  | 1.035                                      | 1.460                                    | 65.441                                |
|        | $\theta^2 = 400,000 \text{ s}$  | ec <sup>2</sup> residua      | For the above $al variance = 25$ | run: $\sigma_{\rm m} = 2.5$<br>1.3674 sec <sup>2</sup> | variance improv                            | ement = 54.45%                           |                                       |
|        |                                 |                              |                                  |                                                        | variance improv                            | omont = 54.45%                           |                                       |
| а      | 53                              | 1.557                        | 0.539                            | 1.525                                                  | 0.937                                      | 1.186                                    | 60.422                                |
| b      | 131                             | 1.185                        | 0.448                            | 1.672                                                  | 0.913                                      | 1.380                                    | 68,119                                |
| с      | 58                              | 1.189                        | 0.477                            | 1.630                                                  | 0.927                                      | 1.324                                    | 65,941                                |
| р      | 46                              | 1.395                        | 0.452                            | 1.670                                                  | 0.942                                      | 1.363                                    | 66,595                                |
| q      | 103                             | 1.300                        | 0.486                            | 1.609                                                  | 0.944                                      | 1.280                                    | 63,285                                |
| S      | 33                              | 1.180                        | 0.434                            | 1.697                                                  | 0.934                                      | 1.400                                    | 68.113                                |
|        |                                 |                              | For the above                    | run: $\sigma_m = 2.3$                                  | %                                          |                                          |                                       |
|        | $\theta^2 = 500,000 \text{ so}$ | ec <sup>2</sup> residua      | l variance = 252                 | $8.2618 \text{ sec}^2$                                 | variance improv                            | ement = 53 20%                           |                                       |

| Region | Number of<br>blocks<br>studied   | RMS vel<br>variations<br>(%)          | Average<br>resolution            | Aver total<br>STD dev<br>(%)                | Aver STD dev<br>due to Random<br>error (%) | Aver STD dev<br>due to poor<br>resol (%) | % total err<br>due to poo<br>resol |
|--------|----------------------------------|---------------------------------------|----------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------|
| a      | 52                               | 1.571                                 | 0.584                            | 1.711                                       | 1.088                                      | 1.302                                    | 57,925                             |
| b      | 115                              | 1.312                                 | 0.507                            | 1.865                                       | 1.076                                      | 1.501                                    | 64.758                             |
| С      | 55                               | 1.173                                 | 0.529                            | 1.823                                       | 1.073                                      | 1.453                                    | 63,556                             |
| р      | 41                               | 1.606                                 | 0.498                            | 1.886                                       | 1.095                                      | 1.517                                    | 64,739                             |
| q      | 97                               | 1.617                                 | 0.529                            | 1.816                                       | 1.103                                      | 1.418                                    | 60.934                             |
| S      | 31                               | 1.420                                 | 0.446                            | 1.982                                       | 1.077                                      | 1.647                                    | 69.059                             |
|        |                                  |                                       | For the above                    | $\sigma_{\rm run}$ : $\sigma_{\rm m} = 2.7$ | %                                          |                                          |                                    |
|        | $\theta^2 = 300,000 \text{ s}$   | ec <sup>2</sup> residu                | al variance = 21                 | $6.0930 \text{ sec}^2$                      | variance improv                            | vement = 59.75%                          |                                    |
| 9      | 50                               | 1 402                                 | 0 550                            | 1 640                                       | 1.1.1                                      |                                          |                                    |
| h      | 115                              | 1.405                                 | 0.558                            | 1.653                                       | 1.026                                      | 1.280                                    | 59.887                             |
| C      | 55                               | 1.231                                 | 0.482                            | 1.793                                       | 1.011                                      | 1.460                                    | 66.355                             |
| 2      | 33                               | 1.115                                 | 0.504                            | 1.754                                       | 1.011                                      | 1.415                                    | 65.089                             |
| p      | 41                               | 1.523                                 | 0.472                            | 1.813                                       | 1.028                                      | 1.477                                    | 66.388                             |
| e e    | 31                               | 1.535                                 | 0.503                            | 1.751                                       | 1.038                                      | 1.387                                    | 62.755                             |
| 3      | 51                               | 1.323                                 | 0.421                            | 1.899                                       | 1.006                                      | 1.596                                    | 70.641                             |
|        |                                  |                                       | For the above                    | run: $\sigma_{\rm m} = 2.5$                 | %                                          |                                          |                                    |
|        | $\theta^2 = 350,000 \text{ s}$   | ec <sup>2</sup> residua               | al variance = 22                 | 1.2085 sec <sup>2</sup>                     | variance improv                            | ement = $58.80\%$                        |                                    |
| a      | 52                               | 1.410                                 | 0.535                            | 1 604                                       | 0.074                                      | 1 259                                    | C1 PC1                             |
| b      | 115                              | 1.164                                 | 0.460                            | 1 732                                       | 0.974                                      | 1.238                                    | 61.564                             |
| с      | 55                               | 1.066                                 | 0.483                            | 1.696                                       | 0.950                                      | 1.425                                    | 67.736                             |
| р      | 41                               | 1.453                                 | 0.450                            | 1.751                                       | 0.939                                      | 1.302                                    | 00.422                             |
| q      | 97                               | 1.466                                 | 0.480                            | 1.695                                       | 0.972                                      | 1.442                                    | 67.822                             |
| S      | 31                               | 1.244                                 | 0.400                            | 1.830                                       | 0.984                                      | 1.552                                    | 04.334                             |
|        |                                  |                                       | For the above                    |                                             | 01                                         |                                          | /1.//5                             |
|        | $\theta^2 = 400,000 \text{ set}$ | ec <sup>2</sup> residua               | 1  variance = 22                 | $5.8989 \sec^2$                             | variance improv                            | ement = 57.92%                           |                                    |
| 2      | 50                               | 1.040                                 | 0.515                            | l and the                                   |                                            |                                          |                                    |
| a<br>b | 115                              | 1.349                                 | 0.515                            | 1.560                                       | 0.930                                      | 1.239                                    | 63.025                             |
| 0      | 115                              | 1.107                                 | 0.441                            | 1.679                                       | 0.910                                      | 1.394                                    | 68.952                             |
| n      | 33                               | 1.024                                 | 0.463                            | 1.645                                       | 0.914                                      | 1.353                                    | 67.600                             |
| p      | 41                               | 1.393                                 | 0.430                            | 1.698                                       | 0.924                                      | 1.411                                    | 69.087                             |
| q      | 97                               | 1.405                                 | 0.460                            | 1.646                                       | 0.936                                      | 1.334                                    | 65.724                             |
| 8      | 31                               | 1.177                                 | 0.381                            | 1.769                                       | 0.895                                      | 1.514                                    | 73.170                             |
|        | $\theta^2 = 450.000$ se          | c <sup>2</sup> residua                | For the above $1$ variance = 230 | run: $\sigma_{\rm m} = 2.39$                | %                                          | 50 110                                   |                                    |
|        | Cleberth an entra                | i i i i i i i i i i i i i i i i i i i |                                  | 1.2374 500                                  | variance improve                           | ement = 57.11%                           |                                    |
| a      | 52                               | 1.296                                 | 0.498                            | 1.522                                       | 0.891                                      | 1.220                                    | 64,316                             |
| b      | 115                              | 1.057                                 | 0.423                            | 1.632                                       | 0.869                                      | 1.366                                    | 70,035                             |
| С      | 55                               | 0.987                                 | 0.446                            | 1.601                                       | 0.875                                      | 1.326                                    | 68 654                             |
| р      | 41                               | 1.341                                 | 0.412                            | 1.651                                       | 0.881                                      | 1.383                                    | 70 218                             |
| q      | 97                               | 1.351                                 | 0.442                            | 1.603                                       | 0.895                                      | 1.312                                    | 66 063                             |
| S      | 31                               | 1.119                                 | 0.365                            | 1.717                                       | 0.852                                      | 1.479                                    | 74.211                             |
|        |                                  |                                       | Eastha shawa                     |                                             |                                            |                                          |                                    |

Period 98 sec. For this period: initial data variance =  $536.8802 \text{ sec}^2$ ; No. of observations = 954; No. blocks = 391; average path lenght = 7734.103 km.

diagonal element of the resolution matrix, calculated using eq. (10); the standard deviation due to random noise, given by eq. (11); and the standard error due to poor resolution.

In Tab. 5 through 13 we show the above parameters averaged for each region symbol of the initial model of Jordan (1981), for a number of inversions using different damping constants. At the top of each of these tables, we indicated the period studied; the initial data variance, the number of observations used, the number of blocks resolved, and the average path length, all for the period in question. For each run, we showed the residual variance, and the variance improvement. Also shown is the square root of the model variance  $\sigma_m^2$  corresponding to the choice of damping constant.

The damping constant selected for the final solution for each of the reference periods are underlined in each of these tables. The selection was made considering the trade-off between errors and resolution of each solution, so that an acceptable balance was achieved. The values of  $\sigma_m$  are, in many cases, comparable to those obtained for the standard deviation of the regionalized Earth models (tabulated by Rosa & Aki, 1991).

An interesting comparison can be made between the standard deviation of our phase travel time residual data with that used by Yomogida (1985), which is shown in Tab. 14a. We can see that the two sets are very similar, although Yomogida (1985) studied paths restricted to the Pacific basin. A more interesting comparison in Tab. 14b is between the residual standard deviation of the inversion results of our work and that of Forsyth (1975), by regionalization with four oceanic, and two continental regions including the anisotropy. In the same table, we also show the result of Patton (1978), who used a regionalized model consisting of five regions to fit his observations of phase velocity for Rayleigh waves propagating in Eurasia. Also shown in Tab. 14b is the residual standard deviation reported by Patton (1984), for phase velocity data of Rayleigh waves in the Western U.S.. Patton (1984) used four major provinces, and three 'less distinct' provinces, to explain up to 40 percent of the initial variance of phase velocity data of Rayleigh waves with 40 sec period. Finally, we showed the residual standard deviation obtained by Yomogida (1985) by the inversion of phase data only.

From these data shown in Tab. 14b, we notice that the residual standard deviation achieved in our work is larger than that obtained by Forsyth (1975) and by Patton (1984), who studied much smaller regions. Our residual standard deviation is comparable to the result of Yomogida (1985) for the Pacific region, where he used a 5<sup>o</sup> by 5<sup>o</sup> regionalization grid. The resulting phase velocity world maps (consisting of the initial velocity model plus perturbation) obtained by each computer run corresponding to a chosen damping constant are

 Table 14a. Standard deviation of the travel time residual data (sec).

| Period<br>(sec) | Yomogida<br>(1985)                                                                                              | This work | N  |
|-----------------|-----------------------------------------------------------------------------------------------------------------|-----------|----|
| 20              | ing - Louis                                                                                                     | 23.15     | 12 |
| 30              | 18.7                                                                                                            | 20.45     |    |
| 40              | 17.0                                                                                                            | 19.97     |    |
| 50              | - 1                                                                                                             | 20.48     |    |
| 60              | 16.5                                                                                                            | 20.53     |    |
| 70              |                                                                                                                 | 21.18     |    |
| 80              | 14.9                                                                                                            | 22.20     |    |
| 90              | -                                                                                                               | 23.49     |    |
| 98              | -                                                                                                               | 23.17     |    |
| <br>            | the second se |           |    |

| Table | 14b. | Residual    | standard | deviation | after |
|-------|------|-------------|----------|-----------|-------|
|       |      | inversion ( | (sec).   |           |       |

| Period<br>(sec) | Forsyth<br>(1975)                             | Patton<br>(1978)                                                                                                                                                       |
|-----------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26              | 6.5                                           | 15.8                                                                                                                                                                   |
| 34              | 5.5                                           | 11.9                                                                                                                                                                   |
| 40              | 4.8                                           | 9.7                                                                                                                                                                    |
| 66              | 5.1                                           | 8.0                                                                                                                                                                    |
| 90              | 6.2                                           | 8.3                                                                                                                                                                    |
|                 | Period<br>(sec)<br>26<br>34<br>40<br>66<br>90 | Period<br>(sec)         Forsyth<br>(1975)           26         6.5           34         5.5           40         4.8           66         5.1           90         6.2 |

| Period<br>(sec) | Patton<br>(1984) | Yomogida<br>(1985) | This work      |  |
|-----------------|------------------|--------------------|----------------|--|
| 20              |                  | _                  | 14.79 (68.02%) |  |
| 30              |                  | 13.8 (45.5%)       | 12.85 (60.49%) |  |
| 40              |                  | 12.3 (47.6%)       | 14.02 (50.72%) |  |
| 50              | 4-6 (40%)        | 1.1-12             | 14.82 (47.64%) |  |
| 60              |                  | 13.1 (36.5%)       | 15.36 (44.03%) |  |
| 70              |                  |                    | 15.29 (47.86%) |  |
| 80              |                  | 12.9 (24.8%)       | 16.11 (47.37%) |  |
| 90              |                  | A                  | 15.73 (55.15%) |  |
| 98              |                  | -                  | 14.87 (58.80%) |  |

In this last table we also show the variance improvement for each case.





Figuras 1 a 4. Mapas de velocidade de fase obtidos, respectivamente, para os valores de período de 30 a 60 segundos.

plotted in Figs. 1 through 8, for the reference periods 30 through 98 sec. The velocity perturbation maps, the data density, the diagonal element of the resolution matrix, the total standard deviation, and the standard deviation due to random noise in the data, are all plotted in the work of Rosa (1986) and were not included here for simplicity. Each of these maps is shown in the mercator projection, with the latitude ranging from 70°S to 75°N. We have used a bi-cubic spline interpolation scheme (de Boor, 1978) to interpolate between the values corresponding to each block studied. We expected to obtain some of the abnormal effects at the borders of the maps and in areas close to unresolved blocks (shown either as yellow or in black in these figures), due to the lack of

continuity of values in such cases. So, we ignored anomalies which are too close to these borders. Other regions for which we kept some conservative view when analyzing the results are those too close to the polar regions.

In general, the diagonal elements of the resolution matrix (Rosa, 1986) approaches unity for blocks with the largest number of hits. This increasing of resolution of the solution is also associated with a decrease in total standard deviation, and a decrease in the values of standard deviation associated with random error, in a way that the most reliable part of the result is in areas where the data coverage was the best (such as in North America, the East Pacific, the North Atlantic, western Europe, East Africa, northern

266



Figures 5 through 8. Resulting phase velocity global maps for the reference periods from 70 through 98 sec, respectively.

Figuras 5 a 8. Mapas de velocidade de fase obtidos, respectivamente, para os valores de período de 70 a 98 segundos.

portions of the Indian Ocean, and the Tibet region).

Anomalies in phase velocity for the period range studied reflect possible differences in body wave seismic velocities and densities in the crust and upper mantle structure of the several regions considered. These differences can be caused by temperature anomalies, compositional variations, partial melting, and anisotropy. Many of these features were noticeable by previous small-scale works, or were expected by the known tectonic setting of several regions.

In the Pacific region, a comparison can be made between our results and those of Yomogida (1985) in the corresponding reference periods. In this case, both maps corresponding to phase velocity changes, and maps of these velocity distribution show much resemblance, with most of the major anomalies represented in both results. The results of Nishimura & Forsyth (1985) on the Love wave phase velocity distribution on the Pacific basin also provided us with another opportunity to check our results in this region (Rosa, 1986).

As we mentioned earlier, there have been a number of recent works on the global distribution of phase and group velocity of Rayleigh and Love waves with period greater than the period range studied in this paper. Rosa (1986) reviewed these efforts in greater detail.

Among these longer-period global studies, Tanimoto & Anderson (1984, 1985) studied the lateral

variation of phase velocity of long period surface waves (R<sub>2</sub>, R<sub>3</sub> and G<sub>2</sub>, G<sub>3</sub>) and the azimuthal dependence of these velocities. They inverted a data set larger than that of Nakanishi & Anderson (1983, 1984a, b). The reference periods used were 100, 150, 200 and 250 sec. The variance reduction with relation to an initially laterally homogeneous model achieved in their work are respectively 45.8, 64.9, 66.6, 54.5% at these reference periods. They used the method of Backus & Gilbert (1967, 1968, 1970), and the resultant maps showing the perturbations in phase velocity distribution from Tanimoto & Anderson (1985) and Tanimoto (1985) were later used by Tanimoto (1986) in the determination of the SH and SV velocity structure of the upper mantle. As described in Rosa (1986), our results at 98 sec compare well with those obtained by Tanimoto & Anderson (1985) for the reference period 100 sec. For 100 sec, their inversion achieved about 46% variance improvement, compared to 59% of ours. One could argue that Tanimoto & Anderson (1985) used a smaller number of unknowns than we did. On the other hand, Tanimoto & Anderson (1985) used 497 observations of  $R_2$  and  $R_3$  in contrast with our 954  $R_1$ observations. Furthermore, the use of  $R_2$  and  $R_3$ involves complications due to the one or two polar passages, respectively. These difficulties were considered by Aki (1966) while studying the Love wave equivalents to these phases namely, G<sub>2</sub> and G<sub>3</sub>. He found that  $G_3$  phases were particularly more complicated, and we expect to find the same difficulties when analyzing Rayleigh waves.

We should also discuss the possibility of using our phase velocity maps for application of the moment tensor inversion method to study the mechanism of any earthquake in the Earth.

Weidner (1972), using the reference point method described by Weidner & Aki (1973), was able to almost completely separate the source and path effects of earthquakes in the Atlantic using event pairs. Patton (1978) achieved a similar goal, by using a group of events located around a reference point in Tibet.

An early estimate of the accuracy needed for the phase velocity values in all paths connecting stations and source point, in order to separate the propagation effect from the phase observations prior to the linear moment tensor inversion method of Mendiguren (1977), was made by Aki & Patton (1978). They estimated that, for this case, we need 0.5% accuracy in the phase velocity data. This corresponds to saying that, for a path measuring a few thousand kilometers, we have an error of a few seconds in the travel time of the observed phase. with the application of the reference point method, but not with his regionalized map of phase velocity. Romanowicz (1982a, b) proposed an alternative to relax the high accuracy needed in the propagation correction envolved in the method used by Patton (1978).

Kanamori & Given (1982) determined the moment tensor for earthquakes recorded by the I.D.A. network, using the linear inversion method described by Kanamori & Given (1981) using a laterally homogeneous Earth model to derive the initial phase at the source. Nakanishi & Kanamori (1982) used the same method to study surface waves with period ranging between 197 and 256 sec, this time with the regionalized phase velocity curves of Dziewonski & Steim (1982), and a discretized world map representation with grid size  $5^{\circ} \times 5^{\circ}$  similar to those used by Rosa & Aki (1991). Their conclusion was that the simple regionalized phase velocity curves have improved the linear inversion for the moment tensor, in comparison with the use of a laterally homogeneous media of their previous work.

In our work, we have collected most of the available phase velocity data, and have added a greater number of newly measured data (Rosa & Aki, 1991), to obtain the results shown in Figs. 1 through 8 (the results corresponding to the 20 sec waves are not shown, since too few blocks could be used in the inversion process, due to the lack of enough data paths). As shown in Tab. 14b, the prediction based on the phase velocity mapping with the  $10^{\circ}$  x  $10^{\circ}$  meshes gave residuals ranging between 13 and 16 sec for all periods. Clearly, our results cannot be used in the application of the moment tensor inversion method to any event using the waves with period 20 or 30 sec, because the phase uncertainty is more than 0.5 cycles. On the other hand, if we use long period, say 100 sec, the residual is equivalent to a 0.15 cycles error which is comparable to the scatter of the phase observations in some well-constrained focal mechanism studies using Rayleigh waves (e.g. Patton, 1980). It is a very encouraging result, specially because using the moment tensor inversion at 100 sec is a great improvement when we consider that the smallest period considered by Nakanishi & Kanamori (1982) was about 200 sec. On the other hand, if we want to lower the applicability of the moment tensor inversion method from 100 sec to about 30 sec, it is necessary to improve our phase velocity maps for the shorter periods.

## APPLICATION OF THE STOCHASTIC INVERSION TO THE GROUP VELOCITY DATA SET

Patton (1978) was able to achieve such accuracy

Tetsuo A. Santo pioneered the studies on the

determination of the global distribution of the group velocity of fundamental mode Rayleigh waves (Santo, 1960a, b, 1961a, b, 1963, 1965a, b, 1966, 1967, 1968; Santo & Sato, 1966 and Sato & Santo, 1969). Regionalization of group velocity for Rayleigh waves with longer periods was considered by other workers, such as Savage & White (1969), in the Pacific Ocean, and Tarr (1969) in the North Atlantic and Caribbean Sea. Forsyth (1973) considered several types of models and the anisotropy effects on the propagation of these waves, to regionalize a set of measured paths in the Pacific. The group velocity of Rayleigh waves propagating in the Pacific was further studied by Yoshii (1975), and later by Yu & Mitchell (1979) and Mitchell & Yu (1980).

In this section, we describe an attempt to invert the group velocity collected by Rosa (1986) using the same method applied to determine the global distribution of phase velocity.

Since most of the paths used in the phase velocity study are the same as those in the group velocity study, the operator G of eq. (4) will be very similar between the two inverse problems.

We used the same regionalization (Jordan, 1981) used in the phase velocity part of this work, with group velocity values given by Rosa & Aki (1991) as our initial model. We have eliminated the rays which showed the absolute value of the residual travel time larger than four percent of the total travel time, and required that only blocks with more than 20 ray crossings be included in the inversion process. For each run, in a similar fashion to the procedure followed in the phase velocity study, we calculated the root mean square of the velocity variations, the average value of the diagonal element of the resolution matrix, the average total standard deviation, the average standard deviation due to random error in the data, the average standard deviation due to the poor resolution, and the percentage of the total standard deviation which is represented by this latter variable.

If we consider the data at 50 sec period, we notice that the most striking difference between this data set and the phase velocity data set is the initial data variance of these two: we found that  $\langle d^2 \rangle$  is about four times greater for the group velocity data (Tab. 15). From eq. (4), we notice that the difference  $\langle d^2 \rangle$  can be due to the difference in either m or in n. In other words, we need to know if group velocity actually varies more than phase velocity over the Earth's surface, or if group velocity measurements have more errors than the phase velocity ones.

If we consider the first of these possibilities, we are assuming that  $\sigma_{mU}^2 > \sigma_{mc}^2$ , but  $\sigma_{nU}^2 \cong \sigma_{nc}^2$ . In this case, the damping constant for the group velocity inversion should be chosen four times smaller than in the phase velocity inversion procedure. We tried this possibility and found solutions with unacceptable standard errors (i.e. the resulting velocity variations were insignificant comparing with their errors).

We can compare the regionalized group velocity models of Rosa & Aki (1991) with their corresponding phase velocity models, and try to verify the possibility if  $\sigma_{mU}^2 > \sigma_{mc}^2$ . Consider the case of 50 sec waves, for which the signal to noise ratio is larger than in other cases. We did not see any major difference between  $\sigma_{mU}$  and  $\sigma_{mc}$  in this case. So, the first possibility is unlikely.

Let us now examine the second possibility that the noise variance (measurement error) may be different between group and phase velocity data. The

## Table 15

Group velocity - period 50 sec. For this period: initial data variance =  $1866.2941 \text{ sec}^2$ ; No. of observations = 1077; No. blocks = 225; average path length = 7788.926 km.

| Region | Number of<br>blocks<br>studied | RMS vel<br>variations<br>(%) | Average<br>resolution | Aver total<br>STD dev<br>(%) | Aver STD dev<br>due to Random<br>error (%) | Aver STD dev<br>due to poor<br>resol (%) | % total error<br>due to poor<br>resol |
|--------|--------------------------------|------------------------------|-----------------------|------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------|
| a      | 32                             | 2.707                        | 0.456                 | 2.021                        | 1.185                                      | 1.624                                    | 64.550                                |
| b      | 66                             | 2.430                        | 0.426                 | 2.076                        | 1.186                                      | 1.688                                    | 66.096                                |
| с      | 23                             | 1.673                        | 0.393                 | 2.121                        | 1.085                                      | 1.771                                    | 69.680                                |
| р      | 25                             | 2.076                        | 0.439                 | 2.060                        | 1.221                                      | 1.655                                    | 64.518                                |
| q      | 54                             | 2.783                        | 0.442                 | 2.046                        | 1.216                                      | 1.629                                    | 63.385                                |
| S      | 25                             | 1.269                        | 0.331                 | 2.241                        | 1.099                                      | 1.929                                    | 74.050                                |
|        |                                |                              | For the above         | ve run: σ <sub>m</sub> 2.89  | %                                          |                                          |                                       |
|        | $\theta^2 = 1,200,000$         | sec <sup>2</sup> resid       | dual variance $= 9$   | $10.6685 \text{ sec}^2$      | variance impro                             | $ext{ovement} = 51.20^{\circ}$           | %                                     |

phase velocity is defined as the velocity at which the phase of waves (peaks, zeros and troughs) propagates, and is given by

 $c = \omega/k$ 

where  $\omega$  is frequency and k is wave number. The group velocity on the other hand, is the velocity of propagation of wave packet or energy with frequency  $\omega$ , and is given by

```
\mathbf{U} = \mathbf{d}\boldsymbol{\omega}/\mathbf{d}\mathbf{k}
```

What we are considering in the measurements of these two is the observable phase difference  $\Delta \varphi(\omega)$  between two points separated by a distance  $\Delta$ . The expressions for the phase and group velocities are then given by

 $1/c = (1/\Delta) (\Delta \varphi(\omega)/\omega)$ 

 $1/U = (1/\Delta) [d/d\omega (\Delta \varphi(\omega))]$ 

If we consider that the observed phase difference  $\Delta \varphi(\omega)$  can be in error by  $\Delta \varphi(\omega) \stackrel{+}{=} \delta \varphi(\omega)$ , we see that the error in 1/c and 1/U are respectively,

$$\Delta[1/c] = (1/\Delta) (\delta \varphi(\omega)/\omega)$$

$$\Delta[1/U] = (1/\Delta) [\partial/\partial\omega \ (\delta\varphi(\omega))]$$

Thus, the error in group velocity measurement is related to the derivative of phase difference with respect to  $\omega$ . If one tries to measure 1/U by the Fourier transform and estimating the derivative by finite difference, one can anticipate a greater error for 1/U than for 1/c.

This basic difference between the accuracy of these two parameters has long been known. Evernden (1953, 1954) concluded that the phase velocity is the most important parameter to study the Earth structure using surface wave data. The same point was emphasized by Ewing & Press (1959). Other authors, such as Pilant (1967), Weidner (1972) and Soriau-Thevenard (1976), all concluded that their phase velocity measurements were much more accurate than the group velocity measurements performed for the same paths which they studied.

It is then reasonable to accept that the initial data variance of the group velocity data is much larger than the initial data variance of the phase velocity data, due to the larger measurements errors for group velocity. We accepted that this is the case and concluded that, for the group velocity inverse problem, a damping constant greater than the one used in the phase velocity study is needed in order to achieve acceptable error levels. We list the results of one run of our inversion computer program, performed to invert the data set for waves with 50 sec period (Tab. 15). This run was performed using a constant damping constant for all blocks, as done while treating the phase velocity data. Notice that the average resolution is much lower than the level achieved in our phase velocity study. This is due to the stronger damping used here, which could not be enhanced by requiring that the blocks used had more hits than in the phase velocity study. Then, even though the result of the inversion procedure summarized in Tab. 15 showed some similarity with some major tectonic features, we do not have enough confidence in the results due to the poor resolution associated with most of the blocks studied.

As we can see in Tab. 15, the residual variance obtained in the inversion process is about four times larger than that obtained in the inversion of the corresponding phase velocity data for 50 sec waves (Tab. 8). It is also of the same order of the residual variance obtained by Feng & Teng (1983b), who inverted a similar set of group velocity data in Eurasia, using a discretized model with the same block size of our work (10° by 10°). The standard deviation of their solution, listed in Tab. 4 of their work, is 29.68 sec for Rayleigh waves with period of 49.95 sec, while the standard deviation of our solution is about 30 sec for similar waves with period of 30 sec (considering the values for the residual variance listed in Tab. 15). The method used by Feng & Teng (1983b) to measure the group velocity values, discussed in a previous paper (Feng & Teng, 1983a) is of the same type of that used in our work, and show approximately the same error size. They do not show the errors and resolution associated with the solution of each one of the blocks they studied, but the similarity between our and their study indicates that the error may be greater than the variation of solution.

So, despite the widespread belief among part of the seismological community, our results show that the group velocity is much more difficult to measure and to invert than phase velocity. This is in agreement with the physical intuition about these two variables, since if we know the initial source phase, it is easier to measure the phase arrival time in an observed wave train than it is to identify the exact arrival time of a particular wave group (or energy). So, even with all the sophisticated smoothing procedures used in the group velocity measurements it is still difficult to obtain similar errors for group arrival measurements,  $\delta t_U(T)$ , as for those of phase arrival time measurements ( $\delta t_c(T)$ ).

### CONCLUSIONS

We have applied the stochastic inverse method to both global phase velocity and group velocity travel time data. For the phase velocity data, we found that the resulting velocity maps for longer periods can probably be used for studies of focal mechanism by the moment tensor inversion method in most of the Earth. For the lowest periods, the residual travel time obtained in the inversion suggests that we probably need a more detailed model. The original phase velocity data set for these periods can although be used as a network of reference points for focal mechanism studies.

In the case of our group velocity study, we got what is probably the most important contribution of this work: we found that since the standard deviation of the group velocity initial (regionalized) values are very similar to those in the phase velocity regionalization models (Rosa, 1986; Rosa & Aki, 1991), this shows that the large, unacceptable error bounds achieved after the application of the stochastic

- AKI, K. 1966 Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. Part 1. A statistical analysis. Bull. Earthq. Res. Inst., 44: 23-72.
- AKI, K. 1977 Three dimensional seismic velocity anomalies in the lithosphere - method and summary of results. J. Geophys., 43: 235-242.
- AKI, K. 1979 Three-dimensional seismic anomalies and their relation to local seismicity. Tectonophysics, 56: 85-88.
- AKI, K. 1981 3-D inhomogeneities in the upper mantle. Tectonophysics, 75: 31-40.
- AKI, K. 1982 Three-dimensional seismic inhomogeneities in the lithosphere and asthenosphere: evidence for decoupling in the lithosphere and flow in the asthenosphere. Rev. Geophys. Space Phy., 20: 161-170.
- AKI, K., CHRISTOFFERSSON, A. & HUSEBYE, E.S. 1976 – Three-dimensional seismic structure of the lithosphere under Montana LASA. Bull. Seismol. Soc. Am., 66: 501-524.
- AKI, K., CHRISTOFFERSSON, A. & HUSEBYE, E.S. –
   1977 Three-dimensional seismic structure of the lithosphere. J. Geophys. Res., 82: 277-296.
- AKI, K. & LEE, W.H.K. 1976 Determination of threedimensional velocity anomalies under a seismic array using first P arrival times from earthquakes. 1. A homogeneous initial model, J. Geophys. Res., 81: 4381-4399.
- AKI, K. & PATTON, H.J. 1978 Determination of seismic moment tensor using surface waves. Tectonophysics, 49: 213-222.
- AKI, K. & RICHARDS, P.G. 1980 Quantitative Seismology, Theory and Methods. Vols. 1 and 2, W.H. Freeman, San Francisco.

inversion method to the group velocity data, are related to the larger errors involved in the measurements of the group velocity, which makes it much harder to obtain useful results from such analysis involving group velocity data. So, in spite of all the current widespread belief, this shows that the group velocity of surface waves is much more difficult to measure and to invert, just as stated by most early surface wave researchers.

### ACKNOWLEDGEMENTS

This project was made possible at MIT by a NSF grant (EAR-8408714), and was supported at USC by DARPA contract F19628-85-K-0018 and by the Schlumberger-Doll Research Fund. J.W.C. Rosa's studies at MIT were supported by the Brazilian National Research Council (CNPq), process 201.022/81, while further work done for the set up of this publication was supported by CAPES, Ministry of Education, República Federativa do Brasil.

#### REFERENCES

- BACKUS, G.E.& GILBERT, J.F. 1967 Numerical applications of a formalism for geophysical inverse problems. Geophys. J.R. astr. Soc., 13: 247-276.
- BACKUS, G.E. & GILBERT, J.F. 1968 The resolving power of gross Earth data. Geophys. J.R. astr. Soc., 16: 169-205.
- BACKUS, G.E. & GILBERT, J.F. 1970 Uniqueness in the inversion of inaccurate gross Earth data. Phil. Trans. R. Soc. Lon., A, 266: 123-192.
- DE BOOR, C. 1978 A practical guide to splines. Springer-Verlag, New York.
- DZIEWONSKI, A.M. & STEIM, J.M. 1982 Dispersion and attenutation of mantle waves through waveform inversion. Geophys. J.R. astr. Soc., 70: 503-527.
- ELLSWORTH, W.L. & KOYANAGI, R.Y. 1977 Threedimensional crust and upper mantle structure beneath the Island of Hawaii. J. Geophys. Res., 82: 5379-5394.
- EVERNDEN, J.F. 1953 Direction of approach of Rayleigh waves and related problems. Part I. Bull. Seismol. Soc. Am., 43: 335-374.
- EVERNDEN, J.F. 1954 Direction of approach of Rayleigh waves and related problems. Part II. Bull. Seismol. Soc. Am., 44: 159-184.
- EWING, M. & PRESS, F. 1959 Determination of crustal structure from phase velocity of Rayleigh waves. Part III. The United States. Bull. Geol. Soc. Am., 70: 229-244.
- FENG, C. & TENG, T. 1983a An error analysis of frequency-time analysis. Bull. Seismol. Soc. Am., 73: 143-155.
- FENG, C. & TENG, T. 1983b Three-dimensional crust and upper mantle structure of the Eurasian Continent. J. Geophys. Res., 88: 2261-2272.

- FORSYTH, D.W. 1973 Anisotropy and the structural evolution of the oceanic upper mantle. PhD Thesis, Mass. Inst. of Technol., Cambridge, 253 pp.
- FORSYTH, D.W. 1975 The early structural evolution and anisotropy of the oceanic upper mantle. Geophys. J.R. astr. Soc., 43: 103-162.
- FRANKLIN, J.N. 1970 Well-posed stochastic extension of ill-posed linear problems. J. Math. Anal. Appl., 31: 682-716.
- HASEMI, A.H., ISHII, H. & TAKAGI, A. 1984 Fine structure beneath the Tohoku district, northeastern Japan arc, as derived by an inversion of P-wave arrival times from local earthquakes. Tectonophysics, **101**: 245-265.
- HIRAHARA, K. 1977 A large-scale three-dimensional seismic structure under the Japan Islands and the Sea of Japan. J. Phys. Earth, 25: 393-417.
- HIRAHARA, K. 1981 Three-dimensional seismic structure beneath southwest Japan: the subducting Philippine Sea plate. Tectonophysics, **79**: 1-44.
- HORIE, A. & AKI, K. 1982 Three-dimensional velocity structure beneath the Kanto district, Japan. J. Phys. Earth, 30: 255-281.
- HUSEBYE, E.S., CHRISTOFFERSSON, A., AKI, K. & POWELL, C. – 1976 – Preliminary results on the threedimensional seismic structure of the lithosphere under the U.S.G.S. central California seismic array. Geophys. J.R. astr. Soc., 46: 319-340.
- JACKSON, D.D. 1979 The use of a priori data to resolve non-uniqueness in linear inversion. Geophys. J.R. astr. Soc., 57: 137-157.
- JORDAN, T.H. 1972 Estimation of the radial variation of seismic velocities and density of the Earth. PhD Thesis, Calif. Inst. of Technol., Pasadena.
- JORDAN, T.H. 1981 Global tectonic regionalization for seismological data analysis. Bull. Seismol. Soc. Am., 71: 1131-1141.
- KANAMORI, H. & GIVEN, J.W. 1981 Use of longperiod surface waves for rapid determination of earthquake-source parameters. Phys. Earth Planet. Inter., 27: 8-31.
- KANAMORI, H. & GIVEN, J.W. 1982 Use of longperiod surface waves for fast determination of earthquake source parameters. 2. Preliminary determination of source mechanism of large earthquake (Ms >6.5) in 1980. Phys. Earth Planet. Inter., 30: 260-268.
- MENDIGUREN, J.A. 1977 Inversion of surface wave data in source mechanism studies. J. Geophys. Res., 82: 889-894.
- MITCHELL, B.J., CHENG, C.C. & STAUDER, W. 1977
  A three-dimensional velocity model of the lithosphere beneath the New Madrid seismic zone. Bull. Seismol. Soc. Am., 67: 1061-1074.
- MITCHELL, B.J. & YU, G. 1980 Surface wave dispersion, regionalized velocity models and anisotropy of the Pacific crust and upper mantle. Geophys. J.R. astr. Soc., 63: 497-514.
- NAKANISHI, I. & ANDERSON, D.L. 1982 Worldwide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion. Bull. Seismol. Soc. Am., 72: 1185-1194.

- NAKANISHI, I. & ANDERSON, D.L. 1983 -Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy. 1. Analysis of great circle phase velocities. J. Geophys. Res., 88: 10267-10283.
- NAKANISHI, I. & ANDERSON, D.L. 1984a -Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy. 2. Analysis by the single-station method. Geophys. J.R. astr. Soc., 78: 573-617.
- NAKANISHI, I. & ANDERSON, D.L. 1984b Aspherical heterogeneity of the mantle from phase velocities of mantle waves. Nature, 307: 117-121.
- NAKANISHI, I. & KANAMORI, H. 1982 Effects of lateral heterogeneity and source process time on the linear moment tensor inversion of long-period Rayleigh waves. Bull. Seismol. Soc. Am., 72: 2063-2080.
- NISHIMURA, C.E. & FORSYTH, D.W. 1985 Anomalous Lowe-wave phase velocities in the Pacific: sequential pure-path and spherical harmonic inversion. Geophys. J.R. astr. Soc., 81: 389-407.
- PATTON, H.J. 1978 Source and propagation effects of Rayleigh waves from central Asian earthquakes. PhD Thesis, Mass. Inst. of Tech., Cambridge, 342 pp.
- PATTON. H.J. 1980 Reference point equalization method for determining the source and path effects of surface waves. J. Geophys. Res., 85: 821-848.
- PATTON, H.J. 1984 Regionalization of surface wave phase velocities in the western United States. Earthquake Notes, 55: 23-24.
- PILANT, W.L. 1967 Tectonic features of the Earth's crust and upper mantle. Final Technical Report, AFOSR 67 - 1797, Air Force Off. Sci. Res., Aug.
- RAIKES, S.A. 1980 Regional variations in upper mantle structure beneath southern California. Geophys. J.R. astr. Soc., 63: 187-216.
- ROMANOWICZ, B.A. 1982a Moment tensor inversion of long period Rayleigh waves: a new approach. J. Geophys. Res., 87: 5394-5407.
- ROMANOWICZ, B.A. 1982b Lateral heterogeneity in continents: moment-tensor inversion of long-period surface waves and depth resolution of crustal events; body-wave modelling and phase-velocity calibrations. Phys. Earth Planet. Inter., **30**: 269-271.
- ROSA, J.W.C. 1986 A global study on phase velocity, group velocity and attenuation of Rayleigh waves in the period range 20 to 100 seconds. PhD Thesis, Mass. Inst. of Technol., Cambridge, 859 pp.
- ROSA, J.W.C. & AKI, K. 1991 Global compilation of phase and group velocities of fundamental mode Rayleigh waves in the period range 20 to 100 sec. (This volume).
- SANTO, T.A. 1960a Observation of surface waves by Columbia-type seismograph installed at Tsukuba Station, Japan. Part I: Rayleigh wave dispersions across the oceanic basin. Bull. Earthq. Res. Inst., 38: 219-240.
- SANTO, T.A. 1960b Rayleigh wave dispersions across the oceanic basin around Japan. Part II. Bull. Earthq. Res. Inst., 38: 385-401.
- SANTO, T.A. 1961a Rayleigh wave dispersions across the oceanic basin around Japan. Part III: On the crust of

the south-western Pacific Ocean. Bull. Earthq. Res. Inst., 39: 1-22.

- SANTO, T.A. 1961b Division of the south-western Pacific area into several regions in each of which Rayleigh waves have the same dispersion characters. Bull. Earthq. Res. Inst., 39: 603-630.
- SANTO, T.A. 1963 Division of the Pacific area into seven regions in each of which Rayleigh waves have the same group velocities. Bull. Earthq. Res. Inst., 41: 719-741.
- SANTO, T.A. 1965a Lateral variation of Rayleigh wave dispersion character. Part I: Observacional data. Pure and Applied Geophysics, 62: 49-66.
- SANTO, T.A. 1965b Lateral variation of Rayleigh wave dispersion character. Part II: Eurasia. Pure and Applied Geophysics, 62: 67-80.
- SANTO, T.A. 1966 Lateral variation of Rayleigh wave dispersion character. Part III: Atlantic Ocean, Africa and India Ocean, Pure and Applied Geophysics, 63: 40-59.
- SANTO, T.A. 1967 Lateral variation of Rayleigh wave dispersion character. Part IV: The Gulf of Mexico and Caribbean Sea. Bull. Earthq. Res. Inst., 45: 963-971.
- SANTO, T.A. 1968 Lateral variation of Rayleigh wave dispersion character. Part V: North American Continent and Arctic Ocean. Bull. Earthq. Res. Inst., 46: 431-456.
- SANTO, T.A. & SATO, Y. 1966 World-wide survey of the regional characteristics of group velocity dispersion of Rayleigh waves. Bull. Earthq. Res. Inst., 44: 939-964.
- SATO, Y. & SANTO, T.A. 1969 World-wide distribution of the group velocity of Rayleigh wave as determined by dispersion data. Bull. Earthq. Res. Inst., 47: 31-41.
- SAVAGE, J.C. & WHITE, W.R.H. 1969 A map of Rayleigh-wave dispersion in the Pacific. Canadian J. Earth Sci., 6: 1289-1300.
- SORIAU-THEVENARD, A. 1976 Structure of the crust and the upper mantle in the southwest of France, from surface waves. Ann. Geophys., 32: 63-69.
- STRANG, G. 1980 Linear algebra and its applications. Second edition, Academic Press, New York.
- TANIMOTO, T. 1985 The Backus-Gilbert approach to the three-dimensional structure in the upper mantle. I. Lateral variation of surface wave phase velocity with its error and resolution. Geophys. J.R. astr. Soc., 82: 105-123.
- TANIMOTO, T. & ANDERSON, D.L. 1984 Mapping convection in the mantle. Geophys. Res. Lett., 11: 287-290.

- TANIMOTO, T. & ANDERSON, D.L. 1985 Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100-250 sec. J. Geophys. Res., 90: 1842-1858.
- TARANTOLA, A. & VALETTE, B. 1982 Generalized nonlinear inverse problems solved using the least squares criterion. Rev. Geophys. Space Phy., 20: 219-232.
- TARR, A.C. 1969 Rayleigh-wave dispersion in the North Atlantic Ocean, Caribbean Sea and Gulf of Mexico. J. Geophys. Res., 74: 1591-1607.
- TAYLOR, S.R. 1983 Three-dimensional crust and upper mantle structure at the Nevada Test Side. J. Geophys. Res., 88: 2220-2232.
- WEIDNER, D.J. 1972 Rayleigh waves from mid-ocean ridge earthquakes: source and path effects. PhD Thesis, Mass. Inst. Technol., Cambridge, 256 pp.
- WEIDNER, D.J. & AKI, K. 1973 Focal depth and mechanism of mid-ocean ridge earthquakes. J. Geophys. Res., 78: 1818-1831.
- WOODHOUSE, J.H. & DZIEWONSKI, A.M. 1984 -Mapping the upper mantle: three-dimensional modelling of Earth structure by inversion of seismic waveforms. J. Geophys. Res., 89: 5953-5986.
- YOMOGIDA, K. 1985 Amplitude and phase variations of surface waves in a laterally heterogeneous Earth: ray- and beam-theoretical approach. PhD Thesis, Mass. Inst. Technol., Cambridge, 227 pp.
- YOSHII, T. 1975 Regionality of group velocities of Rayleigh waves in the Pacific and thickening of the plate. Earth Planet. Sci. Lett., 25: 305-312.
- YU, G. & MITCHELL, B.J. 1979 Regionalized shear velocity models of the Pacific upper mantle from observed Love and Rayleigh wave dispersion. Geophys. J.R. astr. Soc., 57: 311-341.
- ZANDT, G. 1978 Study of three-dimensional heterogeneity beneath seismic arrays in central California and Yellowstone, Wyoming. PhD Thesis, Mass. Inst. Technol., Cambridge, 490 pp.

Versão recebida em: 15/05/90 Versão revista e aceita em: 29/11/90 Editor Associado: M.S. Assumpção