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Sine and cosine transforms are very important in electrical and elec-
tromagnetic methods.They are used, for instance, for computing
two-dimensional Green functions in layered-earth models and for
transforming electromagnetic responses from frequency to time do-
mains. Currently, the best way to compute sine and cosine trans-
forms in electrical geophysics is to employ the digital linear filter
algorithm. Until recently, these filters had an excessive number of
coefficients, which was a drawback for many applications. Recently,
an optimized digital filter for sine transform with only 20 coeffi-
cients has appeared in the literature. In many applications the co-
sine transform is as important as the sine transform, so, we present
here an optimized digital filter for the cosine transform, which has
only 19 coefficients. Like the sine transform filter, it was generated
by the Wiener-Hopf minimization process via Guptasarma trial and
error strategy. Its performance has been exhaustively tested. It al-
ways yields good results, as the examples illustrated in this paper.

UM FILTRO DIGITAL OTIMIZADO PARRA A TRANSFORMADA CO-
SENO As transformadas seno e co-seno sio muilo umportantes nos
métodos elélricos e eletromagnéticos. Elas sio usadas, por ezemplo,
para calcular fungoes de Green bidimensionais de meios estralifi-
cados e para transformar respostas eletromagnéticas do dominio da
[reqiiéncia para o dominio do tempo. Atualmente, a melhor maneira
de compular transformadas seno e co-seno, nos métodos elétricos e
eletromagnéticos, € através do algoritmo dos filtros lineares digitais.
Até recentemente, esses fillros continham um nimero excessivo de
coeficientes, o que conslituia wma grande desvantagem em muilas
aplicagdes. Recentemente, um fillro olimizado, para transformada
seno, com apenas 20 coeficientes, foi publicado na literatura. Con-
siderando que em muitas aplicagoes a transformada co-seno € tao
importante quanto a lransformada seno, apresentamos, neste tra-
balho, wm filtro linear otimizado com apenas 19 coeficientes para
essa transformada. A eremplo do filtro para a transformada seno,
este também foi obtido através do método dos minimos quadraticos
de Wiener-Hopf junto com o esquema de olimizagio de Guptasarma.
Ele foi exaustivamente testado, apresentando sempre bons resulta-
dos, como mostram os exemplos ilustrados neste artigo.
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INTRODUCTION

Fourier and Hankel transforms are widely used
in electrical and electromagnetic methods. Their
numerical computations were extremely troublesome
before the introduction of the digital linear filter algo-
rithm by Ghosh in 1971, Since then, there has been a
continuous progress toward better algorithms (Koe-
foed et al., 1972; Das and Ghosh 1974; Verma, 1977;
Koefoed and Dirks, 1979; Johansen and Sorensen,
1979; Anderson, 1979; Guptasarma, 1982; Nissen and
Enmark, 1986, O'Neill, 1975; Verma and Koefoed,
1973).

The digital linear filter algorithm is based on the
transformation of the Fourier (or Mankel) transform
into a convolution integral (Kunetz, 1966). ‘The fun-
damental contribution by Ghosh (1971) was to devise
a simple scheme, based on sampling theory, for com-
puting numerically such convolution through digital
linear filter. Meanwhile, in 1979, Koefoed and Dirks
proposed a new scheme, based on the Wiener-Ilopf
least-squared technique, for designing linear filter for
the Hankel transform in a much easier and more ef-
ficient manner than that used by Ghosh. In 1982,
Guptasarma implemented a strategy to improve the
method of Koefoed and Dirks and gave some short,

optimized filter for Hankel transform.

Using Guptasarma schenie, Nissen and Enmark
(1986) constructed an optimized short filter for the
sine transform with only 20 coeflicients. Moreover,

they suggested that the cosine transform

Flaj = fomf(;ci.)m(k,m)dkr, (1)

be rewritten in the form

I~'(.y_-):?1‘ Sk sin(andks, ()

and that the sine transform digital filter be subse-
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quently applied. For this reason, they published only

the filter for the sine transform.

Unfortunately, in the most important problems
in the electrical and electromagnetic methods, the
Kernel function f(k:) in (1) is known only at very
few discrete points. Therefore it is not practical to
use (2), due to the difficulties in handling numerical
derivatives of a discrete function. For this reason, it
is important to have, also, digital linear filters for the

cosine transform.

In 1979, Anderson reported two digital linear
filters for the sine and cosine transforms computed
by the Ghosh methods. Despite their high preci-
sion, they have too many coeflicientes, which are an
enormous hindrance for cosine transforming of Kernel
functions generated by costly numerical algorithms
like finite elements and integral equation. This hap-
pens, for instance, when transforming EM data of 2D

and 3D models from frequency to time domains.

The aim of this paper is to present an optimized
digital linear filter for the cosine transform with a
small number of coefficients. It was calculated by
the Wiener-Hopf least-squared technique with Gup-
tasarma strategy like Nissen and Enmark sine trans-

form filter.

THE DIGITAL FILTER. FOR THE COSINE
TRANSFORM

With a simple transformation of variables, the

integral (1) can be replaced by

thz)= Amf(k,/r) cos(ky)dk;. (3)

Now, substituting z for ¢ and k, for e* we ob-

tain the convolution integral
= <]
zF(z) =j J(e™P=2))e? cos(e?)ds, (4)
-0

where f(e=("=*)) and zF(z) are, respectively, the
input and output functions and e cos(e*) the filter
function. Following Guptasarma (1982), our objec-
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tive is to approximate the integral (4) by the discrete

convolution,

N
zF(z) = ) J(e~(re= (=W, +¢,  (5)

n=1l

where ¢ is the error due to the discrete approxima-
tion. To obtain the filter coeflicients W,, we used the
Wiener-Hopf least-squared method described by Koe-
foed and Dirks (1979), improved by the trial and error
scheme proposed by Guptasarma (1982). The details
are not given here because they are well-explained in

the original papers.

To construct the filter we have used the following

functions

f(k;c) - kf.(:'_"kr (6)

and

2a(a? — 3z?)

I[i‘(z) = ((;2 T m2):’ N (7)

and for monitoring the error in the Guptasarma

scheme, we applied the expression

oo B -

] e~ k2 cos(kyz)dk, = ﬁrf“"’, (8)
0 2a

resulting in a; = 6.0 for the first abscissa and 7' =

0.48 for the abscissa increment. With these values for

a; and T in (5), the Wiener-Hopf least-squared cri-

terion generates the filter coefficients shown in Table
1.

APPLICATION OF THE FILTER

To illustrate the performance of the filter given
in Table 1 we selected six typical examples of cosine

transforms frequently found in electrical geophysics.

Electrical field in frequency domain on a half-

space
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Table 1. Abscissas and coefficients of the filter.

[ No. [ Abscissas [ Coefficients W, |

1 =6.00 0.6213729F - 02
2 —5.52 | =0.7106100E — 02
3 -=5.04 0.1392100F = 01
4 —4.56 | —0.5513420F — 02
5 —4.08 0.1738963F — 01
[ —=3.60 0.5178800F — 02
7 -3.12 0.2820408F — 01
8 —2.64 0.2730540F - 01
9 =2.16 0.6264861F — 01
10 —1.68 0.7816871F — 01
11 -1.20 0.1516985F + 00
12 =0.72 0.1862742F 4 00
13 —0.24 0.2976519F 4 00
14 0.24 0.1323330E 4 00
15 0.72 | —0.3889732F 4 00
16 1.20 | —0.1640198E + 01
17 1.68 0.1373593F + 01
18 2.16 | —=0.3914654 £ + 00
19 2.64 0.5267562F — 01

Our first example deals with the electrical field
of an infinite line-source of current (I=2A) oriented
in the y-direction on the surface of a conductive hall-
space. Using the quasi-static approximation, the
field, in the frequency domain, is expressed by (Ward
& Hohmann, 1988)

—idw gl

oo
B(2,0,0) = /D kxiucos(k,x)dk,' )
where u = (k2 + iwppo)'/? is the propagation con-
stant in the half-space, po = 471077 H/m the vac-
uum permeability and w = 2af the current angular
frequency. In this particular case, the integral (9) has
the equivalent closed form expression

—iw gl

Ey(i!.',o,\‘.d) = W

(1 —ikz kK, (ikz)],  (10)
where K is the modified Bessel function of first or-
der and second kind and k? = —iwpgo is the wave-
number of the half-space (Ward & Hohmann, 1988).
Fig. 1 shows the electrical field response versus fre-

quency, at 100 m from the line-source on a 10 Qm
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half-space, computed using (5) with the 19 coefli-
cient filter, compared to the exact solution (10). Ta-
ble 2 shows the corresponding numerical values. The

agreement is very good.

Electrical field in time domain on a half-space

Using the previous model, let us calculate the
transient response due to a negative step current.
This can be accomplished by performing the inverse
Fourier transform of (9). Exploring the symmetry
properties of the Fourier transform (Papoulis, 1962)

we can write

A= [fom k—m*;_—ucas(k,a:)dk,

ey(2,0,t) = 240 [* SAcos(wt)dw,  (11)

Note that we have now two independent cosine
transforms. Therefore, we need to use the digital filter
twice. This process can be carried out efficiently by
exploring the convolution properties of (5). As in the
previous case, the expression (11) has an equivalent

closed form given by

I :lr'.'l
ey(z,0,t) = —l= e ), (12)

where 0 = (opo/4t)'/2. 1t is important to empha-
size that, in general, closed form expressions are not
always available. Usually the field is expressed in in-
tegral form. Thus, having efficient numerical integra-
tion algorithms is always necessary. Fig. 2 compares
the results using the 19 filter convolution and the ex-

act solution. The agreement is also perfect.

Electrical field in time domain within a half-
space

Computation of electrical fields within a layered-
earth host is a necessary step toward the finite el-
ement method calculation of electrical fields due to
two-dimensional inhomogeneities. Thus, our next ex-

ample is to compute the transient electrical fields
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within a half-space due to a line of current on the
surface. The negative step response at a point (z, z)

within the earth is given by

A= [‘]:0 ff%cos(k,w)dk,

ey(2,0,t) = 24 [® QA cos(wt)dw,  (13)

which is equivalent to (Oristaglio, 1982)

A= 20222 -0°r*
2 .. 3l
= > [erfc(ﬂz) - e‘""n]
r
G . ‘_2?_{8_3]"1

N

i = [1 <0 (1 + #) .r(a:,-)]

o(,00) = —{A+B-C(D), (1)

where 0 = opo/4t. The functions erfe(z) and F(z)
are, respectively, the complementary error function
and the Dalson function. Fig. 3 shows the transient
electrical field at the depth of 120 m and 85 m from
the line within a 100 2m half-space, computed using
(13) with the 19 filter convolution and the field cal-
culated from the closed form (14). The agreement is

excellent.

Two-dimensional Green function of a two-
layered earth

In the first example, the line and the observation
point were both on the surface. In the second, the ob-
servation point was located within the earth, whereas
the line was maintained on the surface. Now, let us
locate both of them below the surface as shown in
Fig. 4. This is known as two-dimensional Green fune-
tion problem and it is commonly used in 2-D integral

equation modelling.

The Green function G(z,y;z',/) at the second
layer of a two-layered earth, with the quasi-static ap-

proximation, is expressed by
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Figure 1. Exact and numerical solutions of the electrical field, in the frequency domain, at 100 m from a line
source on a 10 € m half-space.

===

Solugoes ezala e aprozimada do campo elélrico, no dominio da freqiéncia, a 100 m de uma linha de corrente (1
A) na superficie de um semi-espaco de 10 02 m.
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Figure 2. Exact and numerical solutions of the transient electrical field at 100 m from a line source on a 10
m half-space,

Solugées exata e aprozimada do campo elélrico transiente a 100 m de uma linha de corrente (1 A) na superficie
de um semi-espaco de 10 ) m.
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Figure 3. Exact and numerical solutions of the transient electrical field at 120 m from a line source and at the
depth of 85 m in a 10 ¢ m half-space.

Solugées ezata e aprorimada do campo elétrico transiente a 120 m de uma linha de corrente (1 A) e a 85
m de profundidade num semi-espago de 10 Q m.
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Table 2. Nunierical values of the electrical field Ey(z,0,w)

Freq. (1lz)

Numerical (V/m)

Exact (V/m)

Real lmaginary Real Imaginary
0.0100 | —0.8583F — 08 | —0.6585FE — 07 —0.9869E — 08 | —0.6709F — 07
0.0178 | —0.1587F - 07 | =0.1111FE — 06 =0.1755E — 08 | —0.1129FE — 06
0.0316 | =0.2881L" - 07 | =0.1869L — 06 =0.3120F — 07 | —0.1893F - 06
0.0562 | —0.5233L — 07 | —0.3133F — 06 —0.5548FE = 07 | —0.3163FL — 06
0.1000 [ —0.9462F — 07 | —0.5222F = 06 —=0.9863F — 07 | —0.5263F — 06
0.1778 | —0.1698FE — 06 | —0.8660L = 06 =0.1753E — 06 | —0.8716E = 06
0.3162 | —=0.3041F£ - 06 | —0.1428F — 05 —0.3116E — 06 | —=0.1436FE — 05
0.5623 | —0.5438L — 06 | —0.2340F = 05 —0.5534FL — 06 | —0.2350F = 05
1.0000 | —0.9692F — 06 | —0.3804F — 05 —0.9823F£ — 06 | —0.3817FE — 05
L7783 | —0.1724FE =05 | —0.6129F = 05 =0.1741L = 05 | —=0.6146F — 05
3.1623 | —0.3059F — 05 | =0.9766/ — 05 —0.3081F <05 | —0,9789K — 05
5.6234 | —=0.5404F — 05 | =0.1536FL — 04 —0.5435F = 05 | —0.1539F — 04
10.0000 | —0.9500F - 05 | —0.2375F = 04 =0.9542L — 05 | =0.2379/ — 04
17.7828 | —0.1658E — 04 | —0.3595F — 04 =0 1663E =04 | —0.3600F = 04
31.6228 [ —0.2857FE — 04 | —0.5291F = 04 —0.2865K — 04 | —0.5299E — 04
56.2341 | —0.4839F — 04 | —=0.7504 £ — 04 =0.4850L - 04 | —0.7513F — 04
100.0000 | —0.7986E <04 | —0.1011F =03 =0.7998F — 04 | =0.1012F — 03
177.8279 | —0.12685 — 03 | —0.1266L — 03 =0.1269FL — 03 | =0.1268F — 03
316.2278 | —0.1901F - 03 | —0.1425F — 03 =0.1904 £ = 03 | —0.1428F = 03
562.3413 | —0.2635E =03 | —0.1364F - 03 =0.2638F — 03 | —0.1366F — 03
1000.0000 | —0.3280F <03 | —0.9960F — 04 —0.3282F — 03 | —=0.9998F — 04

ol a line-source response with a planar Gaussian dis-
; ; R [T A
tribution of current, [(zy) = e /2" (Peltier and

Glz,y; 2, y') = 5L [ [ewalz==1 1a~.-=-"u“+*‘1]
e = 5 57 | bEL L Hermance, 1971; Mota and Rijo, 1991). After per-

SR T — ;
az coslks(z = 2")]dk, (15) forming that convolution, the components of the field
where i
e (uz =g )(ur 4 uy) + (w2 + ug)(ug — uy) 20d Ey(2,0,w) = “_"‘;’%@ ﬁ:"
(uz + ) (ur 4+ ug) 4 (ua = )(ug = uy i T
(16) Tl “] cos(kp2)dk, (17)
is the reflection coefficients and u; = (k, — iwpge)'/?
is the propagation constant in the layers j=1,2 (Rijo, A
1990). Fig. 5 shows the real and imaginary parts
of the 2-D Green function computed with our short Ha(z,0 5 en
I.(z, :
filter and Anderson’s filter (1975). : ) f% Jo
kph ; i
[utr:e"kia’/ﬂ] cos(ky ) dky, (18)

Influence of the Gaussian clectrojet on the MT
response where hg is the height of the Gaussian electrojet and
The electrical and magnetic ficlds on the sur- s its standard deviation. We used these expressions for
face of an homogencous earth subjected to a Gaus- computing the surface impedance Z = —E, /H, and

sian electrojet are easily simulated by the convolution subsequently the magnetotelluric apparent resistivity.
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Figure 4. Geometry of the model for the 2-D Green function calculation.

Geomelria do modelo para o edleulo da fungdo de Green bidimensional.
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Figure 5. 2-D Green funciion calculated with the 19 coeflicient filter and with Anderson’s filter (1975).

Fungio de Green 2-1) do modelo da Figura 4 computada com os fillros de 19 coeficientes e de Anderson (1975).
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pa=—|Z . (19)

Wi
The curves of apparent resistivily and phase of
the impedance due to an 10 Qm homogeneous carth
energized by a Gaussian electrojet, with standard de-
viation 5 = 240 km located at hg = 110 km above the
gurface, are illustrated in Fig, 6. These curves were
computed with our short filter and with Anderson’s

filter.

Transient response of a complex model

The examples discussed so far do not show the
actual advantage of employing a short filter for per-
forming the cosine transform. The real benefit ap-
pears when we need to model a complex earth by
numerical techniques, such as finite elements and in-
tegral equation. Most of the CPU time used by the
integral equation algorithm is due to the enormous
gquantity of Green function computations. There-
fore, it is crucial to have an eflicient algorithm for
cosine transform to implement cost-effective 2-1 in-
tegral equation modelling. Another important situ-
ation, commonly found in practice is the caleulation
of transient responses ol complex earth models. It
is well-known (Papoulis, 1962) that the time domain

response is given by the cosine transform,

ol el = 2 /' Eﬂfﬂiffgﬁincus@n)du,(ﬁn)

T Jo

where the electrical field £, in the frequeney domain
is computed by finite element or integral equation
techniques, which demand a large amount of com-
puter time. The transient response shown in Fig. 7
(Brochado, 1990) were computed using 19 frequency
domain finite element solutions against 97 solutions
with Anderson’s filter.

CONCLUSION
Discrete sine and cosine transforms are funda-

mental tools in electrical geophysics. Nissen and En-

mark(1986) used Guptasarma strategy to construct
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an optimized digital filter for the sine transform which
has proved very useful. Because a similar filter for the
cosine transform was not available, we decided to de-
sign one having the same characteristics of the sine
transform. To accomplish this, we also used Gup-
tasarma scheme, which resulted in an optimized lin-
ear digital filter with 19 coeflicients. As the examples
given here show, the filter performs in a very satisfac-
tory way. Short linear digital filters are very impor-
tant in the pre and post-processing phases of numer-
ical modelling, as for instance, 2-D Green function
computations and transformation of EM responses
from frequency to time domains. However, the most
important application of a short filter is for synthe-
sizing two-dimensional spectral solutions computed
numerically by the finite element or integral equation
methods to restore the final 2D-3D (two-dimensional
earth with three dimensional source) solution (Rijo,
1990).
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