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A new formulation called Minimum Relative Entropy (MRE) is applied to the
determination of the density profile within the Earth. The question is defined as
an inverse problem where the data are only the mass of the Earth and its moment
of inertia. The solution ofthis inverse problem is based on aprobabilistic philosophy
and on the concept ofentropy. It is defined an objective function that contains-thê
relative entropy ofthe probability density function ofthe model parameters (density
distribution). The objective function is then minimized under adequate constraints
in order to give the output estimate of the model parameters. The results are
compared to a standard inversion technique, showing that MRE gives a much
better agreement with the reference models considered (Bullen A, HB I and PREM).
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INVERSÃO DA DISTRIBUIÇÃO RADIAL DE DENSIDADE DA TERRA POR
UMA ABORDAGEM DA TEORIA DA INFORMAÇÃO Um novoformalismo de-
nominado princípio da entropia relativa mínima é aplicado na determinação da
distribuição de densidade no interior da Terra. A questão é posta como um pro-
blema inverso, onde apenas q massa e o momento de inërcia da Terra são utiliza-
dos como dados. A solução do problema inverso é baseada numa filosofia
probabilística e no conceito de entropia. Define-se umafunção objetivo que con-
tém a entropia relativa dafunção de densidøde de probabilidade dos parâmetros
de modelo (distribuição de densidade). Afunção objetivo é então minimizada sob
adequadas condições de restrição, de talforma afornecer a estimativafinal nos
parômetros de modelo. Os resultados são comparados com um método cldssico,
onde s,e verifica uma concordância bem melhor com os modelos de referência
considerados (BullenA, HBI e PREM.
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INTRODUCTION

The properties of the interiors of the planets are, of
course, inaccessible for direct investigation, Even for the

Earth we have to make use of indirect methods, or, in oth-

ers words, we have to invert the data collected at the sur-

face in order to estimate the internal constitution of our

planet. The launching of artifrcial satellites and the devel-

opment of planetary radars have provided more informa-

tion about the internal structure of the planets, including

the Earth. This information is obtained from the dynamic

properties of the planets, associated with the knowledge we

have about solids that are submitted to very high pressures.

However, in the case of the Earth, we can determine the

density profile among other physical quantities, from seis-

mological data. Many authors have studied this problem,

see for instance Bullen (1965), Stacey (1969), and the ref-

erences quoted there. The work of Dziewonski & Ander-

son (1981) introduced the PREM model, which is the cur-

rent reference model in the geophysical community.

Here we apply the Minimum Relative Entropy (MRE)

approach to the inversion of the Earth density profile. As

previous works that employed the concept of entropy with

this problem, we quote Rietsch (1977,1986), who used the

principle of maximum entropy (PME) to infer the radial

density distribution of the Earth, using lower and upper lim-

its. Graber (1977), based on the work ofRubincam (1978),

used the maximu.m entropy approach to the radial density

variation, considering not only mass and moment of iner-

tia, but also torsional normal modes of the Earth. He per-

formed several inversions. In some cases the inclusions of
normal modes improved substantially in relation to the ba-

sic situation (only mass and moment of inertia). In other

simulations the outcome is rather discrepant. Rubincam

(1982) also used the PME to estimate the lateral distribu-

tion of density within the Earth, from the values of gravity

field anomalies.

Howerer, here we use another entropy approach, and

actually the main idea of this work lies on the concept of
relative entropy, first defìned by Kullback (Kullback &
Leibler, 1951; Kullback, 1959). By using relative entropy

we introduce a prior information in the same physical di-

mension of the model parameters. Among several applica-

tions of this principle - MRE - we quote its interesting ap-

plication in the field ofspectral analysis, as an inverse pro-

cedure (Shore, l98l). An axiomatic study of MRE can be

found in Shore & Johnson (19S0). This approach has been
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already applied in several geophysical inverse problems,

mainly in exploration geophysics: inversion of interval ve-

locities, seismic transmission tomography, data inversion

in the ø-p domain, inversion of potencial data (gravity and

magnetics), corection of the effect of aliasing, band lim-

ited extrapolation (Bassrei, l990a,b; Bassrei, l99la,b;
Bassrei & Ulrych, 1989; Bassrei & Pestana, 1991; Ulrych

etal.,l990a; Ulrych et al., 1990b). The MRE soluction is

compared to reference models like the Bullen A (Bullen,

1965), HBI (Stacey, 1969) and PREM (Dziewonski &
Anderson, l98l), and it resulted in reasonable outputs.

CLASSICAL INVERSION OF DENSITY

The inversion of density is an old geophysical prob-

lem and there are several approaches to estimate the Earth's

radial density distribution. Since the famous experiment of
Cavendish it has been known that the average density of
the Earth is about 5.5 g/cm3.lt is also known that the den-

sity is not constant within the Earth, but it increases from

the surface to the centre of the planet. The first models rep-

resenting the variation of density were formal mathemati-

cal relations, sometimes arbitrary. Taking data after Bullen

(1965), we produce the Tab.l, where the first entry is the

density at the surface and the second at the centre of the

Earth (in g/cmt).

Laplace 2.60 11.20

Roche 2.40 10,30

'Wiechert 3.40 8.40

Jeffreys 4.27 12,04

Table 1 Classical models for the Earth's density.

Tabels 1. Modelos clássicos de densidade daTerra.

The density variation due to an increasing compres-

sion with depth in a chemically homogeneous layer (with-

out phase change) can be calculated by the method of
Williamson & Adams (1923), based on the integration of a

differential equation, which nevertheless disagrees with the

modern models. The differential equation is

:p
k

dp _ dpdp
dr dp dr
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where

*(r) = J,, ør'pQ)d, (2)

The quantity m(r) is the total mass contained from the

center of the Earth to the radius r, which determines the grav-

ity g at this radius. Also, p is the pressure, fr is the bulk modu-

lus, and G is the universal gravitational constant. In each of
the recognized zones of the Earth, for which the velocity pro-

file is smooth, it is reasonable to assume cheminal and phase

homogeneity. This allows the variation of density p, due to

an increasing pressurep with depth z, to be calculated by the

method of Williamson & Adams (1923). Many researchers

improved the above formulation, in particular Bullen, who

proposed several density distributions.

Free oscillations data have also been used to infer the

radial distribution of density. Bullen & Haddon (1967),

used for instance spherical oscillations up to the 24th or-

der and toroidal oscillations up to the l Sth order. A more

recent work was performed by Dziewonski & Anderson

(1981), where they have derived the so-called PREM -
Preliminary Reference Earth Model. Their data were free-

oscillation and long-period surface data, as well as body

waves. The mass and the moment of inertia were used as

constraints.

REDEF'INING THE INVERSE PROBLEM

For the present approäch to the problem, we will con-

sider a model with spherical symmetry, where the values of
the Earth's radius, mass, and moment of inertia are assumed

to be known. The input dataare only the mass of the Earth

and its moment of inertia, and the kernel array will be built
by the values of shell thickness. Dziewonski & Anderson

( I 98 I ) have used those quantities as constraints. Constraints

can, however, be introduced as data, or in other words, they

can contribute directly to the determination or estimation

of the model parameters, and not only to limit the range of
variation in the model space.

A given density distribution with depth establishes the

numerical values of the mass (A4) and moment inertia (-f.
Nevertheless, the parameters M and J cannot be inverted to

recoverthe true density profile. The problem is nonunique:

there is an infinite number of density distributions which

generate the observed values M and "/. V/e will solve the

nonuniqueness problem by using prior information in the

MRE method.
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Parker (1972) discusses the question ofdensity inver-

sion of planets with the knowledge of the mean densif Þ

andJ/MRI:

For the forward modelling we consider the relationships,

M : 4nl: pQ)rz dr, (3)

'= +l: pQyo d,

å I ¡ oQv,,

and

and

or

where

p

(6)

which are equivalent to the Eqs. (3) and (4) respectively;

and rR is the Earth's radius.

Discretizing the abovq equations, by considering a

geometry of spherical and concentric shells, we have

(Rietsch, 1977)

and

# I t,Ø0,

/ : ìi å0,ú' - ri)

J
MF

,=+å0,(¡-ri) (7)

(8)

The modelling (forward or inverse) is then expressed by

d = Gm, (9)

a., :ls¡im¡, i:1,2.

d : datavector;

g;¡= kernel arraY; and

la, = model parameters (unknown).

Let us write the data elements explicitly

dt:M=Ðst¡p¡,
i=l
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and

where

dz:J:Z,Ez¡p¡,
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(12)

ENTROPY, MAXIMUM ENTROPY, AND
MINIMUM RELATIVE ENTROPY

The Newtonian physics, which dominated from the

lTth to the end ofthe l9th century, describe generally an

universe in which everything should happen precisely in

accordance with a law, where this universe is compact, or-

ganized, and all future should strictly depend on the past.

However, we can never check, by means of our imperfect

experiments, if this or that set of physical laws is verifrable

up to the last decimal figure. The Newtonian conception,

nevertheless, had to present and express the physical pro-

cess, as if it had, in fact, been subjected to those laws

(Wiener, 1973).

From the middle of the last century, a revolution with-

out precedent began in the history ofphysics. This revolu-

tion, based on the idea of a contingent universe, changed

the concept of physics. Now, instead of stating that some

physical event will happen in any case, whatever the condi-

tions, one states that there is an overwhelming probability

that the event will happen.

The main principle of this process is the concept of
entropy, which can be defined in several ways. According

to the increase ofentropy, the universe and all closed sys-

tems, tend naturally to deteriorate and lose their clarity, to

change from a state for minimum probability to another of
maximum probability, from a state of organization and dif-
ferentiation, in which there exist forms and distinctions, to

a state ofchaos. In the contingent universe, the order is less

probable. The role of entropy is so important that Jaynes

(1957) states that entropy is a primitive physical concep|

even more fundamental than the concept of energy. The

concept of entropy was developed by the Cerman Rudolf

Clausius, in the context to classical thermodynamics. Later

the Austrian physicist Ludwig Boltzmann gave the statisti-

cal interpretation of entropy.

However, we make use of entropy within the frame-

work of Information Theory. In 1948, Shannon (Shannon

& Weaver, 1949) employed the concept of entropy in In-

formation Theory: consider a source S emitting messages

nt,, t/t2,..., m, with probabilities pp p2,..,, p, respectively

(where p,* pr+...* pN : l). The information carried by

each message is given by L, where

(13)

and

8n
(14)8z¡ (r' - '¡')15

In order to make comparisons we apply the general-

ized inversion (G I )'bV singular value decomposition (SVD),

the solution of which has the minimum norm. The objec-

tive function to be minimized is

Õ(m) : m7'' m*tI' (d - Gm), (15)

where t is the vector of Lagrange multipliers, The minimi-

zation yields

m : G1(GG'' )-'d. (16)

The above equation is equivalent to the so called

"pseudo-inverse" solution for underdetermined systems de-

veloped by Moore and later by Penrose (1955). One versa-

tile way to calculate the pseudo-inverse is through Lanczos

decomposition (Lanczos, 1961), where the kernel matrix is

expressed as

G : UEVr, (17)

where U is the matrix which contains the orthonormalized

eigenvectors of GG1, V contains the orthonormalized eigen-

vectors of G?G and the diagonal matrix I is formed by the

singular values of G . Thus, the pseudo-inverse G* will be

given by

G* : VX-rUr. (lS)
We can include prior information in a direct form, when

for instance one wishes a solution close to the average one,

and not necessarily a solution for which the norm is close to

zero - the minimum norm. In this case the objective func-

tion willbe

Õ(m): (m-mo)? 1m-mo) + 2t7'(d-Gm), (19)

where mo is the prior information of the model, t is again

the vector of Lagrange multipliers, and the factor2is only
to facilitate the algebraic calculations. The solution in this

case is

m : G7(GG?')-'(d-Gmo) + mo. (20)

c,,:+(¡-c,)

I¡
P¡

bc(
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The entropy (11) is defined to be the average informa-

tion of the source, i.e.,

2p,toe(p,) (22)

It would be interesting to determine the distribution

that maximizes the entropy. Since entropy is a measure of
uncertainty, the probability distribuiton which generates

maximum uncertainty will have maximum entropy. In the

absence ofprior information, Jaynes (1957) stated that the

maximum entropy is the least biased estimate from a given

information. In the context of Prediction Theory, the maxi-

mization of entropy is not the application of a physical law,

but merely a reasoning method which guarantees that no

inconsistent assumptions were used.

The principle of maximum entropy (PME) is appli-
cable to any inference problem with incomplete data, be it,

or not, a repetitive situation like a random experiment
(Jaynes, 1982). A proofofthe consistency ofPEM is given

by Tikochinsky et al. (1984) where it is demostrated that
the maximum entropy distribution, constrained to average

values, is the only consistent induction from the data for
any reproducible experiment.

The principle of minimum relative entropy (MRE) was

developed in the field of statistical inference by Kullback
& Leibler (1951); here we present it within the framework

of the Information Theory. In the transmission of a mes-

sage there is an undesirable signal called noise, Due to the

noise, there is a probability called a priori (p), that a spe-

cific message will be emitted, and a probability called ø

posteriori (q), that this message will reach the addressee.

Thus, the amount of information 1 obtained in a message

transmission increases with the a posteriori probability, and

is a ratio between the a posteriori and the a priori,

I = logL,
(23)

t25

DENSITY INVERSION BY MRE

Here we present, in a condensed way, the MRE ap-

proach for the soluction of inverse problems, in particular

the determination of the Earth's density distribution, given

its mass and moment of inertia. For details, see Bassrei

(1990a), or Ulrych et al. (1990a). We consider the kind of
problem which can be described by a discretized Fredholm

integral equation of the first kind

A. Bassrei

N

ø(s) = 2p,,
l=l

r¡=0

where d- are th e data,ffu) are the kemel functions, and p (n),

fl = 0,..,, N are the estimates of the model parameters (den-

sity). Note that M in this section is not the Earth's mass, but

the number of data points; in this particular problem M = 2.

We consider that these estimates are the expected values of
a random vector, p' : p(n) = [p(0), p(l),'.,p(M)], where

we have that

p(,) = f o@ø@Yo, n:0r',, , N (26)

The integral of relative entropy is given by

d¡ : >fi o("\ j:1,. (2s)

n(q,p): f ø{ò^rffioo, (27)

M

where qQc) andp@) are respectively the posterior and prior
pdf s (probability density function) of the model, With the

last three equations plus an adequate prior pdfgiven byp

in such a way that the entropy in the continuous case

will be

n(q,p) = lrø(r)ros 4*

n(n)

P@)=[#e-e'(")

and a normalization condition given by

I qØ)¿p: t,

(24)

(28)

(2e)
where x is the integration variable, in the domain D.
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we can build an objective function with M + I Lagrange

multipliers

Inversion of the Earth's Radial Density Distribution

o(P) : f ø(p)r"e ffiø. u[f" s@Yp -1)

+ ,r q@)Zf¡Ø)p(n)¿P - a¡ (30)

from the surface to the Earth's centre) leads to unsatisfac-

tory results. Thus, we willtake the discontinuity into account

in the choise of the prior information. We stress,

neveftheless, that such discontinuity has been known al-

ready for a long time and the fact that we incorporate it in to

the prior information does not mean that we are making use

of the entire reference model. Thus, as a general criterion,

in all inversions, we will consider a linear increase prior

before, and a flat prior after the discontinuity point. The

model A (Bullen, 1965) has 22 points in the model space.

The HB I model (Stacey,1969) has 5l points, and the PREM

(Dziewonski and Anderson, 198 1),94 points.

The results are shown in Figs. I to 9. Since the

knowledge of density variation is more uncertain in the

layers nearest to Earth centre, we have used here weighted

initial estimates (Johnson et al., 1984). The second value

of weight (W2) is for the distance between the surface

and the discontinuiy, and the first value (W1) for the part

limited by the discontinuity and the Earth centre. In this

manner, the usage of weights 0.5 and 1,0 (Figs. 2,5 and

8) resulted in a better output when compared to the re-

sult associated with weights 1.0 and 0.5 (not shown). For

shallow depths, we have large radius values associated

to the kernel array, producing thus large kernel array

values. Mathematically, this means that each datum has

a major physical contribution from points closest to the

surface. Consequently, there is a higher sensibility in this

region as compared to large depths. It is interesting to

observe that the application of weight led to previously

expected results.

Since we have an under-determined problem, the dis-

continuity in the prior information may result in unreal-

istic discontinuity in the obtained solutions - and it actu-

ally does. This problem can be partially solved by the

use of filters, and we have used a convolutional filter (p

(n): 0.2sfln-2) + 0.50 fin-t) + 0.2sp (n)). The code

SOFT5 appearing in Tab.2 and figure captions indicates

that this filter was applied five times to the solution (both

MRE and SVD). The use of the filter yielded good re-

sults, for all cases: Bullen A (Fig.3), HB1 (Fig.6) and

PREM (Fig. 9).

MI
n:0

The minimization of the above equation with the use

of the constraints yields

p(") : h: 0,. N (31)

;, . Znf.x,r,ln¡'

where l, are the Lagrange multipliers used in the objec-

tive function, and po(n) is the prior information in the

same physical dimension of the model. The prior pdf p@)

used here comes from the entropy maximization con-

strained by expected values (8q.26) and normalization

(F,q.29). Since we have a nonlinear system of equations,

we can, for instance, use the Newton-Raphson technique

for the determination of 1,'s, ancl then obtain the poste-

rior estimate. For the data vector, we have used the fol-

lowing values from Stacey (1969): M : 5.976 x 10219

and J: Jooro:8.068 x l\aag.cmz. In order to make

conparisons, we have considered the Bullen A, HB I and

PREM models as the "true" or reference model. These

reference models generate by forward modeling M and J

that are very close to the ones as input data. The HBI

model (Stacey, 1969) for instance, yielded the values of
mass of the Earth and its moment of inertia with an error

about I and l.60/o, respectively.

In any reference model we note that there is an abrupt

change ih the value of density from the mantle to the outer

core. The neglect ofthis change in the selection ofthe prior

estimate (for instance as in a linear increase in the estimate
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The nine figures presented are in fact a selection

from a large number of simulations that can be done by

mixing several kinds of weight and filtering. However,

we believe that the results are enough to give a feeling

for the use ofthis approach. The results are condensed in

Tab.2, in particular so as to compare the model misfit,

i.e. the percentual error between the reference models

(Bullen A, HB1 and PREM) and the input prior, or the

outputs by MRE and SVD, as given by the following

equations:

-PREV..-.. PRTOR

o JVFE

O SVD

It

.(

^ñnoooooc
.ooooooooj- ^nOì ry,rv"

oooo

,y

*"r#^.tr'ã r".c

12

0 1 000 2000 3000 4000 5000 6000 7000

DISTANCE (km)

Figure 9 - Comparison of the curves: reference PREM, the input PRIOR, and the results by MRE

and SVD. rWeights: 1.0 and 1.0. Results filtered by SOFT5.

Figura 9 - Comparação entre as curvas: reþrência PREM, informação prévia PRIOR, e os re-

sultados por SVD e MRE. Pesos: 1,0 e 1,0. Resultados filtrados por SOFTî.
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(34)
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Another feature that was tested in the algorithm was

the hydrostatic stability (Stacey, 1969), that is, density can-

not decrease significantly toward the center without demand-

ing implausibly high strength. This was implemented ap-

proximately by not allowing decreasing values of density

with depth. The result was not so different relative to those

not using this constraint.

^ I è lP ',rrr. G) - P ,nur, (n)
^- 

\Lv-l Nfi pru,r,,,.Ø)

Revista Brasileira de GeoJísica, Vol. l2(2), 1994

(32)



132 Inversion of the Earth's Radial Density Distribution

FIG MODEL w1 w2 FILTER Ll(%) L, (%) \(%)

1 BULLEN A 1.0 1.0 NO 9.38 3.90 9.42

2 BULLEN A 0.5 1.0 NO 9.38 3.63 9.42

-) BULLEN A 1.0 1.0 SOFT5 9.38 4.13 8.35

4 HBl 1.0 1.0 NO 8.76 4.25 8.35

5 HB1 0.5 1.0 NO 8.76 4.20 8.08

6 HBl 1.0 1.0 SOFT5 8.76 3.92 6.96

7 PREM 1.0 1.0 NO 13.96 8.81 t5.27

8 PREM 0.5 1.0 NO 13.96 8.09 15.27

9 PREM 1.0 1.0 SOFTs 13.96 8.52 t4.62

Table 2. Model misfit correspondent to Figs.1 to 9 (See text for W l, Vy'2, 

^t 
, A2 , 

^1 
).

Tabelø 2. Erros no modeloreferenteàs Figs. I a9, (Videtextoparq Wl, Vy'2, Lt,L2,Lr)

CONCLUSIONS

A stochastic tecnique based on an entropy principle

for the inversion of the Earth's radial density distribution

has been demostrated. The general procedure to get the ra-

dial density profile of the Earth requires the use of several

kinds of data. We simplified this problem considerably by

using only the mass and the moment of inertia, as well as a

good prior information. However, we are not proposing a

new reference model for the density distribution. We ex-

plored the use of a probabilistic approach to a well known
geophysical problem presented here as an ill-posed, under-

determined inverse problem. MRE is a method that allows

the easy inclusion of the ø priorl information; its posterior

estimate is the solution of the minimization problem, that is

consistent with the input data. We consider the results satis-

factory as long as the MRE output is close, both in a quali-

tative and quantitative sense, to the reference model, and

the results were better when compared to the generalized

inverse, using the same prior information. We stress that

only two data were used to reconstruct the model (with 22,

5l and 94 points). This means that the problem is "criti-
cally" underdetermined, thence the disagreeing results for
inconsistent priors. The consistent prior which we used,

applied the knowledge of an abrupt difference of density

between mantle and outer core, of a linear increasing curve

between the surface and that discontinuity, and, of an uni-

form value for the outer and inner core. In pafticular, that a

flat prior for the latter region modeled reasonably the val-
ues ofdensity closer to Eath center.
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