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SIMULATING POROSITY AND PERMEABILITY OF
THE NUCLEAR MAGNETIC RESONANCE (NMR) LOG IN CARBONATE RESERVOIRS OF

CAMPOS BASIN, SOUTHEASTERN BRAZIL,
USING CONVENTIONAL LOGS AND ARTIFICIAL INTELLIGENCE APPROACHES

Antonio Abel González Carrasquilla1 and Victor Hugo Tapia Briones2

ABSTRACT. We examined, in this study, the artificial intelligence techniques ability in deriving parameters of the Nuclear Magnetic Resonance log, starting from

conventional logs. To perform this, it was applied Fuzzy Logic and Artificial Neural Network techniques separately, forming independent schemes. On the other hand,

Simple Average and Genetic Algorithm approaches were used to assign weighting factors to Fuzzy Logic and Artificial Neural Network estimates, with the objective to

optimize the individual contributions of each one. To do this, the methodology used conventional well logs, that is, gamma ray, resistivity, neutron porosity, density

and sonic logs. The wells are in an Albian carbonate reservoir in Campos Basin, Southeastern Brazil. The responses were compared with the Schlumberger free fluid

porosity and the lateral permeability, both derived from Nuclear Magnetic Resonance log in the same wells. The results indicate that Artificial Neural Network performed

better when compared with Fuzzy Logic, but this last was essential in the success of Simple Average and Genetic Algorithm estimates, which presented better results

than these techniques individually. However, each approach showed a good fit with the parameters of the Nuclear Magnetic Resonance log, confirming the utility of the

present methodology, in the case when there are only conventional logs, in the studied wells.
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RESUMO. Examinamos, neste estudo, a habilidade das técnicas de inteligência artificial na determinação de parâmetros do perfil da Ressonância Magnética Nuclear,

a partir de perfis convencionais. Para tanto, foram aplicadas, separadamente, as técnicas da Lógica Fuzzy e da Rede Neural Artificial formando esquemas independentes.

Por outro lado, as abordagens da Média Simples e do Algoritmo Genético foram utilizadas para atribuir os fatores de ponderação às estimativas de Lógica Fuzzy e Rede

Neural Artificial, com o objetivo de otimizar as contribuições individuais de cada uma. Com esse objetivo, a metodologia utilizou os perfis convencionais de dois poços,

ou seja, raios gama, resistividade, porosidade neutrônica, densidade e sônico. Os poços pertencem a um reservatório carbonático Albiano na Bacia de Campos, Sudeste

do Brasil. As respostas foram comparadas com a porosidade do fluido livre e a permeabilidade lateral da Schlumberger, ambas derivadas do perfil da Ressonância

Magnética Nuclear, nos mesmos poços. Os resultados indicam que a Rede Neural Artificial apresentou melhor desempenho, quando comparada com a Lógica Fuzzy,

mas esta última foi essencial para o sucesso das estimativas da Média Simples e do Algoritmo Genético, os quais apresentaram melhores resultados do que estas

técnicas individualmente. No entanto, cada abordagem apresentou um bom ajuste com os parâmetros do perfil da Ressonância Magnética Nuclear, confirmando a

utilidade dessa metodologia, no caso em que existem apenas perfis convencionais nos poços estudados.
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INTRODUCTION

In the characterization of a reservoir, the Nuclear Magnetic
Resonance (NMR) log predicts petrophysical parameters of
geological formations more effectively than the conventional well
logs, allowing a better evaluation and leading to more reliable
results. This technique provides an important set of information,
as total porosity, effective porosity, free fluid porosity, fluid
type, saturations of the flushed zone, oil viscosity, permeability
index, water adsorbed on clays, residual oil calculation, viscosity
evaluation, anisotropy, heavy oil, tar sands, carbonate complex
lithologies (pore distribution, pore types, pore connectivity and
grain sizes), pseudo capillary – pressure curves, producibility,
etc. However, NMR technique is costly and, therefore, is not
performed on all the wells of an oilfield. Hence, it is important
to develop advanced computational models to infer many
parameters that it can provide us (Coates et al., 1999).

In the evolution of computational models, artificial
intelligence techniques have shown good results in the synthesis
of porosity and permeability curves using conventional logs as
input (Nikravesh et al., 2003). In this sense, good applications
of these techniques have been produced by Ogilvie et al. (2002),
Lim & Kim (2004), Taghavi (2005), Abdulraheem et al. (2007),
Ahrimankosh et al. (2010), Labani et al. (2010), Weldu et al.
(2010) and Nashawi & Malallah (2010). Some works developed
in our department, related to the Albian carbonates of the Campos
Basin, were developed by Gomes (2017), Mureb (2018), Carvalho
(2018), Al-Lahham (2018) and Tavares (2018), among others.

Thus, this work consists in combine different artificial
intelligence techniques, such as Artificial Neural Network (ANN)
and Fuzzy Logic (FL), couple with Simple Average (SA)
and Genetic Algorithm (GA), through the softwares MATLAB
(2019) and Interactive Petrophysics (LR Senergy, 2019), to
create a quantitative correlation between conventional logs
and Schlumberger free fluid porosity (CMFF) and the lateral
permeability (KSDR) curves derived from NMR log. From the
learning acquired by intelligence systems in a test or training well,
this correlation was extrapolated to a neighbor or blind test well
to verify the reliability of the method.

GEOLOGICAL CONTEXT

The Campos Basin is one of the most productive oil basins
along the Brazilian continental margin, accounting for more than
45% of national production based on data from 2018. The
basin is in Southeastern Brazil, with the approximate position of
Oilfield B discussed in this study, displayed in a red rectangle

with dashed line in Figure 1. The Albian carbonate reservoirs
of Quissamã Formation are productive in this basin, having a
typical porosity of 25% and, a permeability of 25 mD (Bruhn
et al., 2003). The sedimentation of this carbonate started in the
drift phase at the beginning of Albian with marine deposition
(Fig. 2). The depositional model of this oilfield corresponds to
a carbonate platform, and, according to Okubo et al. (2015),
this depositional model characterizes the sedimentation in a
high-energy environment (oolitic and oncolitic grainstones), a
moderate-energy environment (oolitic peloidal grainstones and
oncolitic bioclastic packstones) and a low-energy environment
(peloidal bioclastic packstones and wackestones) (Fig. 3). In this
oilfield, two wells, P1 and P2, were used to perform this study.
The Well P1 is in the high-energy of the carbonate ramp and, the
Well P2 is in the moderate-energy zone (Fig. 4). These reservoirs
are heterogeneous and fractured, which results in a generally low
recovery factor, complex rock properties and geophysical well
data difficult to interpret. Carbonate reservoirs were characterized
through a combination study of their geological characteristics,
petrophysical properties and geophysical logs, data that provide
a fundamental understanding of their geometry and dynamic
properties.

MATERIALS AND METHODS

In the intelligent systems, discussed in this study, the
conventional logs of each well were used as input, namely:
gamma ray (GR), resistivity laterolog (RLA1), density (RHOZ),
neutron porosity (NPOR) and sonic (DTCO) logs. As targets,
it was employed Schlumberger-Doll Research (SDR) free fluid
porosity (CMFF) and vertical permeability (KSDR), both derived
from NMR log (Franco et al., 2011).

Two wells were selected to accomplish this study, a training
well, called P1 and a neighbor blind test well, named P2, which
cross a carbonate platform with great lithological variations.
For Well P1, Figure 5 shows the description of Well P1 in
Campos Basin, well logs, track 1: GR, track 10: RLA1, track
11: RHOZ and NPOR, track 14: NMR T2 distribution and
geometrical mean cut-off, and track 15: resistivity image. Track
2: depth. Engineering information, track 3: jointer, and, track
7: oil occurrence. Geological information, track 4: cores, track
5: texture, track 6: grain size, and, track 8: facies. Track 9:
petrophysical units. Laboratory measurements, track 12: porosity,
and, track 13: permeability. The geological section and, the
average porosity and permeability, for each section, are also
shown. The logs of the Wells P1 and P2 are shown in the Figures
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Figure 1 – Location map of the main petroleum fields in the Campos Basin and the studied oilfield in a red rectangle with dashed line (modified from Bruhn et al.,
2003).

Figure 2 – (A) Generalized geological section for the Eastern Brazilian continental margin basins. Main mega sequences: PR, pre-rift (which does not occur in
the Campos Basin); R, rift; T, transitional (which includes the evaporate section); SC, shallow carbonate; MT, marine transgressive; MR, marine regressive. (B)
Lithostratigraphy of this portion of Campos Basin, with the Formations Goitacás (GT), Quissamã (QM), Outeiro (OUT), Imbetiba (IMB) and Namorado (NAM) (modified
from Okubo et al., 2015).
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Figure 3 – Depositional model inferred for the carbonate platform in the Campos Basin during the Albian Age.
Facies Association (FA): FA1=oncolitic and oolitic grainstones, FA2=oncolitic peloidal grainstones and ooolitic
bioclastic packstones, FA3=wackestones and peloidal bioclastic packstones, FA4=bioclastic packstones and oolitic
wackestones/packstones and, FA5=pithonelid wackestones. FWWB=Fair Weather Wave Base. Note the physiographic
position of this model compared to the scheme of Guardado et al. (1989) (modified from Okubo et al., 2015).

Figure 4 – The generalized location of the Wells P1 and P2 on the carbonate ramp depositional model with representative "depositional energy" designations based
on characteristic lithofacies. The photomicrographs from plug samples of each lithofacies and their associated energy zone: oolitic and oncolitic grainstones of the
high-energy zone (dark blue), oncolitic peloidal grainstones and oncolitic bioclastic packstones of the moderate-energy zone (light blue), and peloidal bioclastic
packstones and wackestones of the low-energy zone (brown) (modified from Okubo et al., 2015).
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Figure 5 – Description of Well P1 in Campos Basin. Well logs, track 1: GR, track 10: RLA1, track 11: RHOZ and NPOR, track
14: NMR T2 distribution and geometrical mean cut-off, and track 15: resistivity image. Track 2: depth. Engineering information,
track 3: jointer, and, track 7: oil occurrence. Geological information, track 4: cores, track 5: texture, track 6: grain size, and,
track 8: facies. Track 9: petrophysical units. Laboratory measurements, track 12: porosity, and, track 13: permeability. The
geological section and, the average porosity and permeability, for each section, are also shown.

Figure 6 – Well P1 in Campos Basin. Tracks 1 to 5: gamma ray (GR), resistivity laterolog (RLA1), density (RHOZ), neutron
porosity (NPOR) and sonic (DTCO) conventional logs; track 6: Schlumberger free fluid porosity (CMFF); track 7: Schlumberger
vertical permeability (KSDR); both derived from NMR log.

6 and 7 show GR (track 1), RLA1 (track 2), RHOZ (track 3),
NPOR (track 4) and DTCO (track 5) logs; the Schlumberger free
fluid porosity (CMFF) in track 6; and, the Schlumberger vertical
permeability (KSDR) in track 7.

This work combines different artificial intelligence
techniques, such as Artificial Neural Network (ANN) and Fuzzy
Logic (FL), coupled with a Simple Average (SA) and the Genetic
Algorithm (GA) systems. The estimates of CMFF and KSDR
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Figure 7 – Well P2 in Campos Basin. Tracks 1 to 5: gamma ray (GR), resistivity laterolog (RLA1), density (RHOZ), neutron porosity
(NPOR) and sonic (DTCO) conventional logs; track 6: Schlumberger free fluid porosity (CMFF); track 7: Schlumberger vertical
permeability (KSDR); both derived from NMR log.

were compared with the respective laboratory data to calibrate
them (not shown in this article). In the end, the quality of the fit,
between the Schlumberger and the intelligent systems estimates,
is calculated through the Mean Squared Error (MSE). The basic
principles of these approaches are shown below.

In the implementation of the FL system, five linguistic
variables were used and considered enough to represent the large
variation of the logs (Maximiano & Carrasquilla, 2011). Each
variable was controlled by a triangular membership function and,
using the FL toolbox of MATLAB (2019). The best results for this
technique were obtained with the Mamdani scheme, which offered
better control of membership functions and for carrying out
inferences. Figure 7 illustrates the adjustment of the membership
functions for RLA1 log input in the range [0.846 8.355].

Due to high variations shown on the logs, it was decided
to create several rules that reflected more the combinations
between the input logs and output logs. Thus, for CMFF, 288
fuzzy proposals were used, which resulted in an acceptable
approximation in the validation process, with no adjustments of
membership functions. In the case of KSDR, however, because its
variation along the well, estimate was not satisfactory. So, it was
decided to divide the log into 3 units of similar variations. For
each of these sectors, a FL system was built, using each 77, 85
and 20 rules, respectively.

An ANN has three layers of neurons: an input layer, one
hidden and one output (Russell & Norvig, 2010). To train CMFF
was used a toolbox backpropagation neural network (MATLAB,
2019) with five neurons in the hidden layer and one neuron in the
output layer. The stopping criterion used was the determination
of a maximum value of 500 epochs, or iterations. On the other
hand, to train KSDR, ten neurons were used in the hidden layer
and one neuron in the output layer, with one thousand epochs as
stopping criterion. Many trainings were conducted using more
than one hidden layer, and, when this number was increasing,
the accuracy of the estimate was better in the Well P1 validation
process. However, the accuracy in the extrapolation in Well P2
was low and, for this reason, an ANN with only one layer was
great. As neuron activation, the ANN models used, as transfer
functions, a hyperbolic tangent function (Eq. 1), in the neurons
of hidden layer and, a linear function (Eq. 2), in the neurons of
output layer:

tanh(s) =
2

(1+ e−2s)
−1, (1)

lin(s) = s, (2)

where s represents the sum calculated for each neuron in each
propagation. Figure 8 shows the ANN template used to estimate
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Figure 8 – Final adjustment of the Fuzzy Logic membership functions of the RLA1 resistivity log input to estimate porosity CMFF.

the porosity CMFF. The calculation of a neuron of the hidden layer
can be represented by the following function:

neti = w0i +
5

∑
j=1

wijx j, (3)

where x j are the input variables, wij are the weight factors for
each input neurons of hidden layer and w0i are the bias of each
neuron of hidden layer. Considering the neuron of the output
layer, the function of calculating the porosity and permeability of
a propagation can be represented as follows, respectively:

/0ANN = f
[

υ0 +
5

∑
i=1

υi fi

(
2

1+ e−2neti

)]
, (4)

kANN = f
[

υ0 +
10

∑
i=1

υi fi

(
2

1+ e−2neti

)]
, (5)

where υi are the weight factors for each output neurons of the
hidden layer and υ0 is the bias of the neuron of the output layer.

To build the GA approach, FL and ANN estimates were
combined by assigning weights for the results of each one. The
optimization was performed by minimizing the MSE, searching
weights with the best contribution of each log and each scheme
(Ogilvie et al., 2002), in the prediction of CMFF and KSDR for
training Well P1. GA scheme is based on the summation of FL
and ANN results, finding different weights for each approach, as
shows in the following equations:

φGA = P1 ×φFuzzy +P2 ×φANN , (6)

kGA = P3 × kFuzzy +P4 × kANN , (7)

where P1, P2, P3 and P4 are the weight factors calculated by
GA scheme. Figure 9 shows the GA scheme used to estimate the
porosity CMFF.

The SA system is based on the elementary arithmetic
average of FL and ANN systems described previously. With FL
and ANN systems predicting CMFF and KSDR curves of the
Well P1, whereby trained, it was proceeded to develop the SA
structure which evaluate the result of FL and ANN prediction
curves associated in the same ratio. The following equations
show how were built the prediction logs of SA system:

φMean = 0.5×φFuzzy +0.5×φANN , (8)

kMean = 0.5× kFuzzy +0.5× kANN , (9)

in which the values φFuzzy, kFuzzy, φANN and kANN correspond,
respectively, to the porosity and permeability of FL and ANN
estimates.

The validation process consisted in evaluating the
intelligent model of learning, which was constructed and applied
using conventional logs as input and CMFF and KSDR curves
as output in the training or test Well P1. After this validation, an
extrapolation process was executed to estimate CMFF and KSDR
output curves of the neighbor Well P2, using as input its own
conventional logs.

To evaluate the approximation of the curves generated by
the intelligent systems with the target curves of Schlumberger
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Figure 9 – The Artificial Neural Network scheme used to estimate porosity CMFF.

porosity and permeability, we used the MSE estimation, whose
equations can be written as follows:

MSEφ =
1
n

n

∑
i=1

(φANN i
−φi)

2, (10)

MSEk =
1
n

n

∑
i=1

(kANN i
− ki)

2, (11)

where n is the number of points of each log, φANN and kANN

correspond to the porosity and permeability logs of the ANN
system and, φi and ki are the CMFF and KSDR logs.

RESULTS AND DISCUSSIONS

Figures 10 and 11 show, respectively, the validation process for
CMFF and KSDR in the training Well P1, where the tracks, from
left to right, show the estimates for FL, ANN, SM and GA. In these
figures, despite simulated curves (blue) do not fit the CMFF and
KSDR (red) in the bottom of the well, they were able to identify a
peak in the packstones zone, which may be related to the presence
of vugs or an aquifer. This could be clarified with the resistive or
acoustic well images, but we do not rely on them in the dataset.
The GA gave the following weights to the FL and ANN curves for
porosity:

φGA = 0.18900×φFuzzy +0.83224×φANN , (12)

where the φGA value corresponds to the log calculated by GA. The
weights were calculated by the Genetic Algorithm and are shown
in the following equation for permeability:

kGA = 0.11290× kFuzzy +0.84600× kANN . (13)

Comparing the different estimates, it was observed that ANN
behaved better than FL one. On the other hand, SA approach,
although used benefits of ANN estimate, was hampered by FL
simulation. In the same sense, GA system identified the best
combination of FL and ANN approaches, optimizing the fit
between the curves. Even among comparisons, FL and ANN
approaches obtained acceptable results for CMFF and KSDR
curves.

Figures 12 and 13 show, respectively, the extrapolation
processes for CMFF and KSDR curves for the neighbor Well P2.
In the first 150 meters of these figures, it is possible to observe
low CMFF and KSDR values, probably caused by an area rich in
wackestone, where the estimates for all schemes present values
above the real values for both parameters. Although some values
are higher than NMR parameters, ANN simulation was able to
identify this low CMFF zone. Still in these depths, some negative
values for KSDR were estimated, which appear as "square form"
in the estimated curves, where this kind of failures are acceptable
to represent zones having very low KSDR values. Between
150 to 375 meters, comprising grainstones and half of the
cemented grainstones zones, FL and ANN simulations estimate
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Figure 10 – The Genetic Algorithm scheme used to estimate the GA porosity (φ GA). GA is Genetic Algorithm, MSE is Mean
Squared Error, W1 and W2 are weights, FL is Fuzzy Logic, ANN is Artificial Neural Network, φ GA is the GA estimated porosity
and φ CMFF is the Schlumberger free fluid estimated porosity.

Figure 11 – Porosity validation in Well P1 of Oilfield A in Campos Basin.

the porosity variations in a reasonable manner. Above 375 meters,
in packstones zone, ANN estimated CMFF curve with relative
accuracy again, stood out over the others. However, FL scheme
identified non-existent peaks of high CMFF above NMR values. In
the rest of the log, FL estimate did not follow precisely the KSDR
curve, but was able to identify the variation between the layers
even with a "square form" curve. FL and ANN, as independent
systems, identified the variations for both parameters in an
acceptable form in neighbor Well P2, remembering always the

estimates in training well and the complexity characteristics of
carbonate reservoirs. This proves that both systems achieved the
same learning for a combination of conventional logs, that is, this
region could have higher KSDR values, as recorded in Well P1.
Anyway, as the Well P1, ANN estimates in Well P2 functioned
better than the FL simulations. In the meantime, through the
weights acquired by the GA scheme to estimate CMFF of the Well
P1, the system sought to optimize GA estimates of FL and ANN
approaches from the Well P2 in a single log. As the assigned
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Figure 12 – Permeability validation in Well P1 of Oilfield A in Campos Basin.

Figure 13 – Porosity extrapolation for Well P2 of Oilfield A in Campos Basin.

weight to ANN estimative is greater than the weight given to
FL one, as soon as, GA simulation resembles ANN estimative.
Something similar happened with SA scheme.

To compare the efficiency of each approach, it was
calculated the MSE of each prediction, for both, the validation
process in Well P1, as well as the extrapolation for Well P2.
Table 1 shows the errors of the validations of CMFF and KSDR,
as well as the classification of each method, according to their
best approximation to the original NMR parameter curves. In the
case of CMFF, ANN showed an error smaller than FL scheme,
with an intermediate result for the SM approach. Although,

GA optimization obtained the best results, using weights to
improve the ANN results and best part of FL estimate. In KSDR
validation, the classification was equal to CMFF one, in other
words, ANN overcame FL, SM approach remained between them
and AG achieved again the best result. Despite the GA system
have overcome the ANN validation, this improvement was not
significant, because ANN obtained excellent results individually,
which was reflected directly in GA estimate. On the other hand,
Table 2 shows the errors of extrapolations of CMFF - KSDR and
the classification of each intelligent system in accordance with
the best results. In the case of CMFF, again, the ANN had better
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Figure 14 – Permeability extrapolation for Well P2 of Oilfield A in Campos Basin.

Table 1 – Comparison among the validation errors.

INTELLIGENT SYSTEM
POROSITY (pu) PERMEABILITY (mD)

MSE (pu)2 Rank MSE (pu)2 Rank

Fuzzy Logic (FL) 0.00035048 4 715520 4

Artificial Neural Network (ANN) 0.00017897 2 488170 2

Simple Average (SA) 0.00020668 3 528991 3

Genetic Algorithm (GA) 0.00017390 1 485011 1

Table 2 – Comparison among the extrapolation errors.

POROSITY (pu) PERMEABILITY (mD)
INTELLIGENT SYSTEM

MSE (pu)2 Rank MSE (pu)2 Rank

Fuzzy Logic (FL) 0.00182876 4 715520 4

Artificial Neural Network (ANN) 0.00126872 3 488170 1

Simple Average (SA) 0.00123483 1 528991 3

Genetic Algorithm (GA) 0.00124656 2 485011 2

performance than FL system. SM and GA schemes, through the
average calculation and obtained weights, were able to reflect an
optimization of FL and ANN estimates, even this improvement
does not represent a significant error reduction compared with
the other approaches. In the case of KSDR, ANN had the best
accomplishment, followed by GA, SM and, as usual, FL in the
last position.

CONCLUSIONS

In this work, artificial intelligence techniques were used to
estimate the free fluid porosity and vertical permeability of the
Nuclear Magnetic Resonance log, using as input gamma ray,
resistivity, density, neutron porosity and sonic well logs. Four
combinations were constructed, using, initially, Fuzzy Logic and
Artificial Neural Network in independent schemes, while Simple
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Average and Genetic Algorithm structures sought for optimized
solutions. Due to high variation of the logs used, the construction
of the Fuzzy Logic algorithm was troublesome in the creation
of rules and adjusting the membership functions. These two
stages are equivalent to the training phase of Artificial Neural
Network. However, while Artificial Neural Network learns alone,
Fuzzy Logic needs to be taught step by step. In general, both in the
validation as extrapolation, the Artificial Neural Network system
has achieved satisfactory results. The training of an artificial
intelligence should not be precise in this type of study. After all,
the two wells have similar geological standards, but different. The
more you train an artificial intelligence for the solution of a given
problem, the smaller its capacity for abstraction to solve different
problems. In the case of Fuzzy Logic, the more the system is
adjusted, the best results are obtained on extrapolation. After all,
compared with an Artificial Neural Network, Fuzzy Logic would be
a network with a very strong supervision, which would limit the
learning of the intelligence only the necessary through greater
freedom of the supervisor. The reductions in errors later acquired
by Genetic Algorithm scheme and, on extrapolation, by the Simple
Average system, do not represent significant improvement over
the Artificial Neural Network rule. The Simple Average system
is an elementary algorithm with fast simulation and requires no
training but is dependent on other structures. As expected, the
Genetic Algorithm scheme optimized results of Fuzzy Logic and
Artificial Neural Network systems in the validation process of the
Well P1. However, considering the estimates of the permeability
of the Well P2, the difference of Fuzzy Logic system is so
inferior to the Artificial Neural Network that harmed the Genetic
Algorithm results. The results confirmed the efficacy in using
these intelligent approaches, working well both individually and
jointly, looking for the simulation of Nuclear Magnetic Resonance
log parameters. Even though each of these intelligent techniques
have achieved different estimates of the Schlumberger free fluid
porosity and vertical permeability, the results were satisfactory,
in both validation and extrapolation processes. However, the
results show that to implement the process exposed in this
work, Fuzzy Logic method would not be necessary to use it,
because it always showed worse results than Artificial Neural
Network, which proved more independent and easier to run the
simulation, without the necessity choose membership functions.
As the Simple Average and Genetic Algorithm schemes worked
only as optimizers of Fuzzy Logic and Artificial Neural Network
estimates, only the use of the Artificial Neural Network approach
would be enough to make the simulations developed in this

article. Finally, it is recommended, for future work, to increase
the number of correlation wells used to estimate porosity and
permeability and thus distribute the weight of each parameter
in Artificial Neural Network and Fuzzy Logic trainings. This is
expected to reduce errors associated with profiling operations and
well instability problems (enlargements) that may be mislabeled
to geological issues.
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