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EQUATIONS OF CONSERVATION LAWS IN THE
INTERPLANETARY COLLISIONFREE PLASMA

P. Alexander e 5. N. Duhau

Laboratorio de Aeronomia y Geomagnetismo,
Facultad de Ciencias Eractas y Naturales, Universidad de Buenos Aires

A two fluid model for a collisionfree plasma (as is the case of the solar wind starting
from about 0.1 AU) that includes two new energy equations for the electrons, which
has been recently introduced by one of the authors, is considered to derive an equiva-
lent set of equations, but now expressed in conservation form. These equations do not
only refer as usual to mass, momentum and energy, but also to other combinations
of variables. We show the relation between the different physieal quantities and how
the electrons and protons are coupled through the momentum equation. Finally, we
apply these relations to study the constants of inotion of the expanding solar fluid.

EQUACOES PARA LEIS CONSERVATIVAS NO PLASMA IN-
TERPLANETARIO SEM COLISOES - Considera-se um modelo de dois
fluidos para um plasma rarefeito (sem colisdes, como é o caso para o vento solar
que comega em torno de 0,1 UA), que inclue duas novas equagdes de energia para
os elétrons, recentemente incluidas por um dos autores, e que sio usadas para de-
duzir um conjunto equivalente de equagoes expressas numa forma conservativa. Estas
equagdes além de se referir como de costume & massa, momento, e energia, também o
fazem a outras combinagoes de varidveis, Mostra-se a relagio entre diferentes quan-
tidades fisicas e como elétrons e prétons sio acoplados entre si atraves da equagio
de momento. Finalmente aplicam-se estas relagoes para o estudo das constantes de
movimento para o fluido solar em expansio.

1. INTRODUCTION

The Chew, Goldberger & Low (1956) equations
(CGL) are a one-fluid system for the thermodynamic
variables of the ions, that are coupled to the electrons
only through the electromagnetic variables and they
have been widely used to describe interplanetary hy-
dromagnetic phenomena.

The magnitude of those variables in a colli-
sionless plasma has been re-examined by one of the
present authors (Duhau '1984) and a two-fluid equa-
tion system in the limits in which the Larmor radius
to mean free path ratio ¢ — 0 (MHD approxima-
tion) and the electron-to-ion mass ratio o« — () has
been found from the expansion of the Vlasov equa-
tion. Since the electric charge scales as ="' it should
be noticed that both limits do not imply that the
electron mass — 0, which would lead to a one-fluid
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system (see Grad, 1967; Duhau, 1984). It has been
shown that the first order electric field contributes to
the equation of motion of ions (one of the assump-
tions underlying the CGL equations is that it can
be assumed to be null) and electrons with a zero or-
der term, providing a coupling mechanism between
the thermodynamic variables of both species. To de-
terinine the electronic pressure it is necessary now
to close the system of equations for these species.
The energy equations of the electrons must be in-
cluded in the equation set and to close this system a
simple mathematical representation of the measured
quasi-stationary velocity distribution function of this
species (Feldman et al., 1975) is used. Finally, it is
shown that the heat is mainly transported by the
electrons and it is considered, as suggested by the
satellite data, that the electrons’ thermal anisotropy
is small, so that to a first approximation the heat
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transported by the ions and the electrons’ anisotropy
may be neglected.

In the present paper the equations of the model
are combined to derive an equivalent set of equations,
but now expressed in conservation form. These new
equations are applied to find the constants of motion

of the solar coronal expansion.

2. THE TWO-FLUID MODEL EQUATION
SET
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where
n: electron number density,
N: proton number density,
z: ion atomic number (1 in the present case),
M: ion mass,
u: bulk velocity,
B: magnetic field,
Pi: ion pressure tensor,
I‘-;,.: electron pressure Lensor,

f: electron heat flux,

e=B/B

q: %f

Pi = Pjée+ Py (l-ee)
R.:= pi

| = identy Tensor

The first equation is obtained from the quasi neu-
trality condition and the second shows the mass con-
servation. The equation of motion is (3), whereas (4)
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and (5) are related to the ions’ energy (they are the
same as the CGL energy equations). The new elec-
trons' energy equations are (6) and (7), whereas (8)
and (9) are Maxwell's equations, the last one for a
fluid in the MIID approximation. Note that (3) cou-
ples the thermodynamic variables of electrons and
ions, whereas (7) relates the heat flux to the mag-
netic field, which couples the electrons’ and ions’ en-
ergy equations (for further details on the model see
appendix).

3. EQUIVALENT SET OF EQUATIONS OF
CONSERVATION LAWS

The previous set of equations can be re-writien
in conservation form as

LAY (Nu) =0 (10)

it
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Note that only (15) has a source term. If a pro-
cess were conservative, then f = 0 and all equations
would be equal to zero.

The conservation form of a set of equations
is very useful in various topics, as discontinuities
(Lynn, 1967) for example. Our aim is to apply it
in the study of the coronal expansion (in the colli-
sionfree region). This allows us to obtain the conser-
vation of various physical quantities.

4, CORONAL EXFANSION IN THE
COLLISIONFREE ZONE

The coronal expansion is usually studied with the
assumptions of spherical symmetry and stationary
state (in the equatorial plane). Applying these con-
ditions to the conservation set we obtain:

Nu,.r* = (18)
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r(ur By — u,B,) = C (26)

r: heliocentric distance,
p: azimuthal angle,

(7: gravitational constant,
My: mass of the sun.

Notice that the gravitational force has been in-
cluded now. ) through 7 are constants (nonde-
pendent on the heliocentric distance), whereas only
two equations do not lead to conservated quantities:
the radial momentum equation and the second new
electron equation.

From the combination of these equations it follows
the conservation of:
mass rate:

M= MNu? (27)

specific angular momentum:

L=
riu, — B'BW = 4rN (}J“ e PJ-)
¥ 4xMNu, B? + B3 N
(28)
magnetic moment:
MP
= —e 2
"= N(BZ+ B2)I/? w2d)
gecond adiabatic invariant:
B + B2
A= MP —-- (30)
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total energy per proton mass:
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magnetic flux :
F =1l B, (32)

C7 13 not a new independent conservated quantity,
because it is related to Cy as (see e.g. Weber and
Davis, 1067):

Cr = —QCs (33)
{2: angular velocity of the sun.

5. CONCLUSIONS

The present approach leads us to the following

considerations:

1) A set of 9 coupled dilferential equations may be
reduced to two coupled differential and seven alge-
braic equations, due to the fact that they have been
written in conservation form.

2) Every algebraic equation is related to a con-
stant of motion, so the value of that physical quan-
tity may be measured at the most convenient dis-
tance. Helios particle and magnetic field observa-
tions between 0.3 and 1 AU were used by Marsch
and Richter (1984) to determine plasma parameters
that characterize the solar wind and which yield ob-
servational constraints on theoretical fluid models for
the coronal expansion. The mass rate, specific angu-
lar momentum, total energy per proton mass of the
solar wind and the magnetic flux, expected to be con-
served in a time-stationary flow with local spherical
symmetry in the ecliptic plane, are actually found to
be invariant within measurement uncertainties.
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6. APPENDIX

The following equation of motion for the elec-
trons, which coincides with the Ohm’s laws for this
plasma (see e.g. Grad 1967), has been derived by
Duhau (1984):

JxDB
V-P¢=ne(E+“tﬂ)+ ’: (34)

where e is the electron charge, E the electric field in
the reference systern moving with the bulk velocity
u, ¢ the speed of light and J the electric current,
From this equation it may be found that:

LY =

. cne .
B -P,xe—TExe+racm_(35)

Regarding Maxwell s equations, (8) and (9) are
Gauss’ law for the magnetic field and the Faraday-
Henry law respectively. The Ampere-Maxwell law
in the MHD approximation, where the displacement
current is negligible, has been used to derive the right
hand side of equation (3). To find J| we must com-
bine the remaining of Maxwell’s equations, Gauss’
law for the electric field, with the continuity equation
for p and J, where p is the mass density. Taking into
account that the displacement current is negligible it
follows that,

7l = (36)
Therefore

aJ

7"11 =-VyJy (37)

where 3/8 means to take the spatial derivative along
B.

Equations (A29,30) give j as a function of E and
plasma parameters. There is not a linear relationship
between both.

Notice also that (7) replaces the classical heat con-
duction law f = —=KVT, K ~ T%/? which is used
under the assumption that the plasma is collision
dominated. This condition certainly breaks down in
the solar wind from some helioeentric distance on.
As required by the observations (see e.g. Feldman
et al., 1978), the new equation does not imply any a
priori relationship between the direction of the heat
flux and the temperature gradient.
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