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This paper presents a coherent approach to the evaluation of limits of certain
infinife serieì and to the establishrnènt of relationships which exist between such

series. The approach is based on the connection which exists between the Discrete
Fourier Trarisform and the phenomenon of aliasing as expressed by the Poisson
sum formula. One of the limits which follows naturally from the method described
in this paper is for the well known Leibnitz series which converges to æ. The
interpretation of certain infinite sums as aliased spectra allows many interesting
relationships between series to be derived and some new results are presented

which may be of interest to communications theory.
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sÉnT3s INF.INITAS, LIMITES, RELACIONAMENTOS E SUAVIZAçÕNS -EsTC

trabalho apresenta uma abordagem coerente de avaliação dos limites de algu-
mas séries infnitas, e o estabelecimento do relacionarynto q-ue existe entre estas

séries. A abordagem é baseada na conexão entre a Transþrmada Discreta de
Fourier e o processo de suavização, da maneira como é expresso pela equação de

Poisson. Um dos limites que o metodo descrito neste trobalho apresenta de modo
natural, é em direção a muito bem conhecida série de Leibnitz, que converge
para 7T. A interpretação de algumas somatorias infinilas, na þrma de espectros
-suavizados, permite muitos relacionamentos inleressdntes enlre sëries deriva-
das, e alguni resultados de interesse à teoria de comunicação são apresentados.
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INTRODUCTION

The Shannon sampling theorem (Shannon, 1949),

together with its various extensions and applications,
superbly reviewed by Jerri (1977), has been offrindamen-
tal importance both in information and communications
theory. A related theorem, expressed by the poisson sum
formula (Papoulis, 1977), is also of considerable interest
and it is this theorem and in particular its relationship to
infinite series which is explored in this paper. As often
happens in mafhematics and communications theory, a result

is obtained in terms of an infinite sequence of numbers which
is defined to be an infinite series. Of particular importance
are the limits ofinfinite series, ifthese exist, and relationships

between series such as products for example. An example
ofthe application ofinfinite series in geophysics which has

generated a considerable amount of interest is the
caracterization of a wavefield in an inhomogeneous medium
as a wavefield in a homogeneous reference medium, and a
perturbation which takes the form ofan infinite series called

the Born series. Recently, Carvalho et al. (1991) presented

a procedure to remove all free surface multiples from marine
seismic data using a subseries of the full inverse series. Ara-
ujo et al. (1994) have developed a method to attack the more

difficult problem of removing interbed multiples by using
a more subtle selection of inverse subseries.

Many books exist which develop expressions for limits
of series and show relationships between series (for example
Knopp, 1931), and our aim is not particularly to develop
new limits or expressions. Rather, we develop in this paper

a coherent approach to the analysis ofcertain types ofinfinite
series which is based on the phenomenon of aliasing and

we present some new results.

As is well known, aliasing is caused by the sampling
of a continuous function of time, x(t), at intervals of time,

Át. It is the result of the addition from zero to the Nyquist
frequency, Io X(l), the Fourier Transform of r(/), of all the

contributions of theX(/) which are replicated at intervals of
UAt in the frequency domain (Bracewell, 1978). The fact
that the fully aliased spectrum is equal to the Discrete Fourier
Transform, DFT, of the sampled data is expressed by the

Poisson sum formula (Papoulis, 1977) which has been used

in the past to derive a variety ofinteresting results (see e.g.

Papoulis, 1977). This formula in fact states that the infinite
sum representing the aliased spectrum maybe computed in
only N/ogfi operations using the Fast Fourier Transform,
FFT, algorithm.

In certain instances, illustrated below, the DFT may
be evaluated in closed form and we may equate the ensuing
expression to the infinite series which is the aliased spectrum.

This procedure leads to the limits of series which we
mentioned above. Further, it so happens, that for functions
which possess closed form DFT expressions, the ratio of
their DFT's may be shown to be a constant. This observation

will lead us to the formulation of expressions which contain
relationships between series and in particular the products
ofinfinite series.

THEORY

The Poisson sum formula is generally written as

(Papoulis, 1977)

kZxr¡ ) = &I x(nat)e-i2d"u, (l)
k

+_
Lt n

where x(rÂl) is x(/) sampled at intervals At andwhere I,
implies that the summation indexT varies from - æ [s * æ.

Since we will be concerned in this paper with functions of
time which are causal and may be discontinuous at the origin,
Eq.(l) must be slightly modihed. Spe^cifically, since a cau-
sal time function may be denoted by x(/) : x(/)f(/), where
1(/) is the Heavyside step function and is defined to be equal

to l/2 at l: 0, Eq.(l) becomes

4*r, .[l= o,4x(nvt)e-i2nf'nt -

-)mP¡ (2)

We emphasize at this point that the interpretation of
Eq.(2) is that the infinite sum which arises from the
superposition of the displaced transforms is equal to the DFT
of x(t) which we will represent byXrand which, naturally,
is evaluated at discrete frequencies,

Limits of Infinite Series

In this section we develop an approach to the evaluation
of the limits of certain infinite series. In particular we will
be concerned with power and trigonometric series.
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(8)

Power series

We begin by considering a causal function impulsive at

the origin, x(t) = eo'lvith transformX(/ : ll(a + i2nñ. Sampling

x(/) at intervals Àr and performing the DFT we obtain

x, = Ltle-dn^tc-i2rrn^' -+ (3)

Il-='k 1+k
4

If we express Eq.(7) for the case a : 0 and l: ll4 we

obtain the infinite series
If we let r : e-(d+¡2n!)^t and since Lî:or': l/(1 - r) we

may write Eq.(3) as

Lt Lt Allt+rlr/ _t _ |nt-1-, 2 2\r-"/'

Equating the aliased sum to X, given by the above

expression we obtain
Evaluating the series in Eq.(8) for k: - - to + - we

obtain

Lt
2t

k

I 1+r\_t
r-r)

-( 111--+---+357TC 1

Let us, for convenience, assume d,t : 2n. Letting p =
2nf we obtain from Eq.(4) lor lp, < ll2

(4)

I + e-d2Íe-iznþ

1_ n-aznU-iznl\
(s)

(6)

which is the well known Leibniz formula (Thomas & Firmey,

te79).

Before proceeding, we must justify setting s = 0 in
Eq (7). This appears to be incorrect since, as we know, the

Fourier transform of.É(l) is equal to ll2õ(l) - l(2nfi and not

-i/(2nfl as implied by setting a = 0 in X(fi : l/(ct + i2nfi . It
turns out in fact that all the equations which we derive in this

paper using Eq. (2), which implies a Íime series of infinite lengtl¡

are valid for time limited fimctions. In other words, given

u+izn(f.a^J)

\- ct -;(B+fr)
l**1g*¡y=

Ycr_
? "'(þ+ 

k)'-

îC

Splitting Eq.(5) into real and imaginary parts we deri-

ve the two following expressions

e -o"t

0

0<r<N^/
_oo<t<0:;ir/Ar<t1ú,x(t) =

and

1 _ U-a4n

l+ e-o+n -2u-uztr cos2îB we show in the Appendix that Eq.(5) is obtained
independently ofN and consequently for any c,.

At this stage we would like to mention a fact which
may be of interest from a number theoretic view point. Let

e(I) represent the error between the value of æ as computed

using Eq.(8) for k: - LIo +L and a "true" value of zr

computed using æ : cos-t(-l). We computed e(Z) using

extended precision on a VAX lll785 and obtained the

following interesting results.

e(4999) : 1.000 100007 5002499 x l'a
e(49999) : 1.0000 100000750002499 x l0-5

e(499999) : 1.00000 10000007500002499 x 10 6

\- þ+k
?ú+$+ü=

2e-"2" sin2rcþ (7)

I+ e-o4" - 2r-a2n cos 27cB

As particular examples, using Eq.(6) and substituting

u: ll(2rù and p:0 we derive the limit
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The error exhibits a remarkably well defined structure,

In fact, using this property, one may evaluate n using Eq. (S)

andL = 49999, say, whith an accuracy ofone part in 1023

rather than one part in 105. We remark that e(L), which is
proportional fo Il(2L + 1), exhibits a similar, but different,
structure which depends on the particular value of Z.

We now look at a second example of determining limits
of infinite series by considering the function x(t) : te-dtfor
whichX(/) = l/(o + i2n)2. Using an identical approach and
again letting Lt :2n for convenience we obtain

no information about x(/). In other words, aliasing has

annihilated all spectral contribution ofx(/). The very best
that we can possibly expect to recover from the aliased
spectrum is the function z(/) itself. We now express this
fact in a general form.

Let us windowx(r) withw((t-n\t --ùm where t is the
time shift of the midpoint of the window w(tZ) with respect

to the (n + l)t¡ 
^/ 

interval and 0 < x < t. T aîdt are related
through T < 2 min(t,,A,r - r) for all windows except for the
boxcar window for which T < 2 min(t' Lf - r). The fact that
the aliased spectrum of x(t)w((t - n\,t - ùA is zero can
now be expressed by

l.l.-xqu¡w(r(f +
Tu--
-0.

* - r¡ u-''"(nat+ r)(f + k t 

^t 
-u) du =0

(10)

T

Consequently we have

I 4TÍ,2 e-21rct g-iznþ

(ct, +l(B + k))' (1- e-2""e-i2nþ)2 '
(e)

For o, = 0 and þ= ll4 we obtain a similar result

We emphasize that Eq.(10) is rrue for any X(/)
whatsoever and for any window function W(f. As simple
examples of series which arise from Eq.(10) we let x(t) : l,
A,t = l, r¡ = 0 and consider two window functions. For a trian-
gularwindowfunctionwith T: l, t: ll2andf:O weobtain

..TE-sn'-k
Lcos2nk --:- = o,7k'
(where for k = 0 the conesponding term is equal to n2l4). For a
boxcar window function, letting Z: ll2,wederive the series

I cos2ær(ß + k)
sinf,{F + fr)

0,
G+¿)

k

again, evaluating Eq.(9) for particular cases, we determine
that for a:0 and þ: ll2

\- I 
--,4/-\Z

u [!*t)\2)

I It 2I
k 2 k

1

-+ k
4

Many other formulations are clearly possible and we
leave the discussion of these formulations for later.

Trigonometric series
We considerar a continuous function of time z(/) to

which we add another windowed series x(/)w(t/T) to
obtain y(l) : z(t) + x(t)w(t/T), where w(t/T) is a window
function of length Z such thar w(l) = 0 for ltl > T/2. We
now sample y(t) at intervals Âf where Lt > T and T lies
within one of the intervals A/. It is clear that whereas
Y(l), the Fourier transform of y(t), contains the spectral
contribution of x(t)w(t/T), the DFT of the sampled
function, I' which is the alised spectrum of y(t), contains

for lBl < ll2 and ll4 <ltl< 3/4. This is and interesring series

in that not only does it converge to zero but, for certain
values of t which depend on the number of terms summed,
(and which are in fact the roots of the corresponding
cquation), the sum is actually zero.

Relationships between infinite series

In this section we develop a general approach which,
for certain series, leads to interesting relationships
between infinite sums. Let us define z(t) fo be the
convolution of two continuous functions of time, r(/) and
y(l), i.e. z(t) = x(t) * y(t) (where * implies convolution).
For certain functions, as we show below, the ratio
expressed by
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DFT is zero at the Nyquist frequency, þ : l/2, it follows
immediately from Eq.( I 3) that+-Y, = K¡,

^I
(1 l)

may be evaluated in closed form. K, is related to the DFT

of the difference between the analytic convolution, z(/) =

x(t) * y(t), and the discrete convolution, z(n\,t) : L-
x(m\t)y((n - m)Lt), and in certain instances is a constant.

Writing Eq.(l1) in terms of the series which correspond to

the aliased spectra of x(/),y(t) andz(t)we obtain expressions

which contain the products of infinite series. As an example

of this approach we consider x(t) : y(t) : en'H(t) and z(t) =

te-"t$(t). Using the same development as before where r :
e_(a+i2n!)^,t, We fOfm

x " = 
Lt (!l!\. t. - nt, --!' 2 \1- r )' (1- r)'

Because ofthe discontinuous behaviour ofx(/) at t : 0

we modiff Eq. ( I I ) slightly and using the above expressions

we form

Z" ( t \-r -l x"+:Nl=-a^t
6rlt4Ð ("/ ' 2^")- DÚ' (12)

Putting Eq.(12) into the form of infinite series and

assuming for convenience as before that Âl: 2æ we obtain

for lBl < l/2

We mention, without actually evaluating the complete

expressions, two other possibilities for generating products

of series

Case I.

If r(t) : te-"', y(t) : e-"t and, z(t) : x(/) *y(/) then

Z.r -Y"=0.xr r

This leads to products of the form

s^\-
1 <"+l(B+ Ð)' ?

s1
? f".Xø;¡ry

Equating real and imaginary parts

a'-çB+k¡'
(a' + (þ+ k)')'

(;

1

(cr +l(B + r))

Case II.
We let r(r) : y(t) : te-"'.Then

zf 
' Lt2
t1-xr'6

This expression allows the development of
relationships between sums where the left hand side of the

equations has the form

2

I - TC'
(c¿ -t(g + k))'
(a'+(þ+k)')'

a -i(þ + k)

uz +(þ+k)2k

k
I

îC
:(

2 2

I c{, þ+k
a2 +(þ+k)2 az +(þ+k)2k

\- o¿ s þ+k
+7+rc;*+æ;$+ú

(13)

In passing we remark that particular cases follow
immediately from the interpretation of the sums in terms of
aliasing. Thus, since aliasing of the imaginary part of the

DISCUSSION

We have presented a new method of determining limits
of certain types of infinite sums which stems from the

relationship of aliasing to the DFT as expressed by the

Poisson sum formula. The observation that the DFT's of
certain functions are related very simply when expressed as

in Eq.(l1) has led to the development of various product

formulae and to various expressions relating infinite sums.
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Our mpthod depends on obtaining a closed form expression

for the DFT and is very rich in possibilities. Specifically, if we

let Sr: ETonirn,we can establish the recursionS; rj,S ,for
j : 1,2,..., compute the required expressions for the DF'T's

of functions such as x(t) = ¡'"- at and thereby generate a

multitude of limits and relationships between infinite sums.

In this paper we have only indicated, with examples, the

general approach which is to be followed.

Our approach is, of course, valid for functions which
are not necessarily causal. For example, computing the

closed form DFT of the equivalent filter in the frequency

domain which produces linear interpolation in the time
domain and using Eq.(1) yields the relationship

Infinite Series, Limits, Relationships and Aliasing
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APPENDIX

We show here that Eq.(5) in the text is valid for time-
limited functions and is independent of the length of the
time function. This in turn implies that Eq.(5) is valid for
anyvalue of a,, includingzero.

Consider the following time-limited, causal function

0<t<NLt
-oo < t <0 ;NLt <t <æ

The Fourier transform is given by

=- 
sin22æ(þ+ k)

ìffi=cos27rg' lBl=
I

2

Finally we would like to emphasize the role which the

DFT can play in the evaluation of inñnite sums. Let us as-

sume that we wish to compute the value of \oQ@ + k) to

some given accuracy. If Q@) may be expressed as the

Fourier transform of some continuous function of time, q(l),

then the limit may be evaluated inNlogJ{ operations using

the FFT algorithm to an accurary allowed for by the parti-

cular computer. For example, suppose we wish to determi-

ne\otanalll2æ(p + k)'? for lBl < ll2 fo an accuracy of one

part in 107. Since tan-tl(2nflz is the Fourier transform ofx(/)
: e-t't sin t/t The infinite sum may be evaluated by discretising

x(/) at unit time intervals and evaluating the FFT at the parti-

cularvalue ofB. Since an accuracy ofone part in 107 requires

the summation index k to run between -106 and +106 the

ratio of the times required for the computation using the sum

itselfand the FFT is 103. Ofcourse another advantage ofthe
FFT approach, where it is in fact an option, is that the FF f at

the same time evaluates the sum at all other values of B
depending only on the number of poins used in the FFT.

ACKNOWLEDGEMENTS

We wish to express our gratitude to Petrobras and the

Conselho Nacional de Desenvolvimento Científico e

Tecnológico, CNPq, for generous support. We also wish to

thank Milton Porsani and Wietze Eckhardt for many

X(Í)= 
loto' 

e-ü'e-i21Ítdt -
u-at-izn\ lNLt_l
a+i2xf 

lo

I e-"'
x(r) = 

{o
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The corresponding aliased spectrum,X"(fl, is

109

an expression which is independent ofN and is valid for
any Ât and o. Eq.(A-a) is equivalent to Eq.(5) and thus we

have established thejustification ofsubstituting a = 0 in
Eq.(7).

The above approach is quite general. For example,

considering

T. J. Ulrych & J. T. Fokkema

x'(Í)=1"."fuA-
^ ¿-uNLt- 

iZT(f + kl Lt) NAt

\ 

--

? u+izn(f +þ)
L,-* o<t < NN

x(t\=7\ / [0 -oo< t <0; NN <l <oo

using the fact that

Ç,,, -r(l-rN) _ NrN

ft"' (t-,)' (t -')'
On the other hand, computing the DFT, andusing the

fact that

=lL - e-@*'t"t'*o')4
a+izn(f +fi) (A-l)

9r'= l-rN4 7-r

I

I_ e-@+i21tf)N\t l

(T- e-@*iz"ÐNt' z
(u +izn(Í * #))'

and using the above development we can establish that

we have

n

N-1

n=0

I

k

Ltlx(n\t)s-iznÍn^t -

: LtZn. 
(ati2nf)nvt 

- 
L, 

* 
Lt 

e-@+izl{)N$t22
-Lt 2

)

-(t+i2¡f\At2e
1_,-(a+izxl)Lt

-0

_^t(-tl. 1* U-@+iznf)Lt

1_ U-@+iznf)Lt

Now, substituting Eq.(A-1) and Eq.(A-2) into Eq.(2),

we obtain

The term in N once again factors out of the equation

and we obtain

s I ..2 e-(q+i2rÍ)At
- 

^a'-

? ("+iz"1f +*))' (t-e-t"*iz"t>u¡" (A-5)

an expression independent ofi/and valid for all Âr and s.

Eq.(A-5), with Ât :2tr, is equivalent to Eq.(9) which was

derived from Eq.(2) with far less algebra.

Submetido em: 10106/94

Revisado pelo(s) autor(es) em: 24102/95

Aceito em: 01/03/95

| - e-@+izrl)N^t \. 1_
I u+izn(Í +*)

(A-2)

(A-3)

(A-4)

N(__l
cl

..sl-
+a+nt;Ð-

1 * ,-(a+izxî)Lt -0
1_ u-@+iznÍ)Lt

From Eq.(A-3) we conclude that

At
2

y * ,-(ø+i2nf)Lt

1 _ ,-(u+iznf)Lt
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