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ABSTRACT. The characterization of electrofacies is essential for reservoir modeling. However, this is a process that dependends on many variables, with errors and

associated noise that interfere on visual interpretation. In order to minimize uncertainties, this paper proposes the use of the artificial neural network called Auto-Maps

Organizing, which is a computational algorithm inspired on the brain function that maps and groups similar information. The petrophysical data used, referes to Namorado

Field on Campos Basin, of which were studied the neutron porosity, gamma ray, density and sonic profiles, to classify the field’s reservoirs lithology. From the results it

was possible to define the reservoir geometry and to detail its features with more accuracy.

Keywords: neural networks, self-organizing maps, recognition of lithofacies.

RESUMO. A caracterização de eletrofácies é essencial para a modelagem de reservatórios. Todavia, esse é um processo dependente de muitas variáveis, com erros

e ruı́dos associados que dificultam a interpretação visual. Para minimizar incertezas, este trabalho propõe a utilização da rede neural artificial denominada Mapas Auto-

Organizáveis, um algoritmo computacional inspirado no funcionamento cerebral que mapeia e agrupa informações semelhantes. Os dados petrof́ısicos utilizados são

referentes ao Campo de Namorado, Bacia de Campos, dos quais foram estudados os perfis porosidade neutrônica, raio gama, densidade e sônico, com o objetivo de

classificar a litologia dos reservatórios do campo. Através dos resultados foi possı́vel delimitar a geometria dos reservatórios e detalhar suas caracteŕısticas de forma

mais precisa.
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INTRODUCTION

The geological models of hydrocarbon reservoirs are based on
the estimates of reservoir properties, such as: lithology, porosity,
permeability and fluid type (e.g. Alhoniemi et al., 1999; Bhatt &
Helle, 2002; Matos et al., 2004; Stundner & Oberwinkler, 2004).
The use of robust mathematical methods aims at reducing uncer-
tainties when generating such models, the more reliable the re-
sults the more they help to minimize exploration risks and costs.

Among these, artificial intelligence technologies are the most
used methods in geosciences, with emphasis on Artificial Neural
Networks (ANN) (Haykin, 1999). These ANNs have the ability to
model non-linear relationships among the variables involved, are
highly adaptable to input dataset and do not require prior knowl-
edge of data statistical distribution. These fundamental features
rank ANN among the most important clustering and classification
methods of the last decade (Haykin, 1999; Stunder & Oberwin-
kler, 2004), and it is therefore, largely used in reservoir geology,
which involves geological heterogeneities on various scales and
treatment of data sets from several sources (Kohonen, 2001; Bhatt
& Helle, 2002; Stundner & Oberwinkler, 2004; Esposito et al.,
2008). As example of such application, Stundner & Oberwinkler
(2004) mention three basic ANN uses to treat data from well logs:
prediction of permeability and/or porosity; generation of synthetic
wells and determination of electrofacies.

This work proposes to use this method to analyze the electro-
facies of the geophysical dataset of the Namorado Oil Field, Cam-
pos Basin, in order to identify in detail the lithologies related to
reservoir rocks. The choice to specifically study reservoir litholo-
gies is due to its importance in building the geological model of
the reservoir, whose main information sources are the data from
well logs (Matos et al., 2004).

The method proposed in this work is an unsupervised ANN,
in which a priori information about the lithology is not used to
classify the electrofacies. The ANN Self Organizing Maps (SOM)
(Kohonen, 2001; Coléou et al., 2003) stands out for this type of
sample.

Coléou et al. (2003) advocate that SOM results are more ac-
curate compared to other multivariate statistical techniques such
as PCA, ICA and K-Means, using as comparison criteria redun-
dancy, noise and continuity. According to Stundner & Oberwinkler
(2004), SOM also allows mixing statistical forecasting methods
to obtain information from wells, by combining multivariate data
visualization with clustering ability.

In most cases, the traditional methods are efficient to sepa-
rate clearly distinct facies, such as reservoir and non-reservoir.
However, the detailing of single facies presents the limitation of

indirect profile data and lower density of core information, which
prevents the accurate use of a supervised method. Additionally,
petrophysical measurements may be linked to changes of physical
properties and not to lithologic variations. However, SOM’s great
sensitivity and learning capacity enables group identification, re-
sulting in more accurate characterization of reservoir rocks.

NAMORADO OIL FIELD

Discovered in 1975, the gigantic Namorado Oil Field located in
the north-central part of the Campos Basin at 80 km from the
shore, has an area of 21 km2 (Fig. 1), depth between –2900 and
–3400 m and estimated average thickness between 90 m and
180 m (Johann, 1997; Souza Jr., 1997). The area is limited by
structural and stratigraphic closures, with top and bottom bound-
aries clearly recognized in well profiles and seismic lines.

The reservoir is deposited in a complex of turbidite channels,
along a system of deltaic fronts (Barboza, 2005), called turbidite
sandstones of Namorado.

Among the 21 facies present in the core analysis, described
by Petrobras and released by Agência Nacional do Petróleo, Gás
Natural e Biocombust́ıveis (ANP), the main reservoir rocks refer
to two sandstone facies displaying metric thickness in the cores.
The dominant reservoir facies in the cores is massif, medium-
graded sandstone, arcosean and well selected. The second in
dominance is amalgamated coarse sandstones, graded from
conglomeratic-coarse sand fraction at the base to coarse sand
fraction at the top. Mean porosity and permeability of these two
facies are 26% and 400 mD, respectively (Bacoccoli et al., 1980).

The facies considered as potential reservoirs may be classi-
fied as secondary reservoirs and correspond to: residual con-
glomerates, interstratified sandstones and shales; interstratified
sandstones and finely stratified shales; medium to fine laminated
sandstone. The main difficulty for facies analysis is core repre-
sentativeness. In this case, interstratified sandstones and shale
facies are the most sampled.

METHODS

SOM

The method SOM, developed by Kohonen in the late 70s, is an
ANN for unsupervised samples, whose objective is to map the in-
put dataset while searching for similarity in a lower dimensional
space, delineated by a geometric structure called Self Organiz-
ing Maps. SOM units, also called neurons, are connected to their
neighboring structures forming maps, typically hexagonal or rect-
angular, which determine its vicinity, as shown in Figure 2.
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Figure 1 – Location of Campos Basin with major oil fields (Milani et al., 2000).

Figure 2 – Two grid configurations and neighborhood levels. (A) represents the hexagonal grid and (B) the rectangular grid (adapted from Costa, 1999).

This map is a flexible grid that molds itself on data similarity.
Based on this logic, data close to entry space will have the rep-
resentation close to the exit space and thus belong either to the
same cluster or to nearby clusters. Therefore, SOM preserves
the metric and topological relationships of entry space in a two-
dimensional network that can be used as a visualization tool dis-
playing different data features, such as their possible organiza-
tion in clusters (Matos et al., 2004; Leite & Filho, 2010).

The algorithm is based on a competitive learning process, in
which only one computational unit output, also called BMU (Best
Matching Unit), or local group of computational units provides an
active response to input current signal (Gonçalves et al., 1996).

In the input layer, each well sample is a line-vector in the data
matrix (where each variable is considered one dimension) rep-
resented by the vector: x = [x1, x2, . . . , xn] ∈ Rn . Each unit
i of the map has a vector of associated weight:

mi = [mi1, mi2, . . . , min]T .

The BMUs in this layer are connected to the neighboring layer
by the hexagonal grid, which has more neighboring units (6-
connected) compared to the rectangular grid (4-connected), as
shown in Figure 2.

In this study, the initial random weight values were changed
along the procedure to converge to more adequate values inde-
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pendent of its initial value (Stundner & Oberwinkler, 2004). The
Euclidean distance, the activation function used in the tests, is
given by the following equation:

di =
N∑

j=1

(
x j (t) − wi, j (t)

)2
, (1)

where x j (t) is the j-th entry in a given iteration and wi, j (t) is
the weight of BMU j of the input layer connected to neuron i of
the output layer.

As each point vector of the input layer has only one associ-
ated neuron, the algorithm represents this rule through the fol-
lowing equation, in which the chosen unit (BMU) is represented
by the index c:

∥
∥x − mc

∥
∥ = min

i

{
‖x − mi‖

}
, (2)

where ‖ ∙ ‖ is the metric Euclidean distance.
After BMU is determined by the shortest distance from the

analyzed point, the distances between the unit and its neighbors
(determined by the previously chosen grid) are updated, that is,
they move closer to input vector in the output space.

Updating i moves the BMU towards vector x , according to
the probability density function given by:






mi = mi (t) + ∞(t)hbi (t)
[
x − mi (t)

]
,

se mi ∈ neighborhood of c
mi = mi , otherwise,

(3)

where t is time, α(t) is the learning rate, which varies between
0 and 1 (and decreases along the iterations until its value is no
longer significant, that is, they converge) and hbi (t) is the neigh-
boring size, described as:

hbi (t) = e
−

‖rb−ri ‖
2

2σ2(t) , (4)

where rb and ri are the positions of neurons b and i in the
SOM grid.

Attraction intensity of the input vector is controlled by the
average learning, and the number of vectors attracted by the
winner BMU is controlled by the neighborhood radius.

Since the main objective of this work is to identify data clus-
ters, techniques that emphasize correlations among points in the
map are going to be used to visualize the SOM.

In order to view map similarities, it is interesting to note the
distances between the BMUs, especially in the map of the unified
distance matrix, or U Matrix, which is a way of representing data
relationships (Ultsch, 1992; 1993).

The U Matrix allows visualizing the distances between the
neighboring BMUs and their means. Therefore, the observed im-
age shows possible data clusters formed by the samples, sug-
gesting also the number of existing groups by visual analysis.
However, this visual analysis is not always effective or sufficient.
Matos et al. (2004) reported on the difficulties of choosing the
number of clusters, which is usually performed by empirical sys-
tems. Therefore, the semi-automatic grouping of U Matrix data
is performed by the traditional method K-Means (Khedairia &
Khadir, 2008).

The number of units on the map (number of BMUs) is chosen
a priori and determines the effectiveness and generalization of the
model, since during training the method forms an elastic network
that adapts itself to input data.

Vesanto et al. (1999) suggest the following expression to
choose the size of the output unit:

m = 5 ∗
√

n , (5)

where m is matrix size and n is the number of trained samples.
However, the number of groups can be pre-determined ac-

cordingly, for example, a smaller number will identify predom-
inant patterns, while a larger number will detect all image pat-
terns, including those with low occurrence probability (Matos et
al., 2004; Gonçalves et al., 2007).

Subsequently, BMUs can be grouped using the K-Means
method, which in addition to providing a better understanding
about group formation has the advantage of drastically reducing
computational time (Vesanto et al., 1999).

K-Means

K-Means, one of the most popular algorithms to identify clusters
(Khedairia & Khadir, 2008), groups together in classes a set of
input points without a priori information.

In this work, after SOM training, K-Means was used to iden-
tify clusters in the U Matrix, an efficient way to characterize the
groups of the specified matrix (Rocha & Sousa, 2003).

BMUs are classified as belonging to previously chosen k
groups that will split the data according to training that mini-
mizes the following error function:

E =
c∑

k=1

∑

x∈qk

‖x − ck‖
2 , (6)

where k is the number of clusters and knck is the center of clus-
ter n. It should be noted that SOM and K-Means have the same
algorithm when the radius of the SOM neighborhood function is
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zero. In this case the adjustment is performed only on the winning
unit (BMU).

The advantage of SOM is to enable the visualization of any
input dataset onto an output set in two dimensions while preserv-
ing the topology. However, there is no need for such sophisticated
method for the second group separation, since the data have al-
ready been sorted out by the SOM algorithm.

After choosing a less robust algorithm, it is essential to deter-
mine the number of clusters of K-Means algorithm. To this end,
the Davies-Bouldin index was chosen to automate and assist the
decision process, according to Eq. (7):

1

C

c∑

k=1

l 6= k max{
Sc(Qk )+Sc(Ql )

dce(Qk ,Qkl )

} , (7)

where C is the number of clusters, Sc is the distance between Qk

and Qkl , and dce the distance between the centroids of respective
clusters (calculated from the Euclidean distances between map
units). Therefore, Davies-Bouldin index values lower than 1 in-
dicate separated clusters, while values greater than 1 represent
clusters possibly crossed.

It is worth mentioning that this index is a heuristic method that
seeks to find a value close to the optimal solutions and therefore,
it is not necessarily the best.

ANOVA

Since the dataset used in the study has only 2.5% of core data,
a statistical study of the well-log data at each point was neces-
sary to extrapolate the characteristics of the cored interval to the
remaining data (87.5%).

Multivariate analysis of variance (MANOVA) was the method
chosen to compare mean vectors, whose data are usually derived
from statistical parameters. The use of statistical analysis to com-
pare mean vectors depends on the partition of total variance sub-
divided into variance due to both treatment effect and error. The
statistical method used to evaluate the partition of total variance
is called ANOVA (Johnson & Wichern, 1999).

In studies of continuous random variables, as in the present
case, the assumed multinormality allows a multivariate analysis.
The relevance of multivariate analysis is the conjunction use of all
involved variables (Regazzi, 2002).

ANOVA works with two hypotheses: H0, or null hypothesis,
there is no variance of the means of the studied variables; H1,
or alternative hypothesis, in which there is no evidence of non-
variance of the means.

The hypotheses are tested using Levene F, which consists of
finding an evidence criterion for rejection of H0, given by p-

values as shown in Table 1.

Table 1 – Criteria used to reject the hypothesis H0.

P ≥ 0.10 No evidence against H0

P < 0.10 Weak evidence against H0

P < 0.05 Significant evidence against...

P < 0.01 Strong evidence against...

P < 0.001 Significantly strong evidence against...

Source: Shimakura (2008).

From Table 1 is possible to infer that for p-values greater than
0.1 there is no statistical evidence of changes in the mean values
of the studied variable, whereas as p-value diminishes, there is
evidence that the variation of the means increases. It is notewor-
thy to highlight the careful definition of evidence criteria, which
points to the lack of absolute certainty, emphasized mainly by the
study of the inconsistencies and not by the direct confirmation of
event occurrences.

From this criterion, it is possible to infer whether the values
for the cored intervals at each group, obtained using SOM, are
representative of the remaining sample along the non-cored in-
tervals.

For the cases where there is variance of the means, that is,
when p-values are small, a second statistical analysis is nec-
essary to determine confidence intervals to assess whether this
variation is statistically significant.

DATA ANALYSIS

The Agência Nacional do Petróleo, Gás Natural e Biocombust́ıveis
(ANP) provided the datasets of 17 wells of the Namorado Oil Field,
for which the following profiles were analyzed: sonic (DT), neu-
tron porosity (NPHI), density (RHOB) and gamma rays (GR). Six
of the studied wells contained core data, with 21 lithofacies.

Electrofacies data were classified previously using the super-
vised k-NN (k-Nearest Neighbor) method (Drummond & Vidal,
2011), which shows 80% accuracy in cross-validation. Three
electrofacies groups were identified: reservoir, potential reser-
voir and non-reservoir. Only reservoir intervals were used in this
study. This set consists of 11,600 samples of which only 2.5%
correspond to core samples.

The database presents six lithotypes, two of which refer to
the reservoir rock and four refer to the potential reservoir rock
(Table 2).

The analysis of these datasets aims at both finding subdivi-
sions in the reservoir rocks according to geophysical well logs
and evaluating the distribution of different types defined in the
Namorado Oil Field.
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Table 2 – Facies description of Namorado Oil Field.

Facies Classification Description
Number

of samples

4 Possible reservoir Residual conglomerates 6

6 Reservoir Amalgamated coarse sandstone 90

7 Possible reservoir Fine laminated medium sandstone 4

8 Reservoir Massif or medium-graded sandstone 115

10 Possible reservoir Interstratified sandstone/shale 35

11 Potential reservoir Finely interstratified sandstone/shale 55

Figure 3 – Schematics of the applied methodology.

In order to use the SOM algorithm to characterize reservoir
facies, the work was divided into three stages: Data Analysis,
Training and Lithology Identification (Fig. 3).

The performance of neural networks is based on the principle
described by Alhoniemi et al. (1999), who emphasized that the
results depend mainly on the quality of the used dataset.

The data were processed in five steps, following the method
proposed by these authors:

a) Data acquisition: the original data are analyzed; their
measured variables and the strings representing the
nomenclature of lithotypes were transformed into numeric
entries;

b) Data preprocessing: in this step, the incorrect data are
removed or corrected; generally this filtering occurs un-
der special or fixed conditions. In this study all entries,
even the ones with data gaps were considered for training,
since SOM give good results even when there is informa-
tion missing;

c) Segmentation: the input data are divided into subsets ac-
cording to criteria established using a priori knowledge.
The analyzed database considered unsupervised domain
and thus there were no subdivisions;

d) Feature extraction: transforms input data vectors in such a
way that they describe the problem according to the analy-
sis of the “point of view”. Mathematical modification such
as vector decomposition by the Fourier transform, adding
or disregarding variables, hinders the training tool. At this
stage, the ILD (resistivity) profile was considered redun-
dant for the dataset to be trained by preliminary tests with
the chosen method. However, its absence did not inter-
fere with the quality of the results, in addition the ILD pro-
file was disregarded because it did not characterize petro-
physical information (as the other variables) but rather,
fluid information.

e) Normalization: gives input vectors the correct weight in
the SOM training, ensuring that each component will in-
fluence equally the training. In this work, data were previ-
ously submitted to the equation:

Normalized value =
xi − min x

max x − min x
(8)

where xi is the analyzed vector, min x is the lowest profile
value and max x the highest.

The errors calculated by the SOM method, which define the
quality of data mapping, are established by quantization errors
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Figure 4 – Component plans of each variable analyzed.

(qe), related to the SOM resolution, and the topographic error
(te), related to topology preservation of input data (Kohonen,
2001):

qe =
1

M

M∑

k=1

‖xk − mbk‖ and te =
1

M

M∑

k=1

f (xk) (9)

where M is the number of vectors of x data. The function f (xk)

is equal to 1 if the first and the second BMUs of xk are adjacent
and zero otherwise. Subsequent to clustering of the database,
algorithms have been developed to assess ANOVA results, as
described previously.

TRAINING

The tool Self-Organizing Map in Matlab developed by Vesanto &
Alhoniemi (2000), which allows the use of SOM and subsequent
regrouping using the K-Means method (Vesanto et al., 1999), was
used for several training profiles.

This package offers the possibility of making a priori de-
cisions and uses heuristic formulas to choose values, as the
Davies-Bouldin index, considered a good indicator of unsuper-
vised analyses (e.g. Matos et al., 2004).

RESULTS

The size of the U Matrix for training the dataset was calculated
by Eq. (5) and it was dimensioned in 308 units (14×22).

Figure 4 shows the resulting U Matrix and the contribution
of each input variable, represented in the component planes.
Smaller values indicate greater similarities between input vectors
and nodes, represented by cool colors, while warm colors show

fewer similarities. Thus, groups are characterized by bluish ho-
mogeneous regions separated by warm colored regions.

Figure 5A shows the Davies-Bouldin diagram. The function
lowest value is at x = 4, and so this was defined as the ideal
number of groups for the U Matrix, since it minimizes the func-
tion described by Eq. (7).

Figure 5B shows the U Matrix regrouped by K-Means. It
should be noted that the regions between the clusters have smaller
BMU units, which indicates less concentration of samples and,
therefore, a good separation among the four groups. The quanti-
zation errors for training and topographic were 0.552 and 0.098,
respectively.

The profile analysis of each group defined after training
shows that the database displays larger variation in the sonic and
gamma ray profiles. Density profiles varied very little, since the
data set interval is smaller compared to the other variables. When
evaluating only the means, it is possible to verify that the groups
display different values for most of the profiles; however, this anal-
ysis is not enough to determine the lithological classification and
therefore, the quality of the reservoirs they represent.

Standard deviation values of the profiles in the four groups
are very small, which shows the relative group concentration and
very few scattered points. Thus, it was concluded that the groups
are well separated.

Table 3 shows that the variables with greater variability were
separated according to well-defined intervals, demonstrating that
the method is sensitive to small variations, as in the case of the
density profile data, where even the smaller values were separated
satisfactorily.
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Figure 5 – Image generated applying the tool of Vesanto et al. (1999). (A) Choice of cluster numbers using the
K-Means clustering method, (B) U-Matrix regrouped by the method.

Table 3 – Statistical analysis results for: density (RHOB), transit time (DT), neutron porosity (NPHI) and gamma rays
(GR) of the 4 groups.

Group 1 Group 2

RHOB DT NPHI GR RHOB DT NPHI GR

Medians 2.26 88.76 22.97 56.61 2.34 80.18 18.67 53.45

Standard deviation 0.05 6.65 2.33 6.35 0.059 7.08 3.27 7.93

Variance 0 44.34 5.43 40.35 0 50.21 10.75 62.99

Maximum 2.52 106.45 35.02 84.06 2.62 94.64 27.47 75.92

Minimum 2.05 53.47 17.82 33.40 2.17 55.88 0 18.24

Means 2.27 88.24 23.28 56.77 2.35 78.78 18.26 52.44

Group 3 Group 4

RHOB DT NPHI GR RHOB DT NPHI GR

Medians 2.42 87.33 21.06 90.94 2.19 96.03 25.70 55.38

Standard deviation 0.08 7.69 3.68 14 0.05 4.33 3.48 7.22

Variance 0 59.15 13.55 196.22 0 18.82 12.17 52.24

Maximum 2.61 104.62 29.15 122.94 2.39 110.15 37.23 87.69

Minimum 2.11 64.31 11.69 65.26 2.00 78.28 11.47 37.16

Means 2.42 86.51 20.52 91.67 2.19 96.12 25.88 56.26

Groups were compared to core information associated to
them and results are shown in Table 4.

Table 4 shows low core representativeness for each group.
Compared to the core, the data showed three groups with high
percentage of reservoir rocks, with values 78%, 90% and 83%,
and, a group with high lithological concentration of potential
reservoirs, 85%.

Three groups of reservoir rocks were determined, with em-
phasis to the second group that clusters more of these facies.
It is worth noting that core description classified two facies for
these intervals, while the SOM technique showed a third subdivi-
sion as well.

Group three consists of potential reservoir rocks, with very
distinct values compared to the other groups.

Table 4 – Supervised data classification, as percentage.

Core
Reservoir

Potential

Groups data
(%)

reservoirs

(%) (%)

1 15.75 78.57 21.43

2 19.48 90.32 9.68

3 30.94 14.29 85.71

4 17.37 83.56 16.44
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Table 5 – Lithological classification of supervised data.

Group

Amalgamated Massif or
Fine

Sandstone/
Sandstone/

coarse medium-graded
Residual laminated

interstratified
finely

sandstone sandstone
conglomerates medium

shale
interstratified

sandstone shale

1 0.2262 0.5704 0.0271 0.0090 0.0768 0.0905

2 0.2985 0.6119 0.0224 0.0075 0.0224 0.0373

3 0.05615 0.10655 0 0 0.0233 0.8140

4 0.0808 0.9565 0 0.0658 0.1041 0.0658

Table 5 shows the comparison between core data and each
group defined by SOM. It is seen that group three, potential reser-
voir rocks, consists of 81% finely interstratified sandstone and
shale, while group four is approximately 93% massif or medium-
graded sandstone.

Groups one and two exhibit greater lithological variation of
reservoir rocks, group one consists of about 23% amalgamated,
coarse-grained sandstone and 52% massif or medium-graded
sandstone, while group two consists of 30% and 54% of the
same lithologies, respectively.

Due to data complexity and availability of few core data, it
is important to analyze statistically the p-value to determine the
behavior of the studied profiles. From the Levene F test, accord-
ing to the criteria used in Table 2, it can be concluded that p-
values for the density and sonic profiles are very low, leading
to the conclusion that there is significant evidence of the mean
variation for the data sets 1, 2 and 4 (Table 6). Therefore, sonic
and density profiles of these groups are very likely to have points
with very different values that compromise the unity of each group
means and thus require further statistical analysis.

Table 6 – P-values.

Variable Group 1 Group 2 Group 3 Group 4

RHOB 0.0004 0.0000 0.0171 0.0000

DT 0.0095 0.0103 0.2068 0.0147

NPHI 0.3094 0.2583 0.4041 0.6124

GR 0.4650 0.4196 0.3595 0.7736

On the other hand, porosity and gamma rays profile of the
same data sets show no variation evidence of sample means and
therefore, the null hypothesis cannot be rejected. It is concluded
that these two variables do not present statistically significant
variations of the sample means and thus it is possible to in-
fer that the data set for these two variables may be represented
by the core features, that is, the results show strong evidence

that the data set display behavior similar to the core for these
two profiles.

The analysis of p-values of group three shows that the
density profile has small variation of the sample mean and for
the remaining variables there is no evidence against the hypoth-
esis that mean variation is zero. Thus it can be inferred that the
core sample is highly correlated to the remaining data, and it is,
therefore, representative of the entire set.

However, the variability found for the first two profiles indi-
cates the need to consider the confidence intervals, calculated
according to inference statistical analysis to obtain values that
identify and confirm its geological features.

From Table 7, it can be inferred that any randomly chosen
point from the data set has 95% probability of belonging to the
intervals described above, which is considered highly reliable.

Gamma ray profiles of groups one, two and four lie between
51 and 57, characterizing good reservoirs, constituted of low
shaliness sandstone as described in the core samples, in addi-
tion to low density values compared to group three.

On the other hand, group three has high gamma ray values,
above 89, representative of potential reservoirs and high density,
compatible with shales and fine grained sandstones, the lithology
described for this group.

In order to compare the interval values of the profiles within
the groups, boxplots associated to core lithologies in the data set
were constructed, as shown in Figure 6.

Figure 6 shows how little the profiles vary and how simi-
lar the values are for the studied lithologies. Among the ana-
lyzed variables, density profile is the most similar among the six
groups, very little change is observed for the massif or medium-
graded sandstone, interstratified sandstone/shale, residual con-
glomerate and finely laminated medium sandstone.

Among the analyzed lithologies, the only variable that stands
out is the finely interstratified shale/sandstone, with a large range
of values; however, the medium-graded or massif sandstone of
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Table 7 – Confidence intervals.

Group 1 Group 2 Group 3 Group 4

Valor Valor Valor Valor Valor Valor Valor Valor

min. max. min. max. min. max. min. max.

RHOB 2.26 2.27 2.34 2.35 2.41 2.44 2.18 2.19

DT 87.90 88.59 78.25 79.31 85.22 87.79 95.89 96.35

NPHI 23.16 23.40 18.02 18.51 19.91 21.14 25.69 26.0

GR 56.44 57.11 51.84 53.03 89.33 94.01 55.87 56.64

Figure 6 – Boxplots of analyzed lithologies: 1 – Massif or medium-graded sandstone; 2 – Finely interstratified sandstone/shale; 3 – interstratified
sandstone/shale; 4 – Amalgamated coarse-graded sandstone; 5 – Residual conglomerates; 6 – Fine to medium laminated sandstone.

the reservoir group displayed density interval very similar to the
lithology of the possible reservoir, interstratified shale/sandstone,
residual conglomerate and finely laminated medium sandstone.

Within the reservoir group, the coarse-graded amalgamated
sandstone lithotype closely resembles the finely interstratified
sandstone/shale lithotype. For these two classes, the values of
sonic and gamma ray profiles with contained intervals are very
similar, however differentiated by the porosity profile, where the
possible reservoir facies shows higher values.

The fine laminated medium-graded sandstone values, stand
out in the sonic profile, whose interval is below the other classes,

but this variable has only four samples and therefore, a small
variation of the values is observed for all profiles. Except for
this lithotype, all others display very close average density thus
making classification difficult.

The interstratified sandstone/shale class has a porosity pro-
file interval that groups the finely laminated medium-graded
sandstone values, and represents the two lithologies with higher
porosity values.

In gamma ray profile, the interval of massif or medium-
graded sandstone comprises the values of possible reservoir
groups; however, the finely interstratified sandstone/shale has

Revista Brasileira de Geof́ısica, Vol. 30(3), 2012



“main” — 2013/4/8 — 13:24 — page 297 — #11

KURODA MC, VIDAL AC, LEITE EP & DRUMMOND RD 297

Figure 7 – Lithological classification results for the cored intervals. The white color represents lithologies without core samples. The blue color repre-
sents non-reservoir lithologies.
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much higher gamma-ray values than the others. This difference
found for gamma ray values in this class facilitates pattern recog-
nition for this lithotype.

Since the lithologies differ little, the separation of the litholog-
ical groups becomes difficult, especially between reservoir and
potential reservoir groups, which have no distinct signature be-
tween the profiles.

Massif or medium-graded sandstone shows no significant
differences that might distinguish it from the potential reservoir
lithotype. For all analyzed profiles, its values are very close to the
residual conglomerate values, except for porosity of the potential
reservoir rock whose average is relatively lower.

Gamma-Ray profiles with cutoff value of 60◦ API (indicated by
the green color) were used to compare the results with data from
well logs. The other three profiles (DT, RHOB and NPHI) are also
represented. It should be highlighted the intersection of profiles
NPHI and RHOB that indicates reservoir rocks (in yellow).

The four wells displayed in Figure 7 show that the best inter-
vals for reservoir rocks according to the profiles obtained using
the SOM method were coarse and medium-graded sandstone fa-
cies. The sandstones interbedded with shales were defined cor-
rectly in most cases. The comparison with core data shows a very
good correlation, it is observed that the results fit core values and
classify satisfactorily the wells according to different lithologies.

CONCLUSION

A detailed analysis of the electrofacies of the Namorado Oil Field
using the SOM method is shown in this work. The used databases
refer to reservoir facies classified after analysis of RHOB, DT, GR
and NPHI well logs, by the kNN supervised clustering method.
The purpose of the reclassification was to delineate the lithotypes
present in these facies while qualifying them either as reservoirs
or potential reservoirs.

The U Matrix presented an array of neurons that could be vi-
sually grouped; however, the use of K-Means algorithm enabled
the separation of other groups and set such limits, which cor-
roborate the subsequent interpretation of data profiles. The two
groups determined by the lowest Davies-Bouldin index resulted
in the choice of four different groups, two of which could be clus-
tered together since they have very similar characteristics.

The basic statistical analysis of the data showed that group
profiles were constant and similar in the four scenarios, thus im-
plying that group behavior remained almost unchanged within dif-
ferent environments. Therefore, a more detailed analysis of the
groups was essential.

The diagnosis based on core data led to the conclusion that
three of the four groups displayed similar behavior in association
with the composition of reservoir rocks. While only one group
stands out from the rest, consisting of potential reservoir rocks.
The effectiveness of this zoning was also confirmed by comparing
with additional information about the Namorado Oil Field and its
extrapolation through statistical inference.
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Géologique, Géophysique et Géostatistique, Ph.D. Thesis, Académie de
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na Margem Continental Brasileira: Geologia, Exploração, Resultados e

Perspectivas. Revista Brasileira de Geof́ısica, 18(3): 352–396.

REGAZZI AJ. 2002. Análise multivariada. Notas de aula INF 766. Depar-
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