RELAÇÃO M_s:m_b NA AMÉRICA DO SUL

J.L. Nelson e M.S. de Assumpção

Instituto Astronômico e Geofísico - USP C.P. 9638, 01065-000, São Paulo, SP, Brasil

Com os valores de magnitudes $m_b \in M_S$ de sismos rasos (h < 60km), ocorridos principalmente na região da América do Sul, determinados por Nelson e Assumpção (1992 a,b), utilizando correções de estação para magnitude, é estabelecida uma relação entre essas magnitudes aplicando-se o método de regressão ortogonal. Essa nova relação é válida para a América do Sul.

 $M_{s:m_b}$ RELATION IN SOUTH AMERICA Using the m_b and M_s magnitude values of shallow earthquakes (h < 60 km), which occurred mainly in the South America region, determined by Nelson and Assumpção (1992 a,b), applying station corrections for magnitude, a relation $M_s:m_b$ is established by orthogonal regression method. This new relation is valid for South America.

INTRODUÇÃO

As escalas de magnitudes não são equivalentes e, em virtude disto, são estabelecidas relações entre essas escalas. A relação entre ma e Ma varia significativamente de uma região sísmica para outra, segundo Båth (1981), e mesmo dentro da mesma região ou da mesma seqüência de sismos. Marshall e Basham (1972) afirmam que, removendo-se os efeitos dominantes do caminho de propagação sobre M,, as diferenças residuais na relação Ma:ma entre eventos são geralmente atribuídas às condições da fonte sísmica e aos efeitos regionais sobre mb. Conforme Prozorov e Hudson (1974), a dissipação no manto superior reduz a amplitude das ondas de volume, de quantidades diferentes em diferentes regiões; e os próprios mecanismos das fontes sísmicas são diferentes em diferentes regiões.

Um aspecto importante, mencionado por Mar-

shall (1970), é que as relações de mb e M_S podem ser aplicadas como discriminadores de explosões nucleares subterrâneas e sismos naturais. Conforme Marshall e Basham (1972), as relações $M_s:m_b$ são discriminadores mais eficientes quando os dois tipos de eventos ocorrem dentro da mesma região e são registrados pelas mesmas estações.

Nuttli e Kim (1975) afirmam que os estudos da relação $M_s:m_b$ podem contribuir para o conhecimento de certas propriedades do campo regional de esforços, tal como a queda fracional do esforço ou função temporal da fonte; ou pelo menos auxiliar na seleção de sismos aparentemente anômalos, para os quais uma análise espectral completa poderia ser proveitosa.

DADOS UTILIZADOS

Para este trabalho foram utilizados os valores de magnitudes $m_b \in M_s$, de sismos rasos (h<60km) ocorridos principalmente na região da América do Sul, determinadas por Nelson e Assumpção (1992 a,b), com aplicação de correções de estação para magnitudes. Na Tabela 1 são apresentados os dados dos sismos estudados por Nelson e Assumpção (1992 a,b) e as localizações dos epicentros dos sismos; somente os registrados simultaneamente por estações de período curto e de período longo são mostrados no mapa da Fig. 1. Na Tabela 2 são apresentados os valores dessas magnitudes, com os desvios padrões; incluídos os valores das magnitudes ma e Ma, calculados através das equações usuais (Gutenberg e Richter (1956) e Vanek et al.(1962) (Fórmula de Praga), com e sem correções para magnitude. As correções para magnitude das estações determinadas por Nelson e Assumpção (1992 a,b), com a aplicação do método de Carpenter et al.(1967), são mostradas na Tabela 3.

MÉTODOS ESTATÍSTICOS DE APRO-XIMAÇÃO LINEAR DA RELAÇÃO EN-TRE MAGNITUDES DE DIFERENTES ES-CALAS

O fato de relações lineares entre as magnitudes serem ainda aceitas como representando o melhor ajuste aos dados pode ser devido, em parte, ao grande espalhamento dos pontos, que camufla qualquer variação da declividade do gráfico, e, em parte, à limitação da faixa de magnitude coberta pelas observações. Porém, é necessário saber claramente como a regressão é calculada para estabelecer a relação entre as magnitudes; caso contrário, pode-se ser levado a aplicações errôneas dessa relação (Båth, 1981).

As relações estabelecidas entre os diferentes tipos de escalas de magnitudes, conforme Båth (1981), têm significado físico, embora essas relações sejam, em geral, estabelecidas por métodos estatísticos com aplicações de técnicas de regressão.

Para um caso genérico, um aspecto importante é que o grande espalhamento dos pontos de um gráfico Y vs X tem influência na maneira como a regressão deve ser feita. A regressão linear de Y sobre X (assumindo-se X livre de erros) ou a de X sobre Y (assumindo-se Y livre de erros), segundo Båth (1981), não são fisicamente satisfatórias, nem podem ser invertidas. As regressões ortogonais de Y sobre X ou de X sobre Y, para as quais se assume que Y e X não são livres de erros, fornecem relações fisicamente satisfatórias, permitindo inversão; isto é, as equações obtidas podem ser resolvidas para Y em termos de X ou para X em termos de Y, com resultados numéricos idênticos.

Dois métodos de regressão linear foram aplicados, de forma isolada ou combinada, neste trabalho: 1) o método de Prozorov-Hudson e 2) o método da regressão ortogonal. Detalhes desses métodos são apresentados no Apêndice A.

RELAÇÃO ENTRE AS MAGNITUDES M, E M,

Com as magnitudes M, e m_b , determinadas por Nelson e Assumpção (1992 a,b), foi construído o gráfico de correlação apresentado na Fig. 2. Aplicando-se o método de regressão ortogonal, uma reta foi ajustada aos pontos desse gráfico e a relação estabelecida entre M, e m_b é:

$$M_s = 3,15m_b - 12,46. \tag{1}$$

Nesse gráfico foram incluídas as retas ajustadas pelo método de Prozorov-Hudson para k=0 (regressão linear de M, sobre m_b) e para k= ∞ (regressão linear de m_b sobre M_s). Na Fig. 3 foram incluídos os gráficos das relações M_s:m_b de outros autores, para comparação.

No gráfico apresentado na Fig. 4 foram incluídos os pontos correspondentes aos valores de magnitudes calculadas com as equações usuais, com e sem aplicação de correções para magnitude, e ajustadas as retas de regressão através do método de regressão ortogonal. As relações $M_s:m_b$, estabelecidas então para o caso das equações usuais, são: **Tabela 1**. Dados dos sismos registrados por estações de períodos curto e longo. Data of the events recorded by short and long period stations.

N	Data(d/m/a)	to (blminle)	1 1=+ (9)	1 1	D CIL X	
1	14/12/63		141 ()	long (*)	Prof.(km)	local
2	13/02/64	11 21 46	2,303	61,01W	45,0	Manaus, AM
3	15/02/65	10 26 56	18,005	50,09W	5,0	M. Grosso do Sul
4	23/02/68	19 30 30	2,08N	60,12W	42,0	Roraíma, Pará
5	27/08/68	14 23 02	6,095	38,44W	33,0	Pereiro, CE
6	24/10/79	05 17 36	8,905	72,89W	26,0	Acre
7	21/10/12	10 30 30	21,715	40,53W	15,0	Campos, RJ
2	02/02/10	03 24 50	0,34W	59,23W	5,0	Roraíma
0	02/06/11	17 45 52	0,085	49,97W	33,0	Marajó, PA
10	10/11/20	09 46 18	6,17S	71,16W	18,0	Amazonas, Acre
10	12/11/80	21 23 05	8,175	50,24W	33,0	Redenção, PA
11	20/11/80	03 29 42	4,305	38,40W	5,0	Pacajus, CE
12	08/04/82	05 58 52	24,805	58,10W	12,0	Paraguai
13	05/08/83	06 21 42	3,595	62,17W	23,0	Codajás, AM
14	11/12/78	02 08 01	16,50N	100,00W	42,0	Guerrero, MEX.
15	26/01/79	10 04 32	17,40N	100,90W	41,0	Guerrero, MEX.
16	28/01/79	19 45 21	11,90S	43,70W	22,0	C.N. Atlântica
17	13/10/84	17 18 13	15,00N	95,30W	31,0	P.C. Oxaca, MEX.
18	23/02/85	14 45 35	6,97S	30,93E	10,0	L.Tanganica, AFR.
19	31/01/66	14 01 24	24,905	64,40W	35.0	Salta ARG
20	09/08/67	07 14 08	8,505	73,80W	48,0	Peru/Brasil
21	22/02/76	08 09 22	18,405	65,20W	41.0	Bolívia
22	13/04/81	21 32 51	8,875	72,95W	37.0	Peru/Brasil
23	09/05/81	09 50 40	26,60S	64.90W	50.0	Dicuman ABC
24	23/07/81	13 51 26	17,035	65.12W	53.0	Bolfvia
25	19/03/85	10 28 36	18.635	63.66W	33.0	Bolívia
26	22/03/85	14 02 47	18,605	63.61W	33.0	Bolfuin
27	12/04/85	14 34 55	23.945	60.55W	25.0	Paraguai
28	11/17/82	16 11 37	29.685	13.67W	10.0	C S Atlântion
29	11/18/82	00 27 50	54.385	56.22W	10,0	P Ilboo Falkland
30	11/19/82	04 27 13	10.605	74 70W	14.0	Donu
31	11/19/82	10 57 35	54 425	56.31W	10.0	P Ilbas Falluland
32	11/19/82	12 34 18	10 735	74 48W	33.0	R. Illias Faikland
33	04/02/83	05 58 35	28 905	66 QRW	40.0	Catagoria A DC
34	04/05/86	20 14 28	13 415	71 70W	50.0	Catamarca, ARG
35	11/10/80	16 24 40	31 585	67 ATW	21.0	Peru
36	09/05/86	16 23 51	17,115	65 67M	21,0	San Juan, ARG.
37	20/02/86	09 16 02	21.155	70.11W	30,0	Bolivia
38	29/01/86	13 34 09	6 PON	76 9611	33,0	PC.N. Chile
39	26/01/86	07 48 22	27 198	70,00	10,0	N. Colombia
40	17/01/86	04 15 00	21,125	70,077	30,0	P.C.N. Chile
41	26/09/85	08 93 97	10,095	78,38W	50,2	P.C. Peru
42	22/09/85	18 22 12	33,045	(1,04W	47,2	P.C.C. Chile
43	12/08/85	18 23 12	12,49N	44,33N	10,0	C.N. Atlântica
44	04/08/85	00 04 50	38,425	73,49W	33,0	P.C.C. Chile
45	07/07/85	04 34 01	44,895	75,45W	22,6	F.C.S. Chile
10	14/00/05	11 25 12	32,885	72,00W	31,7	F.C.C. Chile
47	19/00/85	13 14 14	40,745	74,92W	33,0	F.C.S. Chile
41	10/06/85	03 23 31	3,01N	78,64W	20,4	Sul Panamá
40	03/06/85	17 56 50	28,05S	71,0W	33,0	P.C.N. Chile
49	02/06/85	16 26 58	37,80S	73,59W	33,0	P.C.C. Chile
50	19/05/85	18 09 15	30,24S	71,28W	38,7	P.C.C. Chile
51	28/04/85	08 30 32	39,70S	75,61W	33,0	F.C.C. Chile
52	20/04/85	18 23 48	8,98N	77,53W	40,4	P.C.N. Colômbia
53	09/04/85	01 56 58	34,175	71,54W	33,0	P.C.C. Chile
54	03/04/85	13 06 19	32,628	71,61W	33,0	P.C.C. Chile
55	10/01/85	17 47 56	10,83N	43,43W	10,0	C.N. Atlântica
56	05/01/85	11 11 31	10,17N	80,20W	32,0	Norte Panamá

N - número de sismo.

 M_s and m_b correlation, and the regression lines given by orthogonal and linear regression methods.

161

Tabela 2. Magnitudes M, m_b determinadas por Nelson e Assumpção (1992 a, b) para os sismos estudados. M, and m_b magnitudes estimated by Nelson and Assumpção (1992 a, b) for the selected events.

		N. 14 6 5 1	M. +d (#) 1	M. +d. (*)	Mb ±dp (* *)	$M_b \pm d_p (\#)$
N	$M_b \pm d_p (*)$	Mb ±dp (+ +)	A 96 ± 0.25	4.61 ± 0.20	4,05 ± 0,17	$4,17 \pm 0,13$
1	$4,84 \pm 0,31$	$4,92 \pm 0,23$	4,50 ± 0,20	458 ± 0.27	$4,10 \pm 0,17$	$4,03 \pm 0,12$
2	$5,39 \pm 0,24$	$5,49 \pm 0,24$	$\frac{0}{42} \pm 0.22$	4,00 2 9191		
3	$4,63 \pm 0,29$	4,90 ± 0,18	4,93 ± 0,20			
4	$4,57 \pm 0,41$	4,65 ± 0,35	4,04 ± 0,25	3.92 ± 0.24	$3,37 \pm 0,12$	$3,54 \pm 0,11$
5	4,77 ± 0,29	4,87 ± 0,23	4,92 ± 0,24	4.03 ± 0.24	$3,40 \pm 0,17$	$3,43 \pm 0,11$
6	4,8 ± 0,24	4,84 ± 0,21	4,01 ± 0,22	100 22 0100		
7	$4,62 \pm 0.37$	4,64 ± 0,20	4,51 1 0,51			
8	$4,45 \pm 0,25$	4,58 ± 0,19	4,05 ± 0,10	3.55	2,84	3,00
9	$4,53 \pm 0,41$	4,59 ± 0,36	4,53 ± 0,00	3.31 ± 0.08	2.7 ± 0.10	$2,87 \pm 0,07$
10	$4,43 \pm 0,36$	4,49 ± 0,28	4,55 ± 0,27	4 39 + 0.28	$3,97 \pm 0,20$	$3,93 \pm 0,15$
11	$5,43 \pm 0,29$	$5,43 \pm 0,22$	$3,33 \pm 0,22$	4.07 ± 0.22	3.58 ± 0.33	$3,71 \pm 0,19$
12	$4,84 \pm 0,37$	$4,75 \pm 0,23$	5.57 ± 0.25	4 48 ± 0.17	$3,83 \pm 0,24$	4,08 ± 0,23
13	$5,64 \pm 0,33$	5,55 ± 0,20	5 30 + 0.34	5.00	4,29	4,20
14	$5,22 \pm 0,33$	5,27 ± 0,38	5 55 ± 0.25	4.23	3,52	3,44
15	$5,50 \pm 0,27$	5,56 ± 0,28	5,00 ± 0,20			
16	$5,65 \pm 0,46$	5,68 ± 0,40	5,70 ± 0,00	5.84	5,13	5,07
17	$5,54 \pm 0,56$	$5,59 \pm 0,52$	5,02 ± 0,47	5 40	4,69	4,54
18	$5,37 \pm 0,37$	5,38 ± 0,35	5,40 ± 0,30	5 37 + 0.32	4.64 ± 0.32	$4,75 \pm 0,19$
19	$5,68 \pm 0,35$	$5,72 \pm 0,25$	$5,75 \pm 0,20$	Gint at open		
20	$4,97 \pm 0,28$	$5,04 \pm 0,25$	$5,11 \pm 0,13$	5.10	4,51	4,77
21	$5,14 \pm 0,35$	$5,17 \pm 0,29$	5,22 ± 0,27	1.4.1.4.14		
22	$5,11 \pm 0,36$	5,16 ± 0,27	5,10 ± 0,25	4 54	3,83	4,06
23	$5,43 \pm 0,22$	$5,46 \pm 0,22$	$5,52 \pm 0,21$	1,01		
24	$5,06 \pm 0,29$	$5,11 \pm 0,23$	5,18 ± 0,21	5.69	4,98	5,28
25	$5,32 \pm 0,35$	$5,40 \pm 0,28$	5,41 ± 0,64	4.53	3.82	4,11
26	$5,23 \pm 0,33$	5,30 ± 0,20	5,04 ± 0,24	4.65 ± 0.21	4.17 ± 0.20	$4,07 \pm 0,12$
27	$5,23 \pm 0,34$	5,16 ± 0,32	3,10 ± 0,32	1,00		
28	$4,28 \pm 0,25$	4,36 ± 0,23	4,43 ± 0,33			
29	$5,38 \pm 0,36$	5,42 ± 0,30	0,02 ± 0,20			
30	$6,12 \pm 0,31$	6,08 ± 0,33	6,12 1 0,01			
31	$5,48 \pm 0,27$	5,51 ± 0,24	4 00 + 0.23			
32	$4,95 \pm 0,35$	5,00 ± 0,31	1,55 ± 0,25			
33	$5,37 \pm 0,30$	5,43 ± 0,30	5,45 ± 0,00			1. H
34	$5,25 \pm 0,28$	5,26 ± 0,35	5 44 + 0.23	5.03 ± 0.33	$4,96 \pm 0,35$	4,80 ± 0,35
35	$5,29 \pm 0,29$	5,39 ± 0,29	5 57 + 0 19	4.85 ± 1.02	$5,25 \pm 0,29$	$5,13 \pm 0,18$
36	$5,32 \pm 0,40$	5,55 ± 0,25	5 73 + 0.43	4.27 ± 0.99	$4,66 \pm 0,36$	$4,52 \pm 0,34$
37	$5,38 \pm 0,35$	5,74 ± 0,40	5 34 + 0 49	4.66 ± 1.01	$4,99 \pm 0,15$	$4,91 \pm 0,15$
38	$5,15 \pm 0,61$	5,35 ± 0,31	5 97 + 0 10	4.36 ± 0.99	$4,66 \pm 0,23$	$4,49 \pm 0,18$
39	$5,55 \pm 0,28$	5,95 ± 0,12	5 56 + 0.03	3.86 ± 1.00	4,13 ± 0,18	$4,02 \pm 0,15$
40	5,51 ± 0,14	5,54 ± 0,09	5 37 + 0 18	5.39 ± 0.94	5,64 ± 0,35	5,48 ± 0,27
41	4,95 ± 0,39	5,20 ± 0,10	5 40 + 0 38	4.88 ± 1.03	5,22 ± 0,35	$5,14 \pm 0,32$
42	$5,20 \pm 0,35$	5,44 ± 0,30	5.78 + 0.23	5,34 ± 1,13	5,70 ± 0,29	$5,53 \pm 0,24$
43	5,38 ± 0,28	5,05 ± 0,12	5.83 + 0.10	4.58 ± 1.24	4,98 ± 0,34	$4,79 \pm 0,36$
44	$5,48 \pm 0,27$	5,82 ± 0,09	5 38 + 0.34	$5,07 \pm 1,12$	5,46 ± 0,22	$5,28 \pm 0,20$
45	$5,10 \pm 0,57$	5,34 ± 0,32	6.00 ± 0.28	3.86 ± 1.15	4,37 ± 0,22	$4,20 \pm 0,18$
46	$5,62 \pm 0,32$	5,95 ± 0,29	547 + 0 48	4.27 ± 1.13	4,74 ± 0,17	$4,70 \pm 0,17$
47	$4,97 \pm 0,54$	5,30 ± 0,48	5 15 + 0 12	3.58 ± 1.23	4.02 ± 0.54	$3,88 \pm 0,47$
48	$4,93 \pm 0,22$	5,05 ± 0,20	5.08 + 0.57	4.95 ± 1.10	5,32 ± 0,25	$5,15 \pm 0,22$
49	4,80 ± 0,85	5,01 ± 0,67	5.81 + 0.47	5.27 ± 1.14	$5,64 \pm 0,25$	5,48 ± 0,23
50	$5,62 \pm 0,43$	5,75 ± 0,44	5 68 + 0.82	4.68 ± 0.89	4,90 ± 0,34	$4,72 \pm 0,35$
51	$5,35 \pm 1,10$	5,60 ± 0,92	5 42 + 0 27	5.44 ± 0.98	5,66 ± 0,29	$5,59 \pm 0,24$
52	5,25 ± 0,53	5,39 ± 0,30	5 87 + 0 40	6.57 ± 0.96	6.86 ± 0.33	6,69 ± 0,27
53	$5,60 \pm 0,64$	5,82 ± 0,49	5 65 1 0 54	5 24 + 0 99	5,45 ± 0,44	$5,29 \pm 0,46$
54	$5,32 \pm 0,76$	5,59 ± 0,52	5.00 ± 0.04	5.03 ± 1.08	5,32 ± 0.52	5,23 ± 0,49
55	$5,45 \pm 0,39$	$5,57 \pm 0,30$	5,00 ± 0,24	5 19 + 0.94	5.45 ± 0.33	5,36 ± 0,38
56	5,77 ± 0,29	$5,86 \pm 0,43$	5,81 ± 0,30	0,10 1 0,04	0,10 - 0,00	

Desvio Padrão Médio.

 $M_b\colon 0,38\;(*)\;0,31\;(*\;*)\;0,30\;(\#)\;M_*\colon 0,77\;(*)\;0,27\;(*\;*)\;0,24\;(\#).$

Teste F (em relação a (#)): M_b: 1,140(*). 1,031(* *) M_s: 1,381(*) 1,214 (* *).

N - Número do sismo.

Magnitude e desvio padrão:

equações usuais, sem correção de estação.

* * - equações usuais, com correção de estação.

- Nelson and Assumpção (1992 a, b).

Tabela 3. Correções de magnitude das estações de períodos curto e longo, aplicadas nas determinações das magnitude M_s e m_b por Nelson e Assumpção (1992 a, b).

Magnitude corrections for short and long period stations used by Nelson and Assumpção (1992, a, b) for M_s and m_b magnitude determinations.

COD	PC	PL	COD	PC	PL	COD	PC	PL
AAE		-0,31	BUL	0,06	-0,72	GAC	-	-0.27
AFI		0,46	CAF	-0,24	-	GDH	0.08	-0.35
ALE	0,05		CAR	-0,04	-0,76	GOL	0.12	
ALQ	0,38		CDF	-0,00		GRFO	0.27	-0.11
ANMO	0,56	-0,09	COL	-0,20	-0,29	GRM	-0.09	
ΛΝΜΧ	0,31	0,19	COP	-0,47		GRR	-0.31	
ANT	-0,04		CTAO	-	0,12	GSC	0.08	
ANTO	0,46	-0,02	DAG	0,15		HAU	-0.13	
ARE	0,40	-0,57	DUG	0,14		HON	-0.44	0.02
ATL	0,03		EDM	-0,32		INK	0.16	
AVF	0,07		EPF	-0.24		ITR	0.21	
BCAO	0,02	-0,18	EPT	0,12		JAS1	0.59	-0.25
BDF	-0,01	-0,71	FCC	0,06	-	JCT	0.23	
BKS	-0,09		FDA	0,17		KEV	- /	-0.10
BLA	-0,03	-0,42	FFC	0,21		KONO	-0.16	-0.26
BLC	-0,17		FLN	-0,49		KTG	0.00	
BOG	-0,06	-0,86	FLO	0,05		LBF	-0.10	
BOZ	0,24		FRB	0,01		LDF	-0.28	
BSF	-0,04		FVM	-0,15		LFF	-0.59	
COD	PC	PL	COD	PC	PL	COD	PC	PL
LHC	-0,21		NOR	-0,10		SMF	-0.41	
LON	0,36	-0,15	NUR	-0,00		SNA	-0.25	
LOR	-0,24		NWAO		-0,13	SNZO	-0.12	0.26
LPA	-0,44	-0.59	OGD		-0.23	SOB	0.03	1
LPB	0,17		OTT	0,07		SOB1	-0.18	
LPF	-0,31		OXF	-0,03		SSF	-0.43	
LPO	0,05		PEL	0,19	-0,65	SPA	0.04	
LPS	0,08	-0,23	PNT	-0,23		STU	-0.08	-
LSF	-0,19		РТО	0,07		TAU		-0.02
LUB	-0,17		PRE	0,26		TCF	-0.04	
MAJO		0,04	QUI		-0.53	TOL	-0.36	-0.24
MAL	0,10	-	RES	0.35		TRN	0.08	-0.62
MBC	-0,04	_	SBA	0.28	_	TUC	0.40	0,02
MFF	0,01		SCH	-0.05		TUL	-0.04	
MNT	0,06		SCP	0.26	-0.23	VAO	0.34	-
MSO	0,07		SDB	0.43	.,	WIN	0.10	-0.58
MZF	-0,21		SES	-0.24		YKC	-0.17	5,00
NAI		-0.63	SJG	-0.23	-0.32	ZOBO	0.58	-0.16
NNA	0.01	-0.75	SLR	-0.13	-0.24	DODO	0,00	-0,10

COD - Código da estação.

PC - Correção para magnitude M_b.

PL - Correção para magnitude M.

Figura 3. Relação $M_s:m_b$ deste estudo comparada com as de outros autores. $M_s:m_b$ relation comparison between this study and other studies.

Figura 4. Correlações entre as magnitudes M, e m_b , determinadas com as equações usuais (com e sem correção de estação), comparadas com a deste estudo.

 M_s and m_b correlations determined by the usual equations (with and without station correction) compared with this study.

$$M_s = 3,74m_b - 14,90(sem \ correção)$$
(2)

e

$$M_s = 3,60m_b - 14,82(com \ correção).$$
 (3)

A Fig. 4 evidencia a influência da aplicação de correções de estação para magnitudes no estabelecimento de uma relação M_{a} : m_{b} .

COMENTÁRIOS E CONCLUSÃO

Como afirmam Nelson e Assumpção (1992 a,b), as determinações das magnitudes m_b e M_s, feitas com a aplicação do método de Carpenter et al.(1967), apresentam desvios padrões geralmente menores do que as determinações com as equações usuais e são significativamente melhores, como indicam os valores de F do teste F por eles utilizados.

Portanto, pode-se afirmar que a relação $M_{\theta}:m_{\theta}$ dada pela Eq. (1) é bastante confiável e válida para a América do Sul.

AGRADECIMENTOS

Ao CNPq pela bolsa de estudo no período do doutoramento de J.L. Nelson, durante o qual foram coletados os dados que possibilitaram este trabalho.

REFERÊNCIAS

- BÅTH, M. (1981) Earthquake Magnitude Recent Research and Current Trend - Earth-Sci. Rev., V. 17, pp. 315-398.
- CARPENTER, E.W., MARSHALL, P. D. and DOUGLAS, A. (1967) The Amplitude - Distance Curve for Short Period Teleseismic P Waves. Geophys. J.R. Astr. Soc., V. 13, pp. 61-70.

Revista Brasileira de Geofísica, Vol. 11(2), 1993

- GUTENBERG, B. and RICHTER, C.F. (1956) Magnitude and Energy of Earthquakes. Ann. Geofis., V. 9, pp. 1-15.
- MARSHALL, P.D. (1970) Aspects of the Spectral Differences Between Earthquakes and Underground Explosions. Geophys. J.R. Astr. Soc., V. 20, pp. 397-416.
- MARSHALL, P.D. and BASHAM, P.W. (1972)
 Discrimination Between Earthquakes and Underground Explosions Employing an Improved
 M, Scale. Geophys. J.R. Astr. Soc., V. 28, pp. 431-458.
- NELSON, J.L. e ASSUMPÇÃO, M.S. (1992a) Curva de Amplitude-Distância para Ondas P de Período Curto e Correção de Estação para Magnitude m_b na América do Sul. Revista Brasileira de Geofísica (submetido).
- NELSON, J.L. e ASSUMPÇÃO, M.S. (1992b) Curva de Amplitude-Distância para Ondas Rayleigh e Correção de Estação para Magnitude M_S na América do Sul Revista Brasileira de Geofísica (submetido).
- NUTTLI, O.W. and KIM, S.G. (1975) Surface-Wave Magnitudes of Eurasian Earthquakes and Explosions. Bull. Seism. Soc. Am., V. 65, n. 3, pp. 693-709.
- PROZOROV, A. and HUDSON, J.A. (1974) A Study of the Magnitude Difference M, - mb for Eathquakes. Geophys. J.R. Astr. Soc., V. 39, pp. 551-564.
- VANEK, J., ZATOPEK, A., KARNIK, V., KONDORSKAYA, N. V., RIZNICHEN-KO, Y. V., SAVARENSKY, E. F., SOLOV'EV, S. L. and SHEBALIN, N. V. (1962) Standardization of Magnitude Scale. Izv. Acad. Sci. USSR Phys. Solid. Earth, n. 2, pp. 108-111.

APÊNDICE A

Para um conjunto de n sismos, têm-se as magnitudes $M1_i$ e $M2_i$ (i = 1, 2, ..., n), determinadas através de escalas de magnitudes diferentes. Assumindo-se que as determinações de $M1_i$ e $M2_i$, contendo erros inerentes, sejam estatisticamente independentes, deseja-se estabelecer entre elas uma relação da forma:

$$M2 = q M1 + p, \tag{1}$$

ajustando-se, pelo método dos mínimos quadrados, uma reta aos pontos $P_i \equiv (M1_i, M2_i)$.

MÉTODO DE PROZOROV-HUDSON

A função a ser minimizada para o ajuste de uma reta aos pontos é:

$$F(p,q) = \sum_{i=1}^{n} \left[\frac{(M2_i - qM1_i - p)^2}{D(M2_i - qM1_i - p)} \right], \quad (2)$$

onde o numerador representa o resíduo ao quadrado, R_2 , e o denominador, na forma D(R), é a variância do resíduo.

Pela definição de variância pode-se demonstrar que:

$$D(M2_i - qM1_i - p) = D_{M2} + qD_{M1}, \qquad (3)$$

onde D_{M1} e D_{M2} são as variâncias dos erros nas determinações das magnitudes M1 e M2, respectivamente.

A eq.(2) pode, então, ser escrita:

$$F(p,q) = \frac{1}{D_{m2} + qD_{m1}} \sum_{i=1}^{n} (M2_i - qM1_i - p)^2.$$
(4)

Tomando-se as derivadas parciais de F(p,q), em relação a p e a q, elas devem ser nulas. Obtém-se, assim, as equações:

Revista Brasileira de Geofísica, Vol. 11(2), 1993

$$\langle M2 \rangle = q \langle M1 \rangle + p \tag{5}$$

е

$$A = \left[\frac{k[\langle M \, 2^2 \rangle - \langle M \, 2 \rangle^2] - [\langle M \, 12 \rangle - \langle M \, 1 \rangle^2}{\langle M \, 1. \, M \, 2 \rangle - \langle M \, 1 \rangle \langle M \, 2 \rangle}\right]$$
$$kq^2 - A.q - 1 = 0, \tag{6}$$

onde < > representa a média aritmética simples e k é a razão entre D_{m1} e D_{m2} , ou seja:

$$k = \frac{D_{m1}}{D^{m2}} \tag{7}$$

A razão k é sempre positiva e pode assumir qualquer valor desde 0 até ∞ . Se k=1, supõe-se que os erros nas determinações de M1_i e M2_i sejam iguais; se k=0, supõe-se que as determinações de M1_i sejam livres de erros e as de M2 contenham erros, o que equivale a uma regressão linear de M2 sobre M1. Se k= ∞ , supõe-se que as determinações de M1 contenham erros e as de M2 sejam livres de erros, o que equivale a uma regressão linear de M1 sobre M2.

Para os casos em que k=0 e $k=\infty$, as retas ajustadas assumem as posições extremas dentro da região de espalhamento dos pontos no gráfico M2 vs M1.

MÉTODO DA REGRESSÃO ORTOGONAL

A eq. (1) é a forma reduzida da equação da reta ajustada aos pontos $P_i = (M1_i, M2_i)$. Lembrando que os coeficientes são q = -A/B e p = -C/B, pode-se escrever a equação geral da reta r como:

$$AM1_i + BM2_i + C = 0, (8)$$

não sendo A e B simultaneamente nulos.

A distância de cada ponto P_i à reta representada pela eq. (8) é calculada por:

$$d_i = \frac{AM1_i + BM2_i + C}{(A^2 + B^2)^{1/2}}.$$
(9)

Deseja-se ajustar a reta r aos pontos P_i, tal que a soma dos quadrados das distâncias d_i seja mínima. Assim, a função a ser minimizada é:

$$S(A, B, C) = \Sigma(d_i)^2 = \Sigma(AM1, + BM2_i + C)(A^2 + B^2)^{-1}.$$
 (10)

Portanto, as derivadas parciais de S em relação à A, B e C devem ser nulas. Assim, derivando-se a eq. (10), obtêm-se:

$$AB^{2}\Sigma(M1)^{2} + B(B^{2} - A^{2})\Sigma(M1.M2) + \\+C(B^{2} - A^{2})\Sigma M1 - AB^{2}\Sigma(M2)^{2} - \\-2ABC\Sigma M2 - AC^{2} = 0,$$
(11)

$$A(A^{2} - B^{2})\Sigma(M1.M2) + A^{2}B\Sigma(M2)^{2} + +C(A^{2} - B^{2})\Sigma M2 - A^{2}B\Sigma(M1)^{2} - -2ABC\Sigma M1 - BC2 = 0$$
(12)

е

 $A\Sigma M 1 + B\Sigma M 2 + C = 0, \qquad (13)$

onde, para facilidade de notação, $\sum_{i=1}^{n} \Gamma$, é escrita $\Sigma\Gamma$.

A eq. (13) é uma combinação linear da eq. (11) e da eq. (12), o que pode ser verificado multiplicandose a eq. (11) por A, a eq. (12) por B e somando-se as equações assim obtidas.

Da eq. (13) pode-se escrever:

$$B = \frac{A\Sigma M 1 + C}{\Sigma M 2}.$$
 (14)

Substituindo-se a eq. (14) na eq. (11) e na eq. (12), e em seguida somando-se ambas, obtêm-se a equação de grau 3 em A: $\begin{aligned} A^{3}(\Sigma M 1 + 1)\{(\Sigma (M 1)^{2} - \Sigma (M 2)^{2})\Sigma M 1\Sigma M 2 + \\ + [(\Sigma M 2)^{2} - (\Sigma M 1)^{2}]\Sigma (M 1.M 2)\} + \\ + A^{2}C\{\Sigma M 2[\Sigma (M 1)^{2} - \Sigma (M 2)^{2} + (\Sigma M 2)^{2} + \\ + (\Sigma M 1)^{2}] + 2\Sigma M 1[\Sigma M 1\Sigma M 2 - \Sigma (M 1.M 2)] + \\ + [2(\Sigma (M 1)^{2} - \Sigma (M 2)^{2}) + (\Sigma M 1)^{2} + \\ + (\Sigma M 2)^{2}] + \Sigma M 1\Sigma M 2 + \Sigma (M 1.M 2)[(\Sigma M 2)^{2} - \\ - 3(\Sigma M 1)^{2}]\} + AC^{2}\{[\Sigma (M 1)^{2} - \Sigma (M 2)^{2} + \\ + 2(\Sigma M 1)^{2} + (\Sigma M 2)^{2}]\Sigma M 2 - 3\Sigma (M 1.M 2)\Sigma M 1 + \\ + \Sigma M 1\Sigma M 2 - \Sigma (M 1.M 2)\} + C^{3}[\Sigma M 1\Sigma M 2 - \\ - \Sigma (M 1.M 2)]] = 0. \end{aligned}$ (15)

Fazendo-se C=1 e resolvendo-se a eq. (15) para A obtêm-se três raízes. Pelo menos uma dessas raízes é real. Se mais de uma raiz são reais, B deve ser calculado, através da eq. (14), para cada A real e o par (A, B) que fornece a soma dos quadrados das distâncias d_i mínima deve ser selecionado. Os coeficientes q e p, da equação reduzida (eq. (1)), podem ser, então, calculados.

> Submetido em 09.12.91 Revisado em 06.02.93 Aceito em 22.04.93 Editor associado Marco A.B. Botelho

Palavras chaveKey wordsSismosEarthquakesSismos RasosShallow EarthquakesMagnitudes Ms e mbMagnitudes Ms e mb

168