CURVA DE AMPLITUDE-DISTÂNCIA PARA ONDAS RAYLEIGH E CORREÇÃO DE ESTAÇÃO PARA MAGNITUDE M_S NA AMÉRICA DO SUL

J. L. Nelson e M. S. de Assumpção

Instituto Astronômico e Geofísico - USP C.P. 9638, 01065-000, São Paulo, SP, Brasil

Amplitudes de componentes verticais de ondas Rayleigh de sismos rasos registrados por estações na faixa de distância epicentral de 0° - 130° são analisadas para a determinação dos efeitos de estação, de fonte e de distância. 41 sismos foram utilizados, sendo a maioria com epicentros na América do Sul. As correções de estações são estimadas com limites de confiança de 95%. Uma equação para a determinação dos valores da função de calibração é estabelecida. A partir dos valores da função de calibração, uma curva de amplitude-distância é determinada para a faixa de distância epicentral de 20°-130° e períodos entre 17s e 23s. É estabelecida, também, uma equação para a determinação da magnitude M_S de sismos rasos (h < 60km), registrados na faixa de distância 20°-130° e ondas Rayleigh de período na faixa entre 17s e 23s, válida para a América do Sul.

LONG PERIOD RAYLEIGH WAVE AMPLITUDE-DISTANCE CURVE AND STATION CORRECTION FOR Ms MAGNITUDE IN SOUTH AMERICA Vertical long period Rayleigh waves amplitudes from shallow earthquakes recorded by stations in the epicentral distance range 0° - 130° are analyzed to determine the station, source and distance effects. 41 earthquakes were used, the majority of them having epicenters in South America. Station corrections are estimated with 95% confidence limits. One equation to determine the calibration function values is derived. With the calculated calibration function values, an amplitude-distance curve is determined for the distance range 0° -130° and periods between 17s and 23s. A new Ms magnitude equation is also derived for shallow earthquakes (h < 60 km), recorded in the distance range 20°-130° and Rayleigh wave periods between 17s and 23s. This new equation is valid for South America.

INTRODUÇÃO

Para a determinação da magnitude de um sismo deve-se conhecer com grande acuidade a curva de resposta e características do sistema sismográfico da estação receptora; conhecer e corrigir a influência de fatores relativos: a) à estrutura geológica do local da estação, b) ao percurso das ondas sísmicas e c) à própria fonte.

O método introduzido por Carpenter et al.

(1967) permite a determinação da curva de amplitude-distância para ondas de período curto e para ondas de período longo. Nesse método o log(A/T) é considerado como soma de três termos ou componentes (referidos por Carpenter et al.(1967) como "efeitos") que são relativos à fonte sísmica, à estação registradora e à distância epicentral. Para um conjunto de observações, esses efeitos são facilmente determinados com a aplicação das técnicas dos mínimos quadrados.

A partir dos efeitos de distância epicentral podese determinar a função de calibração (fator B), e os efeitos de estação permitem determinar as correções para magnitude das estações. Assim, para as ondas Rayleigh, utilizando-se as correções de magnitude para as estações e os valores do fator B, determinados através da função de calibração estabelecida, pode-se obter determinações mais adequadas das magnitudes M_S e estabelecer a curva de amplitude-distância.

DADOS UTILIZADOS

Para este trabalho foram utilizados os dados de amplitude e período de leituras das ondas Rayleigh com períodos entre 17s e 23s, feitas diretamente de sismogramas das componentes verticais de estações brasileiras e internacionais. Esses dados são de sismos ocorridos principalmente na região da América do Sul (Tabela 1). Foram lidos 545 sismogramas de 69 estações de período longo e selecionados para utilização os dados de estações que registraram pelo menos dois dos sismos estudados e com razão sinal ruído não inferior a 2.

As localizações dos epicentros dos sismos estudados são mostradas no mapa da Fig. 1, e no histograma da Fig. 2 estão indicados os números de registros sismográficos de cada sismo estudado. A distribuição da freqüências absolutas dos registros dos sismos, por faixas de 50 da distância epicentral, é mostrada no histograma da Fig. 3. E as freqüências absolutas de períodos das ondas Rayleigh, registradas, por faixa de período de 0,5s, são mostradas no histograma da Fig. 4.

Tabela 1. Dados dos sismos utilizados no presente trabalho. Data of the selected events.

Número do sismo	data	tempo origem	Lat.	Long.	Prof.	Local
	(d/m/a)	(h min s)	(0)	(0)	(km)	
1	14/12/63	00 05 42	2,305	61,01W	45,0	Manaus, AM
2	14/12/64	11 21 46	18,065	56,69W	5,0	M. Grosso do Sul
3	27/08/68	05 17 36	8,90S	72,89W	26,0	Acre
4	24/10/72	15 36 36	21,71S	40,53W	15,0	Campos, RJ
5	06/03/80	09 46 18	6,17S	71,16W	18,0	Amazonas/Acre
6	12/11/80	21 23 05	8,17S	50,24W	33,0	Redenção, PA
7	20/11/80	03 29 42	4,30S	38,40W	5,0	Pacajus, CE
8	08/04/82	05 58 52	24,80S	58,10W	12,0	Paraguai
9	05/08/83	06 21 42	3,595	62,17W	23,0	Codajás, AM
10	11/12/78	02 08 01	16,50N	100,00W	42,0	P. Costa Guerrero, Mex.
11	26/01/78	10 04 32	17,40N	100,90W	41,0W	Guerrero, Mex.
12	13/10/84	17 18 13	15,00N	95,30W	31,0	P. Costa Oxaca, Mex.
13	23/02/85	$14 \ 45 \ 35$	6,97S	30,93E	10,0	Lago Tanganica, Afr.
14	31/01/66	$14 \ 01 \ 24$	24,90S	64,40W	35,0	Salta, Arg.
15	22/02/76	08 09 22	18,40S	65,20W	41,0	Bolívia
16	09/05/81	09 50 40	26,60S	64,90W	50,0	Tucuman, Arg.
17	19/03/85	10 28 36	18,63S	63,66W	33,0	Bolívia
18	22/03/85	14 02 47	18,60S	63,61W	33,0	Bolívia
19	12/04/85	14 34 55	23,94S	60,55W	25,0	Paraguai
20	11/10/80	16 24 40	31,58S	67,47W	21,0	San Juan, Arg.
21	09/05/86	16 23 51	17,11S	65,67W	30,0	Bolívia
22	20/02/86	09 16 02	21,15S	70,11W	33,0	P. Costa N. Chile
23	29/01/86	13 34 09	6,89N	76,86W	10,0	N. Colômbia
24	26/01/86	07 48 22	27,12S	70,87W	30,0	P. Costa N. Chile
25	17/01/86	04 15 00	10,695	78,38W	50,2	P. Costa Peru
26	26/09/85	08 33 27	33,64S	71,64W	47,2	P. Costa C. Chile
27	22/09/85	18 23 12	12,49N	44,33W	10,0	Cord. N. Atlântica
28	12/08/85	00 04 50	38,42S	73,49W	33,0	P. Costa C. Chile
29	04/08/85	04 54 01	44,895	75,45W	22,6	F. Costa S. Chile
30	07/07/85	11 25 12	32,88S	72,00W	31,7	F. Costa C. Chile
31	14/06/85	13 14 14	40,74S	74,92W	33,0	F. Costa S. Chile
32	10/06/86	03 23 31	3,01N	78,64W	20,4	Sul do Panamá
33	03/06/85	17 56 50	28,05S	71,07W	33,0	P. Costa N. Chile
34	02/06/85	16 26 58	37,80S	73,59W	33,0	P. Costa C. Chile
35	19/05/85	18 09 15	30,24S	71,28W	38,7	P. Costa C. Chile
36	28/04/85	08 30 32	39,70S	75,61W	33,0	F. Costa C. Chile
37	20/04/85	18 23 48	8,98N	77,53W	40,4	P. Costa N. Colômbia
38	09/04/85	01 56 58	34,17S	71,54W	33,0	P. Costa C. Chile
39	03/04/85	13 06 19	32.62S	71,61W	33,0	P. Costa C. Chile
	00/01/01	A 10 10 10 10	in the second second			
40	10/01/85	17 47 56	10.83N	43,43W	10,0	Cord. N. Atlântica

23

Figura 1. Localizações dos epicentros dos sismos estudados. Os números dos sismos seguem a tabela 1. Locations of epicenters of the studied events. The numbers of the events follow table 1.

Figura 2. Número de registros de período longo por sismo. Number of long period records for each event.

Figura 3. Número de registros de período longo, por faixa de 5° de distância epicentral, dos sismos estudados. Number of long period records in each 5° epicentral distance interval for the studied events.

Figura 4. Número de registros de ondas Rayleigh dos sismos estudados, por faixa de período de 0,5s. Number of Rayleigh wave records in 0.5s period intervals for the studied events.

O MÉTODO DE ANÁLISE

Para o cálculo da magnitude M $(=M_s)$ de um sismo, utilizando-se de ondas de superfície Rayleigh, considere-se a equação:

$$M = \log(A/T) + B(\Delta) + S, \tag{1}$$

onde:

A - é a amplitude máxima no trem de ondas Rayleigh (em μ m);

T - é o período, em s, correspondente à A;

 $B(\Delta)$ - é a correção do decaimento da amplitude com a distância epicentral;

S - é a correção da estação.

A eq.(1) pode ser escrita:

$$log(A/T) = M - B(\Delta) - S.$$
 (2)

Da eq.(2) pode-se inferir que o $\log(\Lambda/T)$ é a soma de três fatores que são relativos à fonte sísmica, à estação registradora e à distância epicentral. Assim, a eq.(2) pode ser escrita:

$$log(A/T) = e + s + d,$$
(3)

onde:

e - é o efeito de estação registradora,

s - é o efeito de fonte sísmica,

d - é o efeito de distância epicentral.

Para vários sismos rasos, registrados por diversas estações sismográficas, localizadas a diferentes distâncias epicentrais, a eq.(3) pode ser escrita:

$$a(\Delta)_{ij} = e_i + s_j + d(\Delta)_{ij} + E_{ij}, \qquad (4)$$

onde:

 $a(\Delta)_{ij}$ - é o log(A/T) na estação i, para o sismo j, na distância epicentral Δ_{ij} ;

 E_{ij} - é o erro inerente.

O efeito de distância epicentral, $d(\Delta)_{ij}$, é uma função contínua da distância epicentral e pode ser escrita como:

$$d(\Delta)_{ij} = r(\Delta)_{ij} + c, \tag{5}$$

onde:

r(Δ) *ij* - é o efeito de distância epicentral Δ *ij*, c - é uma constante de ajustamento.

A eq.(4) fica, então:

$$a(\Delta)_{ij} = e_i + s_j + r(\Delta)_{ij} + c + E_{ij}.$$
 (6)

Para o caso das ondas Rayleigh deve-se considerar a correção do decaimento em função da distância epicentral a partir das equações estabelecidas na literatura (Ewing et al., 1957; Burton, 1974; Thomas et al., 1978; Douglas et al., 1981). Não há razão teórica, conforme mostra Nuttli (1973), para que o decaimento da amplitude em função de log obedeça a uma relação linear; isto é, a relação entre log(A/T) e log Δ não é linear. A curva de atenuação pode aproximar-se a uma linha reta numa faixa limitada de distância epicentral. A escolha da faixa limitada para se fazer essa aproximação a uma reta é arbitrária, porém depende das distâncias em que a onda é registrada.

A curva teórica para o decaimento, $\delta(\Delta)$, das ondas superficiais (Ewing et al., 1957) é dada por:

$$\delta(\Delta) = K \Delta^{-\alpha} (sen\Delta)^{-1/2} e^{-\beta\Delta}, \qquad (7)$$

onde:

K - é um fator que independe da distância epicentral Δ ,

 $\Delta^{-\,\alpha}$ - é o fator do decaimento da amplitude pela dispersão,

 α - é o fator para a dispersão, cujo valor é 1/2 para períodos afastados do ponto de inflexão da curva da velocidade de grupo e 1/3 para fase Airy, $(\operatorname{sen}\Delta)^{-1/2}$ - é o fator correspondente à atenuação em virtude do espalhamento geométrico,

 $\mathrm{e}^{\beta\,\Delta}$ - é a atenuação devida à absorção anelástica,

 β - é o coeficiente de atenuação anelástica.

Tomando-se o logaritmo do decaimento, da eq.(7), obtém-se:

$$log \quad \delta(\Delta) = log K - \alpha log \Delta - 1/2 log(sen \Delta) - \Delta \beta log e,$$
(8)

mas, $r(\Delta) = \log \delta(\Delta)$; portanto,

$$r(\Delta) = -\alpha \log \Delta - 1/2 \log(sen\Delta) - 0,4343\beta\Delta + c_1,$$
(9)

sendo c_1 a constante log K.

A média dos valores de $r(\Delta)$, dados pela eq.(9), deve ser nula, o que implica ter:

$$< \alpha log \Delta + 1/2 log(sen \Delta) + 0.4343 \beta \Delta >= c_1.$$
(10)

Substituindo-se a eq.(9) na eq.(6), tem-se:

$$a_{ij}(\Delta) + \alpha \log \Delta_{ij} + 1/2\log(\operatorname{sen}\Delta_{ij}) =$$

= $e_i + s_j - 0, 4343\beta\Delta_{ij} + c_2 + E_{ij},$ (11)

onde $c_2 = c + c_1$.

O membro da esquerda, na eq.(11), representa a observação corrigida para a dispersão e para o espalhamento geométrico.

Aplicando-se as técnicas de mínimos quadrados para um conjunto de N equações iguais à eq.(11), relativas a N observações, pode-se determinar e_i , s_j , β e c_2 . Porém, para que o sistema de equações tenha um único conjunto de soluções (Menke, 1984;pp 101-107), outro vínculo é necessário:

Revista Brasileira de Geofísica, Vol. 10(2)

$$\sum_{i=1}^{n} e_i = \sum_{j=1}^{q} s_j = O,$$
(12)

onde n e q são, respectivamente, os totais de estações e de sismos. Esse novo vínculo corresponde a duas outras equações, representando que a soma dos efeitos de estação deve ser nula, assim como a soma dos efeitos de fonte.

Outro valor poderia ser adotado como nível médio de cada conjunto de efeitos; porém, o nível zero é mais conveniente para a análise e interpretação dos sinais e valores numéricos dos efeitos.

No desenvolvimento do método exposto anteriormente, Carpenter et al. (1967) consideraram que os erros seguem uma distribuição normal e, conforme afirmam Booth et al. (1974) e Douglas et al. (1981), a média dos erros deve ser considerada nula. Portanto, os limites de confiança podem ser calculados e testes de hipótese e significância aplicados.

DEFINIÇÃO DO NÍVEL MÉDIO DA CURVA DO FATOR $B(\Delta)$

A magnitude M para cada sismo j, determinada em cada estação i, pode ser calculada por:

$$M_{ij} = a_{ij} + B(\Delta)_{ij} - e_i. \tag{13}$$

Para N observações, a média das magnitudes calculadas com a eq.(13) é dada por:

$$\langle M \rangle = \langle a \rangle + \ll B(\Delta) \gg - \ll e \gg,$$
 (14)

onde os símbolos $< > e \ll \gg$ representam média aritmética simples e média aritmética para dados agrupados, respectivamente.

Impondo-se aqui a condição da média geral das magnitudes, isto é, que a média das magnitudes, <M>, de ondas superficiais, para as N observações, calculadas com a eq.(14), deve coincidir com a média das magnitudes, $< M_{FP}$, calculadas com a Fórmula de Praga, pode-se escrever:

$$D' = M_{FP} - \langle a \rangle + \ll e \gg, \tag{15}$$

onde D'= \ll B (Δ) \gg (= \ll B (Δ) \gg , da Fórmula de Praga).

A eq.(13) pode ser escrita como:

$$M_{ij} = s_j + r(\Delta)_{ij} + c + B(\Delta)_{ij} + E_{ij}.$$
 (16)

E corrigindo-se o erro E_{ij} , a magnitude do sismo j, em cada estação que registra esse sismo, é dada por:

$$M_j = s_j + r(\Delta)_{ij} + c + B(\Delta)_{ij}.$$
⁽¹⁷⁾

A média aritmética simples, $\langle M \rangle_q$, das magnitudes para os q sismos, calculadas com a eq.(17), é:

$$\langle M \rangle_q = c + D, \tag{18}$$

sendo $\langle s \rangle = 0$, pela condição de vínculo(eq.12), e a constante $D = \langle r(\Delta)_{ij} + B(\Delta)_{ij} \rangle_{q}$.

Os desvios das magnitudes M_j em relação à média $< M >_q$ são os correspondentes valores dos efeitos de fonte, ou seja:

$$M_j - \langle M \rangle_q = s_j.$$
 (19)

Combinando-se a eq.(18) com a eq.(19), obtémse:

$$M_j = s_j + c + D. \tag{20}$$

Pela comparação da eq.(17) com a eq.(20), conclui-se que:

$$B(\Delta)_{ij} = D - r(\Delta)_{ij}.$$
 (21)

A média geral das magnitudes dadas pela eq.(17) é dada por:

$$\langle M \rangle = \ll s \gg + \ll r \gg +c + D',$$
 (22)

e a média geral dada pela eq.(20) é:

$$\langle M \rangle = \ll s \gg +c + D$$
 (23)

E, comparando-se a eq.(22) com a eq.(23), obtém-se:

$$D = D' + \ll r \gg, \tag{24}$$

que é o nível médio da curva de $B(\Delta)$.

Substituindo-se a eq.(9) na eq.(21) tem-se:

$$B \quad (\Delta)_{ij} = \alpha \log \Delta_{ij} + 1/2 \log(\operatorname{sen} \Delta_{ij}) + + \quad 0,4343\beta \Delta_{ij} + c_4,$$

$$(25)$$

onde $c_4 = D - c_1$.

A eq.(25) permite determinar os valores da função de calibração (fator B) e a eq.(20) indica uma maneira simples de determinar a magnitude do sismo j a partir do efeito de fonte desse sismo.

CURVA DE AMPLITUDE-DISTÂNCIA PARA ONDAS RAYLEIGH

Tomando-se como referência a magnitude de valor igual à $\langle M \rangle_q$, os valores teóricos de log(A/T) para cada faixa k de distância epicentral podem ser calculados por:

$$\log(A/T)_{ij} = \langle M \rangle_q - B(\Delta)_{ij}. \tag{26}$$

Levando-se em conta a eq.(18) e a eq.(21), e substituindo-se na eq.(26), obtém-se:

$$og(A/T)_{ij} = c + r(\Delta)_{ij}, \qquad (27)$$

observando-se, assim, que a constante c é o nível médio da curva de amplitude-distância.

Construindo-se o gráfico $\log(A/T)_{ij}$ vs Δ , obtém-se a curva de amplitude-distância para as ondas Rayleigh, referente à magnitude $\langle M \rangle_q$.

ANÁLISE DOS RESULTADOS

Para a aplicação do método de Carpenter et al. (1967) para a determinação dos efeitos de estação, de fonte e do coeficiente de atenuação anelástica, utilizando-se dados de ondas Rayleigh com períodos entre 17s e 23s e fator de dispersão $\alpha=1/2$, foi desenvolvido o programa NELEFEITOS/R, através do qual foram selecionadas estações que registraram pelo menos dois dos sismos estudados. A partir dos dados selecionados, os efeitos foram, então, determinados com limites de confiança de 95%. Os efeitos de estação, para as estações selecionadas, que serão discutidos no próximo item, e os efeitos de fonte sísmica dos sismos utilizados são apresentados na Tabela 2.

EFEITO DE ESTAÇÃO E CORREÇÃO DE ESTAÇÃO PARA MAGNITUDE

Efeitos de estação negativos indicam maior atenuação do sinal sísmico e efeitos de estação positivos indicam menor atenuação ou amplificação do sinal registrado na estação, relativamente à média. A correção de estação para magnitude é, portanto, o oposto do efeito de estação. Como mencionado por Douglas et al.(1981), os efeitos da estrutura crustal na estação podem contribuir, pelo menos em parte, para o efeito de estação. Há evidências, segundo Cleary (1967), de que estações em áreas montanhosas e tectonicamente ativas tendem a ter efeitos negativos, e estações em áreas de estabilidade crustal tendem a ter efeitos positivos, havendo, entretanto, exceções significativas a essa regra.

No mapa da Fig. 5 são mostradas as localizações das estações de período longo, sul-americanas, selecionadas para este estudo, com os valores dos efeitos de estação.

FUNÇÃO DE CALIBRAÇÃO PARA PERÍODO LONGO (FATOR $B(\Delta)$)

Os valores da correção do decaimento da ampli-

Revista Brasileira de Geofísica, Vol. 10(2)

Figura 5. Localizações das estações sismográficas de período longo da América do Sul e os correspondentes valores dos efeitos de estação.

Locations of the long period sismographic stations in South America and the corresponding station effect values.

tude com a distância epicentral, de ondas Rayleigh de período longo, fator B(Δ), foram calculados através da equação 25. Os valores de β , c₄ e os de B(β), determinados com limites de confiança de 95%, são apresentados na Tabela 3.

O gráfico de $B(\Delta)$ em função do logaritmo da distância epicentral é mostrado na Fig. 6, incluindo a curva de Vanek et. al. (1962). Aplicando-se o método da regressão ortogonal, uma reta foi ajustada aos pontos correspondentes à faixa de distância epicentral de 200° a 1300° (figura 6). A relação linear entre $B(\Delta)$ e log Δ encontrada é:

$$B(\Delta) = 1,03 \log \Delta + 4,37.$$
 (28)

A equação de magnitude M_S para período intervalo entre 17s a 23s e para distância epicentral de 20° a 130° pode, então, ser escrita como:

$$M_s = \log(A/T) + 1,03\log\Delta + 4,37 + C,$$
 (29)

Tabela 2. Efeitos de estação e de fonte determinados através do programa NELEFEITOS/R, com limite de confiança de 95%.

Station and source effects determined by NELEFEITOS/P program (95% confidence limit).

and the second sec	and the second se		
Estação	efeito \pm 95%	Sismo	Efeito ± 95%
1 AAE	$0,31 \pm 0,48$	1	$-0,41 \pm 0,29$
2 AFI	$-0,46 \pm 0,34$	2	-0.54 ± 0.38
3 ANMO	$0,09 \pm 0,16$	3	$-1,05 \pm 0,37$
4 ANMX	$-0,19 \pm 0,29$	4	$-1,14 \pm 0,36$
5 ANTO	$0,02 \pm 0,21$	5	$-1,58 \pm 0,61$
6 ARE	$0,57 \pm 0,53$	6	$-1,72 \pm 0,51$
7 BCAO	$0,18 \pm 0,18$	7	$-0,63 \pm 0,23$
8 BDF	$0,71 \pm 0,21$	8	-0,87 ± 0,45
9 BLA	$0,42 \pm 0,52$	9	$-0,51 \pm 0,34$
10 BOG	$0,86 \pm 0,34$	10	$-0,35 \pm 0,61$
11 BUL	$0,72 \pm 0,37$	11	$-1,12 \pm 0,61$
12 CAR	$0,76 \pm 0,38$	12	$0,51 \pm 0,61$
13 COL	$0,29 \pm 0,19$	13	$-0,02 \pm 0,62$
14 CTAO	$-0,12 \pm 0,22$	14	$0,17 \pm 0,44$
15 GAC	$0,27 \pm 0,18$	15	$0,17 \pm 0,72$
16 GDH	$0,35 \pm 0,18$	16	$-0,53 \pm 0,61$
17 GRFO	$0,11 \pm 0,18$	17	$0,68 \pm 0,61$
18 HON	$-0,02 \pm 0,18$	18	$-0,48 \pm 0,61$
19 JAS1	$0,25 \pm 0,17$	19	$-0,48 \pm 0.30$
20 KEV	$0,10 \pm 0,19$	20	$0,23 \pm 0,22$
21 KONO	$0,26 \pm 0,20$	21	$0,57 \pm 0,16$
22 LON	$0,15 \pm 0,17$	22	$-0,05 \pm 0,16$
23 LPA	$0,59 \pm 0,42$	23	$0,34 \pm 0,17$
24 LPS	$0,23 \pm 0,50$	24	$-0,08 \pm 0,16$
25 MAJO	-0,04 ±	25	$-0,54 \pm 0,16$
26 NAI	$0,63 \pm 0,48$	26	$0,91 \pm 0,16$
27 NNA	$0,75 \pm 0,50$	27	$0,58 \pm 0,17$
28 NWAO	$0,13 \pm 0,21$	28	$0,96 \pm 0,16$
29 OGD	$0,23 \pm 0,42$	29	$0,22 \pm 0,16$
30 PEL	$0,71 \pm 0,16$	30	$0,71 \pm 0,16$
31 QUI	$0,53 \pm 0,50$	31	$-0,36 \pm 0,17$
32 RSCP	$-2,37 \pm 0,19$	32	$0,13 \pm 0,17$
33 RSNT	$-2,15 \pm 0,18$	33	$-0,69 \pm 0,16$
34 RSNY	$-2,30 \pm 0,17$	34	$0,58 \pm 0,16$
35 RSON	$-2,22 \pm 0,17$	35	$0,92 \pm 0,15$
36 RSSD	$-2,44 \pm 0,18$	36	$0,15 \pm 0,17$
37 SCP	$0,23 \pm 0,17$	37	$1,02 \pm 0,17$
38 SJG	$0,32 \pm 0,42$	38	$2,12 \pm 0,17$
39 SLR	$0,24 \pm 0,17$	39	$0,72 \pm 0,16$
40 SNZO	-0,26 上 0,20	40	$0,67 \pm 0,17$
41 TAU	$0,02 \pm 0,23$	41	$0,79 \pm 0,16$
42 TOL	$0,24 \pm 0,16$		6
43 TRN	$0,62 \pm 0,31$		
44 WIN	$0,58 \pm 0,38$		
45 ZOBO	$0,16 \pm 0,23$		

Δ	$B(\Delta)$	Δ	$B(\Delta)$	Δ	$B(\Delta)$	Δ	$B(\Delta)$	Δ	$B(\Delta)$
20	5,69	42	6,04	64	6,25	86	6,38	108	6,46
21	5,71	43	6,06	65	6,25	87	6,38	109	6,47
22	5,74	44	6,07	66	6,26	88	6,39	110	6,47
23	5,76	45	6,08	67	6,27	89	6,39	111	6,47
24	5,78	46	6,09	68	6,27	90	6,40	112	6,48
25	5,80	47	6,10	69	6,28	91	6,40	113	6,48
26	5,81	48	6,11	70	6,29	92	6,41	114	6,48
27	5,83	49	6,12	71	6,29	93	6,41	115	6,48
28	5,85	50	6,13	72	6,30	94	6,42	116	6,48
29	5,87	51	6,14	73	6,31	95	6,42	117	6,49
30	5,88	52	6,15	74	6,31	96	6,42	118	6,49
31	5,90	53	6,16	75	6,32	97	6,43	119	6,49
32	5,91	54	6,17	76	6,33	98	6,43	120	6,49
33	5,93	55	6,17	77	6,33	99	6,43	121	6,49
34	5,94	56	6,18	78	6,34	100	6,44	122	6,50
35	5,96	57	6,19	79	6,34	101	6,44	123	6,50
36	5,97	58	6,20	80	6,35	102	6,45	124	6,50
37	5,98	59	6,21	81	6,35	103	6,45	125	6,50
38	6,00	60	6,22	82	6,36	104	6,45	126	6,50
39	6,01	61	6,22	83	6,36	105	6,46	127	6,50
40	6,02	62	6,23	84	6,37	106	6,46	128	6,50
41	6,03	63	6,24	85	6,37	107	6,46	129	6,50
								130	6,50
					A second s	and the second se	and the second se	the second se	the second se

Tabela 3. Fator $B(\Delta)$ para período longo, com limite de confiança de 95%. Long period factor $B(\Delta)$ with 95% confidence limit.

 Δ - distância epicentral, em graus.

B - fator $B(\Delta)$.

 β - 0,004856/°.

c₄ - 4,71.

Figura 6. Curva do fator $B(\Delta)$ da Fórmula de Praga e a deste estudo (com a reta de regressão ortogonal). Factor $B(\Delta)$ curves of Prague Formula and this study (with orthogonal regression line).

onde C é a correção de estação para magnitude.

No gráfico da Fig. 7 foram incluídas curvas apresentadas por outros autores, para efeito de comparação.

CURVA DE AMPLITUDE-DISTÂNCIA PA-RA ONDAS RAYLEIGH

A Fig. 8 mostra a curva de amplitude-distância obtida com os valores do fator B da Fórmula de Praga e com os do presente estudo. A segunda diverge da primeira, assumindo valores maiores, com o aumento da distância epicentral.

Para os limites do intervalo da faixa, 20° e 130°, as diferenças entre os valores das duas curvas, em módulo, é menor do que 0,35. Pode-se considerar, portanto, que as duas curvas apresentam boa concordância.

Figura 7. Curva do fator $B(\Delta)$ deste estudo comparada com as de outros autores.

Factor $B(\Delta)$ curve comparison between this study and other studies.

Amplitude-distance curve determined with the Prague Formula factor $B(\Delta)$ compared to this study.

MAGNITUDES DOS SISMOS UTILIZADOS

As magnitudes M_S para cada estação foram calculadas com a eq.(17). A magnitude de cada sismo foi determinada pela média das magnitudes das estações e calculado o desvio padrão. Utilizando-se a Fórmula de Praga e seguindo-se o mesmo procedimento anteriormente mencionado, a magnitude m_b de cada sismo e os desvios padrões foram calculados. Os valores assim determinados são apresentados na Tabela 4. As determinações das magnitudes M_S com a Fórmula de Praga, para cada estação, foram feitas de duas maneiras: 1) sem aplicação de correção de estação para magnitude e 2) com aplicação de correção de estação para magnitude, utilizando-se os dados dos efeitos de estação determinados neste estudo. Para cada caso, foi aplicado o teste estatístico, teste F (Press et al., 1989), para verificar se as variâncias para as magnitudes M_S determinadas com a Fórmula de Praga e as deste estudo se apresentavam significativamente diferentes. O valor de F determinado é menor, quando são utilizadas as correções de estação para magnitude (vide Tabela 4). Isso significa que, em relação às magnitudes dos sismos, determinadas através do método apresentado neste estudo, os valores das magnitudes dadas pela Fórmula de Praga, com aplicação de correções de estação, são menos dispersos. Pode-se observar a variação na dispersão dos valores das magnitudes M_S determinadas com a equação usual, em relação aos valores de Ms determinadas pelo método apresentado neste estudo, no gráfico da Fig. 9.

As estações de período longo utilizadas localizam-se predominantemente a distâncias epicentrais menores do que 60° , relativamente aos sismos registrados. Para essas distâncias epicentrais os valores das funções de calibração da Fórmula de Praga e deste estudo são bastante próximos e, portanto, seria de se esperar que as magnitudes M_S, determinadas com as aplicações das correções das estações, apresen-

Figura 9. Correlação entre as magnitudes M, determinadas com a Fórmula de Praga (com e sem correção de estação) e os valores de M, determinados pelo método deste estudo.

 M_S magnitudes determined by Prague Formula (with and without station correction) correlated to M_S values from this study.

tassem também valores muito próximos ou iguais, por aproximação. Isso talvez possa ser uma explicação para a pequena diferença entre as médias dos desvios padrões das magnitudes M_S.

COMENTÁRIOS

As correções de magnitudes sísmicas para estações sismográficas de período longo podem ser determinadas de forma bastante conveniente com a aplicação do método de Carpenter et al.(1967).

Os valores dos efeitos de distância epicentral podem ser utilizados para se obter a curva da função de calibração, a qual possibilita, com a aplicação das correções de magnitude, boa determinação das magnitudes nas estações. "Boa determinação" da magnitude de um sismo significa que o desvio padrão da magnitude do sismo, tomada como sendo a média das magnitudes nas estações, é geralmente menor do que o obtido quando as magnitudes são determinadas

Tabela 4. Valores das magnitudes M, dos sismos estudados, determinados com a Fórmula de Praga (sem e com correção de estação) e através do método de Carpenter et al. (1967).

 M_s values of the studied events determined by Prague Formula (with and without station correction) and by Carpenter et al. (1967).

and the second			
Número do sismo	$M_s \pm d_p(*)$	$M_{s} \pm d_{p}(^{**})$	$M_s \pm d_p(\#)$
1	$4,05 \pm 0,17$	$4,61 \pm 0,20$	$4,17 \pm 0,13$
2	$4,10 \pm 0,17$	$4,58 \pm 0,27$	$4,03 \pm 0,12$
3	$3,37 \pm 0,12$	$3,92 \pm 0,24$	$3,54 \pm 0,11$
4	$3,40 \pm 0,17$	$4,03 \pm 0,24$	$3,43 \pm 0,11$
5	2,84	3,55	3,00
6	$2,70 \pm 0,10$	$3,31 \pm 0,08$	$2,87 \pm 0.07$
7	$3,97 \pm 0,20$	$4,39 \pm 0,28$	$3,93 \pm 0.15$
8	$3,58 \pm 0,33$	$4,07 \pm 0,22$	$3,71 \pm 0.19$
9	$3,83 \pm 0,24$	$4,48 \pm 0,17$	4.08 ± 0.23
10	4,29	5,00	4,20
11	3,52	4,23	3,44
12	5,13	5,84	5,07
13	4,69	5,40	4,54
14	$4,64 \pm 0,32$	$5,37 \pm 0,32$	$4,75 \pm 0,19$
15	4,51	5,10	4,77
16	3,83	4,54	4,06
17	4,98	5,69	5,28
18	3,82	4,53	4,11
19	$4,17 \pm 0,20$	$4,65 \pm 0,21$	4.07 ± 0.12
20	$4,96 \pm 0,35$	$5,03 \pm 0,33$	4.80 ± 0.35
21	$5,25 \pm 0,29$	$4,85 \pm 1,02$	$5,13 \pm 0.18$
22	$4,66 \pm 0,36$	$4,27 \pm 0,99$	$4,52 \pm 0.34$
23	$4,99 \pm 0,15$	$4,66 \pm 1,01$	$4,91 \pm 0.15$
24	$4,66 \pm 0,23$	$4,36 \pm 0,99$	$4,49 \pm 0.18$
25	$4,13 \pm 0,18$	$3,86 \pm 1,00$	4.02 ± 0.15
26	$5,64 \pm 0,35$	$5,39 \pm 0,94$	5.48 ± 0.27
27	$5,22 \pm 0,35$	$4,88 \pm 1,03$	5.14 ± 0.32
28	$5,70 \pm 0,29$	$5,34 \pm 1,13$	5.53 ± 0.24
29	$4,98 \pm 0,34$	$4,58 \pm 1,24$	$4,79 \pm 0.36$
30	$5,46 \pm 0,22$	$5,07 \pm 1,12$	$5,28 \pm 0.20$
31	$4,37 \pm 0,22$	$3,86 \pm 1,15$	$4,20 \pm 0.18$
32	$4,74 \pm 0,17$	$4,27 \pm 1,13$	4.70 ± 0.17
33	$4,02 \pm 0,54$	$3,58 \pm 1,23$	3.58 ± 0.47

Número do sismo	$M_s \pm d_p(*)$	$M_s \pm d_p(**)$	$M_s \pm d_p(\#)$
34	$5,32 \pm 0,25$	$4,95 \pm 1,10$	$5,15 \pm 0,22$
35	$5,64 \pm 0,25$	$5,27 \pm 1,14$	$5,48 \pm 0,23$
36	$4,90 \pm 0,34$	$4,68 \pm 0,89$	$4,72 \pm 0,35$
37	$5,66 \pm 0,29$	$5,44 \pm 0,98$	$5,59 \pm 0,24$
38	$6,86 \pm 0,33$	$6,57 \pm 0,96$	$6,69 \pm 0,27$
39	$5,45 \pm 0,44$	$5,24 \pm 0,99$	$5,29 \pm 0,46$
40	$5,32 \pm 0,52$	$5,03 \pm 1,08$	$5,23 \pm 0,49$
41	$5,45 \pm 0,33$	$5,19 \pm 0,94$	$5,36 \pm 0,38$

Continuação Tabela 4.

Desvio padrão médio: 0,27 (*), 0,77 (**) e 0,24 (#).

Teste F: 1.214 (*) e 1,381 (*).

* - magnitude e desvio padrão, com correção de estação (Fórmula de Praga).
** - magnitude e desvio padrão, sem correção de estação (Fórmula de Praga).
- magnitude e desvio padrão (este trabalho).

através das equações usuais. A aplicação do teste estatístico F (razão das variâncias) comprova esta afirmação.

Para a determinação da magnitude de cada sismo, quando se aplica o método de Carpenter et al.(1967), podem-se utilizar os efeitos de fonte sísmica, conforme a eq.(15). Essa é uma forma bastante simples e conveniente de determinar a magnitude de um sismo.

Sendo melhores as determinações das magnitudes sísmicas obtidas através da aplicação do método de Carpenter et al.(1967), a curva de amplitudedistância que se obtém para período longo é bastante confiável.

CONCLUSÕES

a) O número de estações de período longo utilizadas neste estudo, que registraram pelo menos dois dos sismos selecionados, é bastante reduzido, principalmente na América do Sul.

 b) Utilizando-se o coeficiente de atenuação anelástica e os valores dos efeitos de distância epicentral determinados neste estudo, construiu-se a curva da função de calibração que, no intervalo de 20° a 130° de distância, é próxima da curva do fator $B(\Delta)$ da Fórmula de Praga; e estabeleceu-se a relação linear entre $B(\Delta)$ e log Δ . Com essa relação podese estabelecer a equação (eq.(29)) para o cálculo de magnitude M_S para sismos da América do Sul, com hipocentros em profundidades de até ≈ 50 km. Os valores de M_S para cada sismo estudado e determinados pela média das magnitudes nas estações, calculadas no presente estudo, apresentam desvios padrões geralmente menores do que os de M_S determinados através da Fórmula de Praga, indicando melhores determinações. A aplicação do teste estatístico F (razão das variâncias) comprova essa afirmação.

c) A curva de amplitude-distância obtida neste estudo é concordante com a curva obtida utilizandose os valores da função de calibração da Fórmula de Praga. A diferença, em módulo, entre os extremos das curvas é aproximadamente 0,2, para 20° de distância epicentral, e aproximadamente 0,3, para 130° de distância epicentral.

 d) A aplicação do método de Carpenter et al.
 (1967) permitiu melhores determinações das magnitudes dos sismos estudados, como mencionado anteriormente. Portanto, pode-se afirmar que: i) os valores das funções de calibração para período longo, obtidos neste estudo, são adequados para serem utilizados nas determinações de magnitudes M_S de sismos que ocorrem na região da América do Sul, com hipocentros até ≈ 50 km de profundidade, com aplicações das correções de estação para magnitude;

ii) a equação que permite a determinação da magnitude M_S de um sismo, deduzida neste estudo, apresenta-se como um método simples e conveniente.

REFERÊNCIAS

- BOOTH, D.C.; MARSHALL, P.D. and YOUNG, J. B. (1974) Long and Short Period P Wave Amplitudes from Earthquakes in the Range 0° - 114°. Geophys. J.R.astr. Soc. -V 39, p 523-537.
- BURTON, P.W. (1974) Estimations of Q⁻¹ from Seismic Rayleigh Waves. Geophys. J.R. astr. Soc., V 36, p 167-189.
- CARPENTER, E. W.; MARSHALL, P. D. and DOUGLAS, A. (1967) The Amplitude -Distance Curve for Short Period Teleseismic P Waves. Geophys. J.R.astr. Soc. - V 13, p 61-70.
- CLEARY, J. (1967) Analysis of the Amplitudes of Short Period P Waves Recorded by Long Range Seismic Measurements Stations in the Distance Range 30° - 102°. J. Geophys. Res. - V 72, n 18, p 4705-4712.
- DOUGLAS, A.; YOUNG, J. B. and MAR-SHALL, P. D. (1981) Some Analyses of P and Rayleigh Waves Amplitudes Observed at North American Stations. Geophys. J.R. astr. Soc. -V 67, p 305-324.
- EWING, W.M.; JARDETZKY, W.S. and PRESS, F.(1957) Elastic Waves in Layered Media. McGraw-Hill Book Company, Inc. - N. York.

- GUTENBERG, B. (1945a) Amplitudes of Surface Waves and Magnitudes of Shallow Earthquakes. Bull. Seism. Soc. Am., V 35, p 3-12.
- MARSHALL, P.D. and BASHAM, P.W. (1972) Discrimination between Earthquakes and Underground Explosions Employing an Improved M_S Scale. Geophys. J.R. astr. Soc., V 28, p 431-458.
- MENKE, W. (1984) Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, Inc., Orlando, Florida, USA.
- NUTTLI, O.W. (1973) Seismic Waves Attenuation and Magnitude Relations for Eastern North America. J. Geophys. Res., V 78, n 5, p 876-885.
- PRESS, W. H.; FLANNERY, B. P.; TEU-KOSKY, S. A. and VETTERLING, W. T. (1989) Numerical Recipes: The Art of Scientific Computing. Cambridge University Press - New York, USA.
- THOMAS, J.H.; MARSHALL, P.D. and DOUGLAS, A. (1978) Rayleigh Wave Amplitudes from Earthquakes in the Range 0° - 150°, Geophys. J.R. astr. Soc., V 53, p 191-200.
- VANEK, J.; ZATOPEK, A.; KARNIK, V.; KONDORSKAYA, N. V.; RIZNICHEN-KO, Y. V.; SAVARENSKY, E. F.; SOLOV'EV, S. L. and SHEBALIN, N. V. (1962) Standardization of Magnitude Scale. Izv. Acad. Sci. USSR Phys. Solid. Earth, n 2, p 108-111.

Submetido em: 04-12-91 Revisado em: 27-02-93 Aceito em: 28-02-93 Editor associado: Marco A.B. Botelho