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ON A NEW COMPUTATION OF THE COLLISIONAL TRANSFER
RATES FOR MAXWELL MOLECULES INTERACTION

C.J. Zamlutti & 1.S. Batista

A new computation of the collisional transfer rates for Maxwell molecules
type interactions is presented. The relevance of the present computation is
that an approximated analifical expression is proposed to substitute and invert
the infinite series relating the apsidal angle to the impact parameter. This allow
us to use more refined computer methods to compute the transfer integrals. A
comparison with the old results is performed and conclusions are drawn as to
the relevance of the discrepancies.
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SOBRE UM NOVO CALCULO DAS TAXAS DE TRANSFERENCIA
COLISIONAIS PARA INTERACOES DO TIPO MOLECULAS DE MAXWELL
Apresenta-se um novo cdlculo de taxas de transferéncia colisionais para interagdes
do tipo moléculas de Maxwell. Propde-se uma expressdo analitica aproximada
para substituir e inverter a série infinita que relaciona o dngulo apsidal ao
pardmetro de impacto. Isto permite o uso de métodos computacionais mais refi-
nados para calcular as integrais de transferéncia. Faz-se a comparagdo com os
resultados antigos e s@o feitos comentdrios acerca da relevdncia das discrepdnci-
as encontradas entre os cdlculos feitos neste trabalho e o anterior.
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INTRODUCTION

The collisional transfer rates can be expressed as:

oW

S, =2n 'f[l —(~1) cos’ (20 )]sds, (1

0

(Burgers, 1969; Chapman & Cowling, 1970), where 0 is the
angle which the relative velocity of the colliding particles
makes with the apse line and s is the impact parameter (see
Chapman & Cowling, 1970)

To solve Eq. (1) it is necessary to know a relationship
establishing the dependence of 6 on s. This is possible
provided that one knows the particular law governing the
binary collision. Of special interest is the case of the inverse
power law, for which the potential energy for the two
interacting particles is given by:

U(x) = K/x» (2)

where K is a constant and x is the radial distance between
the particles. If we call w the relative velocity we finally get
(Liboff, 1969):

0= syj{[l —s*/x’ ]— 2U(x)/ (MWZ)}_V 3)

where x_ satisfies:

1-s%/x 2 = 2U(x )/(uw?)

and g stands for the reduced mass of the two colliding
particles. Integration of Eq. (3) yields the desired relation
between fand s.

The case n = 4 merits special attention in upper
atmosphere studies. Molecules that interact under this law
are called Maxwell molecules (see Chapman & Cowling
(1970) and references therein). For these molecules the
transfer rates depends on w' and the final Boltzmann
collision term results independent of the particular velocity
distribution function governing the microscopic behavior of
the gas particles. [on-neutral interactions in the upper
atmosphere can be properly described by this case (Schunk,
1975, 1977; Barakat & Schunk, 1982) and this plenty
justifies a renewed interest on it.
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In this work we undertake the computation of the
collisional transfer rates for Maxwell molecules interactions
using more advanced computational techniques than the
earlier works reported by Burgers (1969) and Chapman &
Cowling (1970).

COMPUTATIONAL PROCEDURES

The solution of Eq. (3) is presented in the appendix
and according to Eq. (A-10) one can write:

6= f (b)f,(b) = f(b), )

where b depends on s as expressed by Eq. (A-2), the function
f, (b) is given by

b2
[bz + (b4 +4 |/2]'/2 (5)

fi (b) N

and f, (b) encloses the result of the elliptic integral as:

f,(b) = (n/2ﬂl ~(12) h+ (%jz 2

2 )
_( 1.3.5) h3+(1.3.5.7) W
24.6 2.4.6.8 )
with
b* + 4)IJJJ = h2
h=——r———
61" + 4)”'_ + b2 @)

Since b has an infinite range in Eq. (1) it is better to
express it as a function of & to compute the transfer integrals.
To do this we plotted in Fig. 1 the relation established by
Eq. (4) and tried to invert it using simple functional relations.
Our guideline to try a prospective analytical expression to
invert and reproduce Eq. (4) was the limiting behavior of b
=f"1(6)for 8— 0 and 8— 7/2 (see Cercignani, 1988). The
fitting methodology was the nonlinear least square fitting.
Thus we arrived at the function:

bz[mz—e

057
tand—-6/10
Tl2 ) ®)

that is also plotted in Fig. 1, for comparison,
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Figure 1 - The inverted function b(0) (solid lin¢) and
its aproximation given by the analitic cxpression
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Figura | - Fung¢do invertida h(0) (linha continua) ¢
sua aproximag¢do dada pela expressdo analitica
n/2-0

(7JM7 tan0 o lint aidd
2 H [0 (linha tracejada).

Using Eqs. (1) and (8) together with the Romberg
numerical integration method we get:

S, = 2nw '2K/n)'20.5712, (9)
S, =2mw '(2K/11)"0.6196. (10)
DISCUSSION

In order to comparc the obtained results with those of
earlicr publications one must recall that the constant K of
the present work is four limes smaller than that of Chapman
& Cowling (1970). Therefore, K = K,,/4, where K, is the
constant used in this last work. Replacing this value in Egs.
9 and 10 one gets:

S, =2nw (K, /1)'70.4039, (1

S, =2mw (K, ,/1)'?0.4381. (12)

The results presented by Chapman & Cowling (1970)
are:

S, =2nw (K /1) 0.422, (13)

S, =2nw '"(K/1)'"0.436. (14)
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The discrepancy between the present results and those
published earlier is less than 5% and appears for S,. As for
S, the agreement is surprisingly good being of the order of
0.5%. Earlier computations (sce references in Chapman &
Cowling (1970)) were carricd out before 1930 being difficult
to retrieve. Thus they did not have the now available
computer facilities to properly invert Eq. (4). Using Gaussian
numerical integration methods to handle the infinite limit in
I2q. (1) they were probably more subject to errors than the
present computation. This suggests that the carlier value of
S, could be over- estimated in 4%. Anyway, this discrepancy
is not relevant. Much more important is the use of the correct
value of K, since it depends on the actual form of U(x). This

valuc is given by:
K=ac/2 (15)

where o is the atomic polarizability of the neutral gas (Banks,
1966).

CONCLUSION

The collisional transfer rates for Maxwell molecules
interactions were computed and the obtained results
confirmed the carlier values published by Chapman &
Cowling (1970). Attention was called, however, as to the
importance of the actual form employed for the potential
energy (sce Eq. 2) to the final result. The form used in this
work is consistent with that of Banks (1966) from which the
constant K can be obtained for the most common ion neutral

interactions in the upper atmosphere.,

APPENDIX

A RELATION INVOLVING THE IMPACT
PARAMETER AND THE APSE ANGLE

In this appendix we present the computation of the in-
tegral of q. (3) necessary (o establish the formal relation
between © and s. To start with we define new variables as:

y =s/x, (A.1)

b = s[(uw)/2K)]" (A.2)
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Replacement of variables in Eq. (3) yields:

o=
i[i-y -0 /b)“] (A3)
where ¥ satisfies:

[—92— (/b =0 (Ad4)

We are interested in the particular case of n=4, for which the
solution of Eq. (A.4) becomes:

L lJ_r(1+4/b“)w

—— (A.5)
Vi 2/b*

and, in special, is the lower sign solution which has a physical
sense. Hence:

> (A.6)

To integrate Eq. (A.3) for the case n= 4 we write it as:

G:bzy_l- dy

. N AT
n[—yz—yl2 yz—yf)] (5P

which can be put in a more tractable form making the
substitution y =¥ sin u.
One then gets:

n/2

du

0=b> | ———
J(f/lsinzu—yf)‘/_ (A.8)

Now recalling that y2 +y 2= -b* we have:
=] y y|

w2 d

'l. |§72(1+sin2u)+ b* ]/2 (A.9)

0=

If we call a> = §> + b* and k2 = y¥/a’® results:

/r/7

0 = (b /a)

du

0 (l+k sin u)l/7

(A.10)
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To solve it one uses the binomial expansion and get:

/2
I= JE —05k2sin?u +0375k*sin*u—

0.3125k sin®u +0.2734k sin®u —
02461k 'sin'®u+0.2256k sin">u—...Jdu (A.11)

Note thatb > 0 = k? > l and b —» o0 = k? - 0.
Hence the largest error in the computation of [ occurs forb
— 0. However, in this case (b%/a) > 0 = 6 — 0. The largest
value of  occurs forb — oo, when (b%a) — 1 and k* = 0, in
which case [ = /2 and then © = /2 . For values of b such
that 0 < b < o the above integral of Eq. (A.11) converges
rapidly since it can be expressed in the form:

l—(n/7{]—(l/7) k” + ( jk“
(5 G
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