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ABSTRACT

Two-point raytracing problem is solved for events in a piecewise homogeneous and laterally varying 3D anisotropic media by continuation techniques. In conjunction
with the shooting method the algorithm can be used for computation of qP, qS1, and qS2 events. The algorithm has the same performance and robustness as
previous implementations of the continuation method for tracing rays in isotropic models. Routines based on our algorithm have several useful applications. First,
an efficient forward problem solver for traveltime inversion of elastic parameters in the presence of anisotropy. Second, Newton-Raphson iterations during two-
point raytracing produce wavefront attributes, slowness and wavefront curvature. These attributes allows the computation of geometrical spreading and second
order approximations for traveltimes. Therefore it can be used to investigate the effects of anisotropy on CRS, in simple velocity models.

Keywords: Ray theory, confinuation method, anisotropy

RESUMO

0 raio conectando dois pontos em um meio anisotropico, homogéneo por partes e com variagdo lateral, é calculado utilizando-se tecnicas de continuagdo em 3D.
Se combinado com algoritmos para solugdo do problema de valor inicial, 0 método pode ser estendido para o cdlculo de eventos qS, e qS,. 0 algoritmo apresenta
a mesma eficiéncia e robustez que implementagdes de técnicas de continuago em meios isotropicos. Rotinas baseadas neste algoritmo tém vdrias aplicacdes de
interesse. Primeiramente, na modelagem e inversdo de pardmetros eldsticos na presenga de anisotropia. Em segundo lugar, as iteracdes de Newton-Raphson
produzem atributos da frente de onda como vetor vagarosidade e a matrix hessiana do fempo de tréinsito, quantidades que permitem determinar o espalhamento
geométrico e aproximagdes de segunda ordem para o tempo de trnsito. Estes atributos permitem calcular as amplitudes ao longo do raio e investigar os efeitos da
anisotropia no empilhamento CRS em modelos de velocidade simples.
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INTRODUCTION

A computational scheme i proposed to solve two-point raytracing,
in a piecewise homogeneous and laterally varying 3D anisotropic layered
media, based on the continuation method . The algorithm is an extension
to the anisotropic case of previous works for isotropic media (KELLER;
PEROZZI, 1983; DOCHERTY; BLEISTEIN, 1984).

The continuation method permits fo trace rays through a complex
model by continuous transformations from simpler intermediary
configurations. This procedure warrant robustness to the iterative
techniques used to solve the nonlinear system of equations that arises
from Fermat's principle. A sequence of continuation steps is performed.
Starting with a vertical ray in an isotropic layered medium, the isotropic
slowness surfaces are deformed to the intended anisotropic slowness
surfaces at each layer. The next step is to transform the flat interfaces to
the desired curved ones. Finally we move source and receiver positions to
the configuration we want fo achieve.

The algorithm has the same perfomance described by Docherty
and Bleistein (1984) for isotropic models when computing qP raypaths.
The computation of qS, and qS, raypaths presents difficulties af the
singular regions where the slowness surfaces for these waves intersects
one another and regions where they are not convex. A shooting approach
can remedy most of these problems, but the performance degrades if
many restarts are required.

This procedure is well adapted to compute raypath and traveltimes
for surface seismics and VSP experiments in anisotropic models. The
algorithm can be a forward problem routine for a traveltime inversion
scheme which produces estimatives of the elastic constants structure for
subsurface, most like the works of Whitmore and Lines (1986), Chiv and
Stewart (1987) and Guiziou and Haas (1988), without the limitations
of the elliptical anisotropy assumption. Other possible applications include
VSP-CDP mapping and the computation of wavefront attributes, slowness
vector and wavefront curvature, along the raypath.

FERMAT’S PRINCIPLE AND RAYPATH COMPUTATION

We assume a piecewise homogeneous, anisotropic, layered
medium where the interfaces are described by functions

F(x)=%-2(%,%)=0

where X, represents Cartesian coordinates. The two-point raytracing

problem in layered anisotropic medium through N inferfaces can be stated,
by Fermat’s principle, as the following variational problem in phase space,

Minimize N

X %,s" t=Qs/Dx; 1)
a=1
subjected to,

#*(s7)=0, a=1..N, 2)

where, t is the traveltime along the ray, DX? = x* —x‘?‘l,

X2 = xf) represents the ray infersection with the a—th interfuce,
x° = (x?) is the source position, x = (x") s the receiver
position, s = (sf’ ) is the slowness vector af the &-th layer,

H? = (Sa): is the dispersion relation at the a-th layer.
Summation convention is assumed on subscript index j which identifies
the cartesian coordinates directions.

Equation (1) arises from the relations (WUSGRAVE, 1970),

t= nrays.dx = nrays.vdr =i, dr. (3
Here sis the slowness, v is the group velocity and ¢ traveltime
along the ray. The last identity results from the polar reciprocal relationship
between slowness and group velocity siv 2 1. For a piecewise
homogeneous layered media equation (3) reduces to (1).
The solution of (1) subject fo (2) is straightforward using Lagrange
multipliers,

Minimize

N
X6, 1% t= DX + 1797 ($°). (4)
a=1

following standard procedures we obtain the nonlinear system of
5N + 3 equations on 5N + 3 unknowns,namely, x?, x&, 7,

S
Fé¢ =Ds’ +Dsip,z?
F2 =Ds? +Ds?,V? =0,

F3 = DX, o - DX, o7 =0, (5)
F3 = DX, o - DX, o7 =0,
F2=u9°(s")=0,

These five equations express the basic geometrical relations for
rays and slownesses through a homogeneous layered medium. Equations
for F2 and F can be written as

(s -s")2n =0, (6)

where N2 is the unit vector normal to the a-th interface.This
equation is a statement of the Snell’s law. It requires that the variation
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of the slowness vector across an inferface be parallel to the interface
normal, i.e., tangential slowness component is continuous across the
inferface. Equations for F3 and 2, express the relation between
ray direction and slowness surface, and can be written as

(s -x**)=D* =0, (7)

this equation states that ray direction should be normal fo the
slowness surface. The last equation for =, defines the slowness surfaces
at each layer. The system of equations (5) in vector notation is,

F(u)=0, (8)

(fll, ,fsl,m’fN’m,fN,fN+1,fN+1’fN+1),
ut (><i><% x5, 9, ').

The system (8) can be solved iteratively using Newton-Raphson
method. At the A“th iteration this corresponds to:
1. solve

pu) 4D F = F(u(K)) for Du ,

2. update

u(K+1) = u(K) + Du(K)

: (9)

CONTINUATION METHODS

Continuation techniques are used to solve the system (8) in order
to add robustness to the Newton-Raphson iterations (9). The confinuation
method consists in solving the following nonlinear equation

F(ug)=0

instead of (8).

The parameter g is intended to control the smooth transformation
from problem F(u,0) = 0, whose solution can be readily found, to
F(u,2) = F(u), which is the problem to be solved.

The solution of the two-point raytracing in 3D layered anisotropic
medium can be constructed imbedding a sequential application of the
continuation technique for the solution of (8).

(10)
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Continuation of slowness surfaces For each layer, the
dispersion relation may be written in the form

H* () = g, +(1-0)HE, 1=1. N, (11)

where #£2.
anisotropic layers and for initial isotropic layers, respectively. The starfing
layered isotropic model (g = 0), has compressional velocities
a’ =max (a,,a,,,85), af each loyer, were are the density
normalized elastic moduli in condensed notation (MUSGRAVE, 1970).

Begining with a vertical ray in the inifial flat layered isotropic
model, so u(g = 0) is trivially computed, the algorithm proceeds as
follows. The initial guess for Newton iterations (9) foranewg = g +
D g is computed (DOCHERTY; BLEISTEIN, 1984):

and 242 are the dispersion relations for the

1. solve
dF du; du
—=—0p JF+F.g=0 for —,
dg dg 9= dg (12)
2. start Newton iterations from
@ (g+0g)=u(g)+ D
g+Dg g dy g. (13)

Then iterate using Newton-Raphson equations (9). If the Newton
method does not converge in 5 iferations, halve Dg and start again.
After convergence double the value Dg and confinug in the same way
until g = 1. Usually, we can go from g = O to g = 1 in one step
Dg = 1. Wheng =1, the model is the desired set of anisotropic layers
with flat interfaces.

Continuation of interfaces The next step is to deform the
interfaces from flat layers to the desired ones keeping source and receiver
vertically aligned. This is done using,
X =h+92% (x,%,), (14)

s0, when g = O, the interfaces are flat, and, when g = 1, the
desired interfaces are achieved. The interfaces are defined by specifying
a set of points Z (X, %, ) over a grid for each interfuce. B-spline
interpolation are used to define the interfaces and evaluation of the
required derivatives.

The procedure follows as before. The starting values for Newton
iterations is computeted similarly from



174

D RAYIRACING THROUGH HOMOGENEOUS ANISOTROPIC MEDIA WITH SMOOTH INTERFACES

2—5—3—:05 F+F,g=0, (15)

and

u’=u +$ Dg , (16)
g

where u(g = 0) is the solution of the slowness confinuation procedure.

Receiver and Source continuation ~ Now that the intended
media structure was achieved, the next step is to move the receiver to the
desired configuration applying the continuation procedure fo the relation,

= gX?ec (1 g) rec ! (17)

Where X o = (X0 Vieor Zres ) - Here g = O means a previous
computed receiver position and g = 1 the new receiver position for
raypath computation.

The starting guess for Newton iterations comes from the
solution of

dF _du; dX, ..

———OE) F+ = OE) F 0,

dg dg dg (18)
with

w=u+Ypg (19)

dg

here u(g = O) is the solution for the previous receiver position.

The same procedure is applied for source continuation. The corresponding

expressions can be obtained just changing the labels of receiver position
for the source position at the above equations.

SHOOTING STILL REQUIRED

Two-point raytracing has its drawbacks, though. Firstly, Newfon-
Raphson iterations fail when matrix © F is singular. This occurs in
several instances during raytracing: over an interface saddle point, if ray
is tangent to an interface, or when receivers are at shadow zones.

Secondly, when more than one ray connects source and receiver, two-
point raytracing converges to a single trajectory depending on initial
quess, in other words, only a single branch of traveltime surface is
computed and the method fails at the borders of these branches. To
overcome these problems the algorithm has to be combined with a
shooting strategy (PRESS et al., 1989). Whenever Newton iferations
fail a ray is computed using the shooting algorithm. Since raypath is a
straight line in each layer, raytracing is reduced to compute the
intersection of the ray with the interfaces and apply Snell’s law to proceed
across an interface until we reach the layer containing the receivers.
Once a new ray is successfully computed in the neighborhood of a singular
point, two-point raytracing can be tried again to compute rays to nearby
receivers. If the ray identifies a shadow zone the procedure is interrupted.

NUMERICAL RESULTS

The algorithm was applied to compute raypaths for a model
consisting of five layers, having strongly anisotropic elastic properties,
separated by smooth interfaces. The density normalized elastic parameters
for each layer are presented in appendix A. The layers are indexed from
1o 5 from top to bottom. The qP group velocity surface for each medium
are shown in Figure 1, Figure 2 and Figure 3.

We only present computation of rays associated with qP events,
although gS events can be computed if an initial ray is determined using
the shooting method. Figures 4(a) and 4(b) show the result of raypath
computation for receivers along a line in the surface. The raypaths include
a multiple in the third layer.

The second example, Figure 5, includes an unusual configuration
of source and receivers at the surface just to point out the possibilities of
this implementation. Again a multiple was computed in the third layer.
The third example, Figure 6, has the same distribution of receivers at the
surface but now the source is located in the third layer as in a reverse 3-
D VSP experiment.

One can always find complex models, which present shadow zones
or rough interfaces, where Newton iterations fail and many restarts using
the shooting method are required. This algorithm is not well suited for
these models. For applications which do not require such complex models
and where qP waves are the main concern the algorithm is quite efficient.
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qF Wave Surface

Figura 1 — Superficie de Onda gP para a camada 1. O meio é ortorrémbico com planos de simetria inclinados em relac@o ao sistema de coordenadas. As
componentes do vetor velocidade de grupo estdo em km/s e as cores representam o madulo da velocidade de grupo em kmy/s.
Figure 1— gP Wave Surface for layer 1. This is a tilted orthorhombic medivm. The velocity components are in kny/s and the colors represent
the group speed also in kny/s.
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Figura 2 — Superficie de onda P para as camadas 2 e 4. O meio é transversamente isotrdpico com eixo de simetria inclinado em relagdo ao sistema de
coordenadas. As componentes do vetor velocidade de grupo estdo em km/s e as cores representam o modulo da velocidade de grupo em kmy/s.
Figure 2— gP Wave Surface for layers 2 and 4. This is a filted 11 medivm. The velocity components are in kiny/s and the colors indicate the group speed in kny/s.
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qF Wave Surface
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Figura 3 — Superficie de onda gP para as camadas 3 e 5. O meio & fransversamente isotrépico com eixo de simetria inclinado em relagdo ao sistema de
coordenadas. As componentes do vetor velocidade de grupo estdo em km/s e as cores representam o médulo da velocidade de grupo em km/s.
Figure 3— qP Wave Surface for layer 3 and layer 3. This is also a ilfed T1 medivm. The velocity components are in
kmy/s and the colors represent the group speed in ks,

X (km) Y (k)

(b) View 2.
Figura 4 — Duas perspectivas para os raios de eventos qP para receptores alinhados na superficie. Observe a moltipla na camada 3.
Figure 4— Two views for gP raypaths for receivers along a fine in the surface. Nofe the multjple in layer 3.
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Figura 5 — Trajetoria dos raios para uma geometria de aguisicdo ndo-convencional em 3-D.
Figure 5— Rays for a complex 3-0 surface acquisition geomety.

¥ (km)

(b) Traveltimes in seconds .
Figura 6 — Trajetdria dos raios e tempos de frnsito para uma geometria de aquisigdo para VSP 3-D.
Figure 6— Rays and traveltimes for an multiazimuthal 3-0 VSP acquisition geometry.
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CONCLUSION

An extension of the confinuation method proposed by Keller &
Perozzi (1983) to anisotropic models in 3-D was developed. The algorithm
is efficient when computing qP events. The computation of the 45, and
95, trajectories requires the use of shooting method to find, besides the
starfing ray, new initial approximations whenever two-point raytracing
fails due to singular regions in the associated slowness surface or other
possible causes. Although the algorithm do not handle general
inhomogeneous anisotropic models, it allows a simple model specification
for interfaces and arbitrary anisotropy. The performance of the algorithm
permits its application to procedures requiring the computation of a large
number of raypaths, as on inversion algorithms and VSP-CDP mapping
in 3-D. It can also be helpful, when wavefront attributes as slowness
vector and wavefront curvature are required as occurs in geometrical
spreading computations or in CRS studies.

Acknowledgements

This work was kindly supported by the sponsors of the Wave
Inversion Technology (WIT) Consortivm, Karlsuhe, Germany.

NOTES ABOUT THE AUTHORS

REFERENCES

CHIU, S.; STEWART, R. Tomographic determination of three- dimensional
seismic velocity structure using well logs, vertical seismic profiles, and
surface seismic data. Gegphysics, [S.1.], v. 52, n. 8, p. 1085-1098,
1987.

DOCHERTY, P, BLEISTEIN, N. A fast ray tracing routine for laterally
inhomogeneous media. 1984. Presented at 54th Annval SEG Meeting,
Atlanta, 1984.

GUIZIOU, J.; HAAS, A. Three dimensional inversion in anisotropic media.
1988. Presented at 561h Annval SEG Meeting, Anaheim, 1988.
KELLER, H.; PEROZZI, D. Fast seismic ray tracing. SIAM /. Appl Math,
[S.1], v. 43, p. 981992, 1983.

MUSGRAVE, M. Gystal acoustics. London: Holden-Day, 1970.

PRESS, W. et al. Numerical recipes the art of scientific computing.
Cambridge: Cambridge University Press, 1989.

WHITMORE, N.; LINES, L. Vertical seismic profiling depth migration of a
salt dome flank. Geaphysics, [S.1], v. 51, n. 5, p. 1087-1109, 1986.

Jessé Carvalho Costa é formado em Fisica (UFPA/1983), Mestre e Doutor em Geofisica (UFPA/1987, 1993 respectivamente). Summer
Student na Schlumberger Cambridge Research em 1991 e 1992. Estdgio de pos-doutoramento no Departamento de Geofisica na Univer-
sidade de Stanford (1994-1996) e Visiting Assistent Professor no departamento de Geofisica da Universidade de Stanford (1995). £
Professor da Universidade Federal do Pard desde 1989, no Departamento de Fisica de 1989/2003, atualmente é Professor do Departa-
mento de Geoffsica desta mesma Universidade. Areas de interesse: anisotropia, modelagem sismica e tomografia.

Michael Schoenberg se aposentou em 1999, apds 21 anos de carreira como pesquisador para a Schlumberger em Ridgefield, CT,
Cambridge, UK, e Tokio. Desde entdo, tem ministrado cursos, coordenado semindrios e prestado consultoria em vdrias instituicoes pelo
mundo do Lawrence Berkeley Lab, na Californiam ao CSIRO em Perth, com estadas breves em Deft, na Holanda e Edimburgo, na Escdcia.
Seus interesses se concentram em propagacdo de ondas eldsficas e processamento de dados sismicos em meios anisotrdpicos, teoria de
meio efefivo for maios estratificados e fraturados, e fisica de rochas. As aplicacdes principais de sua pesquisa estdo na interpretagdo de
dados de monitoramento sismicos com o fempo de reservatdrios para produco ou injecto de fluidos.

Jaime A. Urban é bacharel em Fisica (1995) e mestre em Geofisica (1999) pela UFPA. Em 1997 Jaime foi professor substituto do
departamento de Matemdtica da UFPA ¢, desde 1998, é professor Assistente de Fisica da UFPA. Atualmente Jaime é aluno do programa
de doutorado em Geofisica da Stanford University (USA). Suas principais dreas de pesquisa sdo imageamento e monitoramento sismico de

reservatorios de petroleo e monitoramento da productio de gds em reservatorios de carviio mineral (coalbed methane). Jaime é membro
da SBGf e da SEG.

Revista Brasileira de Geofisica, Vol. 20 (3), 2002



Jessé (osta, Michael Schoenberg, Jaime Urban 179

APPENDIX A

The density normalized elastic tensor for the three different materials forming the layers in the model used for numerical test. The units are
in (Amy/s)".
Layer 1 (orthorhombic):
8.637 4867 3238 —0626 1550 0452

3637 3.238 —1.559 0626  0.452
10.198 —1.690 1.690 —0.835

Ar= 3.388 —1.503 0.508

3.388  —0.598

[ 4.350

Layers 2 and 4 (TI):

21.750 3.635 5.166 1.326 0.000 0.000

9.326 5169 1.596 0.000 0.000

A 16.076 4.250 0.000 0.000

ar= 5.200 0.000 0.000

6.682 2.126

|_ 4.227
Layers 3 and bottom medium (T) :

12.600 3.254 1.361 0.000 0.000 0.000

12.600 1.361 0.000 0.000 0.000

Aw 5.400 0.000 0.000 0.000

a3 = 2.250 0.000 0.000

2250 0.000

4.673
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