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ABSTRACT. Signal processing is a set of techniques used to extract data from any signal. A signal may be mathematically characterized as a function of several

variables (parameters), such as time, distance, resistivity, or radiance. A signal is usually acquired using one or more analog or digital devices, such as a temperature

sensor, a digital camera, or a resistivity probe. After acquisition, the processing depends on the nature of the signal and its information. In addition to the information

being studied, the recorded signal may contain noise, which hinders the extraction of information, leading to ambiguous or erroneous results. The objective of this

study is to present a non-linear technique for noise attenuation in well logs using fuzzy sets and fuzzy logic. The proposed filter evaluates the continuity of the log

measurements through the use of two differential parameters. Sudden leaps in the measurements may indicate the presence of noise; therefore, for each point in the log,

the filter evaluates the degree of discontinuity and provides a correction value to be applied. Differential fuzzy filtering is applied to data from synthetic and real well logs

to conduct a performance evaluation using the MSE (mean square error).

Keywords: well logging, noise, digital filtering and fuzzy systems.

RESUMO. Podemos caracterizar o processamento de sinais como um conjunto de técnicas utilizadas para extrair informações de um sinal qualquer. Um sinal pode

ser caracterizado matematicamente como sendo uma função de várias variáveis (parâmetros), como exemplo, tempo, distância, resistividade, radiância, por exemplo. A

aquisição de um sinal é normalmente feita por um ou mais dispositivos analógicos e/ou digitais, como exemplos, um sensor de temperatura, uma câmera digital, uma

sonda de resistividade, dentre outros. O tipo de processamento a ser aplicado, após aquisição, dependerá da natureza do sinal e da sua informação. O sinal registrado

poderá conter, além da informação desejada, também uma quantidade de informaçõessem nexo ou interesse, denominadas por ruı́do. A presença de ruı́dos nos sinais

pode prejudicar os processos de extração da informação desejada, levando a resultados ambı́guos e sem nexo. Assim o objetivo deste trabalho é mostras uma técnica

não linear para a remoção de ruı́dos em perfis de poços utilizando conjuntos e lógica fuzzy. O filtro proposto avalia a continuidade das medidas do perfil através da

utilização de dois parâmetros diferenciais. Saltos abruptos nas medidas podem indicar a presença de ruı́dos, assim, para cada ponto no perfil, o filtro avaliará o grau de

descontinuidade e atribuirá um valor de correção a ser aplicado. Finalmente, a filtragem fuzzy diferencial será aplicada em dados de perfis de poços sintéticos e reais,

onde procederemos a uma avaliação de desempenho utilizando o parâmetro MSE (erro médio quadrático).

Palavras-chave: perfis de poços, ruı́dos, filtragem digital e sistemas fuzzy.
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INTRODUCTION

Signal processing consists of the analysis or modification of sig-

nals to extract information or format them for a particular applica-

tion. This processing may be analog or digital. Signal processing

techniques can be very useful in the control and analysis of physi-

cal systems in various fields, such as engineering, economics, bi-

ology, geosciences, and health (Sonka et al., 1993; Steven, 1999).

Filtering is a common signal processing technique that is often

used to remove noise to improve the quality of interpretation and

the use of data. In this work, we focus on digital filtering applied

to well logs, particularly algorithms based on fuzzy logic and fuzzy

sets (Zadeh, 1965).

A well log is a representation of the variations of a physical

properties measured along the depth of a borehole. In the past,

analog measurements were taken and the resulting log was shown

graphically on paper. Measurements are now digitally recorded

and stored in ASCII-type files, as standardized by API1 (Serra,

1984; Serra & Andreani, 1991). These measurements are usu-

ally contaminated by noise due to issues with sonde calibration,

mechanical problems, and borehole interference. To minimize the

effects of noise in the well logs interpretation, techniques based on

Fourier analysis, inversion procedures (Claerbout, 1985; Guerra,

1994) and non-linear techniques (Anderson, 2001) can be used.

For example, Jesus et al. (2003) introduced a method of data fil-

tering to better delineate lithologic data from wells. This method

is based on the Lp norm and represents a generalization of the

concept of the mean. However, in many cases technological limi-

tations (e.g., the tool response functions) and numerical problems

(e.g., the transfer functions for the filters, computational errors,

signal-to-noise ratio estimates) cannot always be circumvented

in a simple and satisfactory way. Thus, cognitive algorithms, in-

cluding fuzzy systems (Zadeh, 1965; Takagi & Sugeno, 1985), of-

fer new alternatives for processing of data involving uncertainties

and ambiguities (e.g., well logs). Some authors use fuzzy logic to

filter image data, including Kaoru Arakawa (1996), who proposed

a filter to eliminate impulse noise in images. The filter is obtained

through a weighted sum of input signals and the output of the

median filter; the weight is defined on the basis of fuzzy rules re-

garding the states of the input signal. Morillas et al. (2008) has

also explored this technique and described a new filter that uses a

reduced ordering of color vectors to detect and eliminate impulse-

type forms. The purpose of this filter is to use adaptive statistics to

simultaneously remove impulses and preserve the image, edges,

and details.

Fabrizio Russo & Giovanni Ramponi (1996) presented a new

operator that adapts the fuzzy logic approach to improve images

corrupted by impulse noise. The proposed operator is based on

two phases and is able to remove very strong noise while simul-

taneously preserving the image details. The first phase (the action

detection module) aims to detect noise pulses by considering the

differences among neighboring pixels, allowing the selection of

a possible correction. The second phase (the action adaptation

module) modifies the correction value to improve the preserva-

tion of the details.

Following the same reasoning, Schulte et al. (2006) described

a new algorithm, FIDRM2, that can be applied to images with a

mixture of impulse noise and other types of noise. The result is

an image with very little impulse noise. This non-linear filtering

technique contains two stages: the first consists of detecting and

reducing impulse noise, and the second involves the preserva-

tion of the sharpness of the image edges. Based on the concept

of a fuzzy set, the method uses a fuzzy gradient to detect impulse

noise.

Nejad et al. (2008) presented a new fuzzy filter to reducenoise

in images containing constructive noise. This filter also consists

of two phases. The first involves the processing of all image pixels

to determine the noisy pixels using a fuzzy system that associates

a degree to each pixel (i.e., a real number in the interval [0, 1]),

which indicates the probability that this pixel is not noisy. In the

second stage, a new fuzzy rule uses the output of the previous

stage to weight the contributions from neighboring pixels.

Many studies related to filtering use neighboring data to ana-

lyze a given point. This strategy is based on the concept of func-

tion continuity, where the smooth behavior is expected near of the

each point.

METHODOLOGY

Initial considerations

Fuzzy systems are based on operations that involve fuzzy sets and
logic (Aguiar & Oliveira, 1999). Fuzzy logic differs from classi-
cal logic in the allocation of “true” and “false” values. In classical
theory, an element belongs to a set if and only if it has a value 0
or 1. A value of 0 indicates complete exclusion, and a value of 1
indicates complete inclusion. Therefore, given a universe U and

1API is the acronym for American Petroleum Institute.
2FIDRM is the acronym for “Fuzzy Impulse noise Detection and Reduction Method”.
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any element x∈U , the membership function μA(x) in relation to
a set A ⊆ U is given by Barron (1993):

μA(x) =

{
1 if x ∈ A
0 if x /∈ A .

(1)

Different from classical theory, a fuzzy set A defined in the
universe X is characterized by a membership function μA, which
relates the elements of X in the interval [0, 1]:

μA(x) → [0, 1] . (2)

Thus, the membership function associates each element x be-
longing to X with a real number μA(x) in the interval [0, 1],
which represents the degree of membership of the element x to
the set A, i.e., how much the element x belongs to set A:






μA(x) : X → [0, 1],

μA(x) = 0, if x /∈ A,

0 < μA(x) < 1, (parcial membership in A),

μA(x) = 1, (total membership in A),

A =
{
(x, μA(x))

/
x ∈ X

}
.

(3)

Fuzzy logic can be seen as a generalization of classical logic,
where any value in the interval [0, 1] can be assumed.

The method

Fuzzy systems are used with data that carry a certain degree of
uncertainty, inaccuracy, or ambiguity. The presence of noise in
the wireline measurements further increases these uncertainties.
Given the previously mentioned characteristics, we developed a
mathematical model, based on fuzzy logic, for the removal of
noise from well logs. For each point of the well log, differentials
to the left and to the right are calculated. The signal continuity
is then evaluated by testing the differential signals through infer-
ence rules. Differentials with opposite sign indicate continuity in
the log, while those ones with the same sign indicate a leap at
the point considered. As a result of the defuzzification process,
a correction factor is generated to eliminate or reduce this leap.
Figure 1 shows the simplified block diagram of this application
of a differential fuzzy filter.

In the diagram (Fig. 1), f r is the well log (noise and informa-
tion), Cor are the correction factors calculated by the filter, De

and Dd are the differential parameters in the first iteration, De
n

and Dd
n are the differential parameters in the n-iteration, f̃n is

the filtered well log in the n-iteration, and f̃ is the filtered well
log after N iterations. The mathematical model of the fuzzy system
proposed in this study consists of the following steps:

Data entry

Differentials of well log values are adopted as input variables,
which are defined as follows:

Def. 1: The differential parameters to the left, De
i (zi ) and

Dne
i (zi ), and to the right, Dd

i (zi ) and Dnd
i (zi ),for each depth

point zi are extracted from the well log f r (the raw wireline log)
and f̃n (the filtered log in the n-th iteration)and are defined as:

• Initial differential parameters (first iteration):
{

De
i (zi ) ≡ f ri−1(zi−1) − f ri (zi )

Dd
i (zi ) ≡ f ri+1(zi+1) − f ri (zi )

(4)

• Initial differential parameters in the n-th iteration:
{

Dne
i (zi ) ≡ f̃n,i−1(zi − 1) − f̃n,i (zi )

Dnd
i (zi ) ≡ f̃n,i+1(zi + 1) − f̃n,i (zi )

(5)

Parameter initialization for the fuzzy filter

In this step, the filter is initialized using the initial estimate of the
wireline log noise level (universe of discourse) and the number
of iterations that are required for filter the data. The universe of
discourse is defined as:

Xn = [−nr, nr ], (6)

where nr is an estimate of the maximum noise level and is
given as:

nr = max
(
max(|De|), max(|Dd |)

)
(7)

Fuzzification of the input parameters

Mapping of the input dataset is performed by calculating differ-
ential parameters to each side in one or more sets in the interval
[0, 1]. This step also includes the definition of the membership
functions for the variables. In the membership functions, we use
the Gaussian function (Gomide et al., 1994) given by:

gaussm f (x, c, σ ) = e− 1
2 (

x−c
σ )

2
, (8)

where c is the mean and σ is the standard deviation. From this
membership function, the differential fuzzy sets to the left and right
are defined as:






F DT I =
{(

x, μF DT I (x)
)}

, x ∈ Xn,

μF DT I : Xn → [0, 1], with

μF DT I (x) = e
−(x−cT I )2

2σ2
T I ,

T I = {e−, e+, d−, d+}.

(9)
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Figure 1 – Diagram of a fuzzy differential filter.

Figure 2 – Membership functions for mapping differential parameters. Blue indicates positive, and green indicates negative.

In system (9), F DT I is a family of differential fuzzy sets whose
superscripts T I indicate the nature of each set: Differential to the
left and negative or positive, or differential to the right and neg-
ative or positive. μF DT I are the Gaussian membership func-
tions, with cT I and σT I representing the mean and the standard
deviation of the measurements within the universe of discourse,
respectively.

Figure 2 shows an example of how the membership functions
are projected for the differential parameters to the right, either pos-
itive or negative. The parameters cT I and σT I shape the Gaus-
sian curves, defining the value of the differential parameter.

Fuzzy inference process

The fuzzy inference process consists of a series of elementary
binary logic operations. The following symbols are adopted for
the elementary fuzzy operators:

Def. 2: The symbols are of the following type:

¬ For the negative operator (not);
∧

For the conjunction operator (and);
∨

For the disjunction operator (or);

⇒ For proposition of the type if-then;

⇔ For proposition of if-and-only-if;

⊆ For inclusion.

The inference process adopted for the proposed filter consists
of two steps: the evaluation of the premise of each rule (conjunc-
tion) through the T-norm operators (minimum) and the aggrega-
tion step, in which the different conclusions of the active rules
under the S-norm operator (maximum) are considered and are
defined as follows:

Def. 3: Norm T or T-norm – Let a, b, c and d be fuzzy
sets. The T-norm operator is defined as an implementation of the
binary intersection or operator and. Therefore, an operation
t : [0, 1]2 → [0, 1] satisfies:

Revista Brasileira de Geof́ısica, Vol. 30(3), 2012
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2.1 Commutativity: at b = bt a.

2.2 Associativity: at (bt c) = (at b)t c.

2.3 Monotonicity: if a ≤ b and c ≤ d , then
at c ≤ bt d .

2.4 Limit conditions: 0 t a = 0, 1 t a = a.

Def. 4: Co-T-norm or S-norm – Let a, b, c and d be fuzzy
sets. The S-norm operator is defined as an implementation of
the binary union or the operator or. Therefore, an operation
s : [0, 1]2 → [0, 1] satisfies the following properties:

3.1 Commutativity: as b = bs a.

3.2 Associativity: as (bs c) = (as b) s c.

3.3 Monotonicity: if a ≤ b and c ≤ d , then
as c ≤ bs d .

3.4 Limit conditions: as 0 = a, as 1 = 1.

The properties 2.4 and 3.4 indicate that the operators T-norm
and S-norm are maximum and minimum operators, respectively.
The operators T-norm and S-norm are triangular norms and co-
norms that are used for the operations of intersection and union
in fuzzy sets formed in the previous step (fuzzification).

The assessment of the type of correction to be implemented
(positive or negative) by the filter is achieved through the appli-
cation of two inference rules. In this work is adopted a Mamdani-
type inference system (Mamdani, 1976), which is defined by the
fuzzy Cartesian product and by the fuzzy relation concept. Defi-
nitions 5, 6, and 7 below describe the Mamdani implication rule
concept.

Def. 5: Let a and b be two fuzzy sets; the Cartesian product is
defined as the set:

a × b =
{
(ai , b j )

/
ai ∈ a and bi ∈ b

}
.

Def. 6: Let a and b be two fuzzy sets; a fuzzy relation is defined
as the set:

Ra×b =
{(

(ai , b j ), μa×b(ai , b j )
)/

(ai , b j ) ∈ a × b, ai ∈ a, bi ∈ b and

μa×b(ai , b j ) ∈ [0, 1]
}

Def. 7: The Mamdani implication rule (Mamdani & Assilan,
1975; Mamdani, 1976) is applied to the outer product a ⊗min b
or ⊗ min(a, b), where a and b are fuzzy sets (membership
functions) with universes of discourse that are not necessarily

equal and ⊗ min indicates the application of the operator min
to each element of the Cartesian product a × b. By definition:

a ⇒ b ≡ ⊗ min(a, b), namely, ⊗ min(a, b)

≡
{
min(ai , b j )

/
ai ∈ a, b j ∈ b

}
.

The inference rules herein proposed can be expressed in
words:

• R1: If De
i (zi ) and Dd

i (zi ) are positive, then the correc-
tion value Cori is positive.

• R2: If De
i (zi ) and Dd

i (zi ) are negative, then the correc-
tion value Cori is negative.

To mathematically express the rules R1 and R2, the Defini-
tions 1 to 7 are applied, achieving:





R =
2∨

k=1
Rk ,

R1 : a+∧ b+ ⇒ Cor+ ≡ ⊗ min
(
a+∧ b+, Cor+)

,

a+∧ b+ ≡ min
(
μF De+ (De), μF Dd+ (Dd )

)
,

Cor+ = μCor+ (C O R),

R2 : a−∧ b− ⇒ Cor− ≡ ⊗ min
(
a−∧ b−, Cor−)

,

a−∧ b− ≡ min
(
μF De− (De), μF De− (Dd )

)
,

Cor− = μCor− (C O R).

(10)

The terms ⊗ min(a− ∧ b−, Cor−) and ⊗ min(a+ ∧
b+, Cor+) are the Mandami implication rules, which are the set
of membership functions formed by {min(a− ∧ b−, Cor−)}
and {min(a+∧ b+, Cor+)}, where i represents the i-th depth
point considered. By analyzing each element, i.e., for each depth
zi , the operations defined in the inference system given in Eq. (10)
are performed based on the T-norm (Figs. 3 and 4):

R1 : μF De+ (De
i ) ∧ μF Dd+ (Dd

i ) ⇒

Cor+ ≡ min
(

min(μF De+ (De
i ), μF De+ (Dd

i )), Cor+)
,

Cor+ = μC O R+ (C O R)

(11)

R2 : μF De− (De
i ) ∧ μF Dd− (Dd

i ) ⇒

Cor− ≡ min
(

min(μF De− (De
i ), μF De− (Dd

i )), Cor−)
,

Cor− = μC O R− (C O R)

(12)

Finally, the result of the inference process is a sequence of
fuzzy sets related to the application of all of the rules. To proceed
to the defuzzification step, these sets must be aggregated into a
single set by using an aggregation operator involving the S-norm
(see Definition 4 and Fig. 5):

hi (C O R) = max(Cor+
i , Cor−

i ), (13)

Brazilian Journal of Geophysics, Vol. 30(3), 2012
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Figure 3 – Rule (1) of the Mamdani implication (T-norm or minimum operator).

Figure 4 – Rule (2) of the Mamdani implication (T-norm or minimum operator).

where i represents each sample considered, hi (C O R) is a
membership function, i.e., hi : Xn → [0, 1], and represents
the aggregation curve of the rules (Fig. 5). Given the universe of
discourse Xn (correction values), the corrective fuzzy output sets
are defined as:






Cor T I =
{(

C O R, μC O RT I (C O R)
)}

, C O R ∈ Xn,

eμC O RT I : Xn → [0, 1] with

μC O RT I (C O R) = e

−(C O R−cT I )2

2σ2
T I ,

T I = {−, +},

(14)

where C O RT I is a family of corrective fuzzy sets and the super-
scripts TI indicate the nature (destructive of constructive correc-
tion) of each set. μC O RT I (C O R) are Gaussian membership
functions, with cT I and σT I representing the mean and standard
deviation of the measurements within the universe of discourse,
respectively.

Defuzzification of the correction factor

The defuzzification process occurs after the inference rules are
aggregated. In this stage, the correction factor is generated; it
is positive if the noise is destructive and negative if the noise
is constructive. The membership function values h j (C O R) are
used as input to the defuzzification process. The defuzzifica-
tion uses the centroid method, where n is the number of points
in h j (C O R):

Cor j =

n∑

i=1
C O Ri h j (C O Ri )

n∑

i=1
h j (C O Ri )

. (15)

Figure 5 – The process of the aggregation of correction factors using the aggre-
gation operator, S-norm (maximum operator).

In Eq. (15), Cor j represents the correction to be added in
the j-th measurement of the wireline log at depth z j . The uni-
verse of discourse of the output fuzzy sets is the same as for the
differential fuzzy sets because the correction values are within the
estimated noise levels (Fig. 6). In Figure 6, the value in red rep-
resents the calculated centroid for the aggregation curve given.

Figure 6 – The defuzzification process.

Figure 7 shows the fuzzy inference system applied according
the rules and the defuzzification process.

Revista Brasileira de Geof́ısica, Vol. 30(3), 2012
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Figure 7 – The fuzzy inference system and defuzzification.

Well log correction

After defuzzification, the correction value sharpens and is applied
to the well log to remove or attenuate the noise, thus improving the
data quality and interpretation. The correction factor maybe con-
structive or destructive, depending on the effect of noise on the
wireline log. The well log value is corrected by adding the value
obtained during the defuzzification, i.e., for each n-th iteration:

{
f̃n = fn−1 + Cor, n > 1;
f̃n = f r + Cor, n = 1.

(16)

Thus, for each measurement f ri or fn−1,i at depth z j :

{
f̃n,i (zi ) = f ri (zi ) + Cori (zi ), n = 1,

f̃n,i (zi ) = fn−1,i (zi ) + Cori (zi ), n > 1.
(17)

Calculation of new filter input parameters for
the next iteration

In this stage, the filtered well log is evaluated for the applied cor-
rection levels. This procedure is necessary for the recalibration
of the fuzzy system and to perform the next iteration. For subse-
quent iterations, the universe of discourse and membership func-
tions are updated to produce a lower filtering level, based on a
new estimate using f̃ n and nr :

nr = max
(

max(Dne+), max(Dnd+)
)

(18)

The process is repeated until the last iteration, which gives
the final result of the filtering process:

f̃ = f̃n, n = N . (19)

As can be observed, the mathematical model of this filter is ex-
tremely simple and is based on the assumption that the noise can
be constructive (increasing the signal level) or destructive (de-
creasing the signal level). Thus, the noise can be seen as discon-
tinuities in the signal. The differential input parameters work as

a “detector” for these discontinuities and can be used to estimate
the noise level. This filter establishes the filtering level through
the iterations.

RESULTS AND DISCUSSION

The filtering process was applied in synthetic and real well logs
to remove the noise from these signals. For the synthetic data,
induction well logs were generated based on the Doll’s geomet-
ric factor (Doll, 1949; Serra, 1984; Ellis, 1987) by simulating a
resistivity induction tool with two coils separated by a distance L
of 1 m. The sampling interval is 0.2 m, and the initial depth zi

of 100 m. For the real data, well logs provided by PETROBRAS
(Namorado Field) were used, along with core analysis and facies
description. Selected interval of the gamma ray log (GR) and deep
induction resistivity log (ILD) were considered. In all well logs,
the differential fuzzy filter was applied with a maximum of three
iterations. For comparison, we also used a classic median filter
with two points. After the test with synthetic and real data, the per-
formance of the filter was evaluated and was compared to other
filtering systems.

Application to synthetic data

In the conductivity distribution model, we adopted a segmented
continuous function, where the domain represents the depths and
the image intervals represent the layers and their respective con-
ductivity values. The conductivity log was generated using the
Doll’s geometric factor (Doll, 1949; Andrade 1992; Guerra, 1994).
The resulting deep induction log was contaminated by Gaussian
noise, which shows both positive and negative noise highlighted
by differential parameters to each side (Fig. 8). Figure 9 shows the
deep induction log filtered using the proposed fuzzy system. To
demonstrate the reliability of the fuzzy filtering method, we com-
pare it with the classical median filter method, which is widely
used in signal processing (Russo & Ramponi, 1996).

Brazilian Journal of Geophysics, Vol. 30(3), 2012
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Figure 8 – The normalized model with noise highlighted by differential parameters.

Figure 9 – The synthetic log corrected using the fuzzy filter after two iterations (N = 2).

Figure 10 shows another example of a well log treated with the
differential fuzzy filter, after two iterations (N = 2). Compared
to the classic median filter with two points, the fuzzy filter signif-
icantly reduced noise levels (Fig. 11). In the proposed method,
each iteration entails a filtering process, and the fuzzy filter in-
creases or decreases the filtering level, as necessary, to obtain
the correct filtering of the considered data.

To more clearly demonstrate the efficacy of the proposed fuzzy
filter in comparison to the median filter, Figure 11 shows a high-
lighted section of the filtered wireline log from Figure 10. After
two iterations, the fuzzy filter effectively attenuated the oscilla-
tions due to noise by smoothing the peaks over the entire sec-
tion, while the two-point median filter was unable to remove these
oscillations and was only able to lower the peaks in some parts of
the well log.

Application to actual data

Figure 12 shows the facies description in a depth window of one
borehole drilled in the Namorado field, Campos Basin. Compar-
ing core data with well logs requires some care with regard to
sampling and scale; however cores can be used to provide a
general overview of the well log data. In Figure 12, the facies
description shows a shale package from 3,018 to 3,022 m in
depth. In this same depth section, the GR log (Fig. 13) shows
values ranging between 70 and 100 UAPI. On a massive shale
package, this oscillation can be associated with the presence
of noise.

Figure 13 shows the results after two iterations of fuzzy fil-
ter and two-point classical median filter. The application of fuzzy
filter results in a better quality wireline log because the oscilla-

Revista Brasileira de Geof́ısica, Vol. 30(3), 2012
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Figure 10 – The synthetic resistivity induction log without noise (green), with noise (red), and showing the
distribution of the resistivity (blue).

Figure 11 – A section of the conductivity log treated with the two-point median filter and the fuzzy filter after
2 iterations (N=2), showing the distribution of conductivities (blue), resistivity log with noise (red), the log
filtered with the median filter (green), and the log filtered with the fuzzy filter (black).

tions observed in the GR log were attenuated. In the subinterval
of the 3,018 to 3,022 m depth shows a jump of 10 UAPI with
an oscillation of roughly 2 UAPI. The largest jump may represent
internal variations of the shale while the smaller oscillation may
be due to noise. The fuzzy filter acted on the smaller oscillation,
eliminating it and preserving the facies information.

Figure 14 shows the deep induction log treated by the two-
iteration fuzzy filter and the two-point median filter. Once again,
the application of fuzzy filter results in a better quality wireline
log, because it smoothed the signal more efficiently and pre-
serve some discontinuities represented by small peaks at depths
of 3,022 to 3,024 m and at 3,036 m.

Figure 12 – A section from the facies description of a borehole from the
Namorado field, Campos Basin.
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Figure 13 – The gamma ray (GR) log with noise (blue); the well log filtered using the median filter (green); and the
well log filtered with the fuzzy filter (red). Facies descriptions are highlighted between depths of 3,018 and 3,022 m.

Figure 14 – Induction log (ILD) (blue); the ILD log filtered with the median filter (green); and the ILD log filtered with the fuzzy filter (red).

Applications to borehole images

In Guerra (2004), the simulated sonic log enabled the imaging
of the P-wave first breaks using data obtained by receivers or in
this case, the semblance distributions. Figure 15a shows a simu-
lation of two elastic half-spaces, (2) and (3) traversed by a bore-
hole (f). Region (2) simulates shale, and region (3) simulates
sandstone. Through the semblances obtained in the simulation,
an image of the normalized amplitude residuals, RAN (Guerra,
2004), can be generated. We note the behavior of the parameter
transit time, given by the time when the tool moves through the
borehole and crosses the simulated half-space (Fig. 15b). How-
ever, if the semblances are noisy, the resulting RAN image may

show nothing (see Fig. 15c). Because the noise occurred on the
micro-seismograms, processing the RAN image to remove them
did produce satisfactory results. When the fuzzy filter was ap-
plied to the semblance data, there was significant improvement in
the image, which started to reveal a more detailed behavior of the
transit times in relation to lithologic changes (Fig. 15d).

Performance evaluation

Synthetic data are ideal for testing the performance of the fuzzy
processing algorithm because they allow the control of the entire
process (i.e., signal generation, the introduction of noise and the
comparison with the initial noiseless data). The model adopted
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Figure 15 – a) The geological model of well section (f) crossing a shale formation (2) and sandstone (3). b) A RAN image obtained by simulation of the sonic log
in panel a. c) The same RAN image with added noise. d) The result of fuzzy filtering of the image in panel c.

for performance evaluation is the same showed in Figure 9. The
added noise (Gaussian and random) may be limited in range and
in number of points. To evaluate and compare the performance of
the fuzzy filter, the MSE (mean square error) was obtained using
the following equation:

M SE =
1

N

N∑

j=1

( f ni − fi )
2. (20)

where f ni are the values of the original log (noiseless), fi are
the values of the filtered log, and N is the total number of points
of the log. A high MSE can indicate a low level of filtering or
distance from the original signal. A low MSE can indicate more
efficient filtering and good recovery of the original signal. To com-
pare the performance of the fuzzy filter, we applied three types of
filtering: median filter, zero-phase filter and the Savitzky-Golay
filter (Orfanidis, 2010). Table 1 shows the MSE values used to
compare the performance of each filter.

In Table 1, the MSE increases with the percentage of the sig-
nal affected by noise, with the exception of the zero-phase and
Savitzky-Golay filters, for which the values had few fluctuations.
The MSE for the non-linear filters, particularly the median filter,
increased with the percentage of the signal affected. The fuzzy
filter had more efficient filtering after one iteration than after three
iterations, showing that high levels of filtering can damage the
signal. Table 2 shows the MSE values for noise levels that are

30% of the maximum amplitude of the ideal signal. Once again,
the MSE increases with the percentage of the signal affected by
noise. However, the number of iterations plays an important role
when noise levels are high. In this case, the three-iteration fuzzy
filter had the best performance in comparison to the other filters,
especially when a significant percentage of the signal was affected.

Table 1 – MSE values for the noise level, giving the maximum 15% of the great-
est absolute value of the ideal log. Values in bold indicate the most efficient
filtering levels.

Filter 20% 40% 60% 80% 100%
Med2 0.0582 0.0726 0.0881 0.1053 0.1033
Med4 0.0441 0.0498 0.0632 0.0724 0.0741
Fuzzy1 0.0209 0.0309 0.0408 0.0577 0.0566
Fuzzy3 0.0283 0.0467 0.0645 0.0683 0.0643

ZF 0.2578 0.2544 0.2503 0.2575 0.2537
SG 0.6896 0.6822 0.6643 0.6732 0.6714

Table 2 – MSE values for the noise level, giving the maximum 30% of the great-
est absolute value of the ideal log. Values in bold indicate the most efficient
filtering levels.

Filter 20% 40% 60% 80% 100%
Med2 0.3345 0.5414 0.7288 1.0493 1.0252
Med4 0.0611 0.1335 0.2952 0.4602 0.5017
Fuzzy1 0.1230 0.1635 0.2819 0.4238 0.4383
Fuzzy3 0.0961 0.0467 0.1873 0.2823 0.2935

ZF 0.2620 0.2717 0.3465 0.3952 0.3830
SG 0.6884 0.6936 0.7003 0.7377 0.7357
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Figure 16 – The deep induction log in detail. The original log is shown in black, and the log after fuzzy filtering
is shown in light blue. Compared to the other filters, the fuzzy filter results in a smoother log and good similarity
to the original log.

Figure 16 compares the log after different types of filtering.
The fuzzy filter performed the best, resulting in the lowest MSE
and smoothest log, with smaller perturbations from the original
noise-free well log.

CONCLUSION

The fuzzy filter method worked fairly well when applied to syn-
thetic and actual wireline logging data, and it significantly attenu-
ated the noise. Only two iterations were necessary to obtain good
results, which shows the convergence of the algorithm. For syn-
thetic data, the number of iterations must be chosen carefully to
decrease the noise level and maintain the integrity of the sig-
nal, i.e., the lithologic information. This filtering process does
not produce shifts in the filtered log. It is important to assess
the continuity of the signal and noise, avoid unnecessary filter-
ing, and prevent any loss of signal when defining the differentials
as input parameters and inference objects of the fuzzy system.
In future work, a better definition of the input parameters, infer-
ences, membership functions, and criteria for choosing the num-
ber of iterations will be needed to simplify and optimize the fuzzy
filtering algorithm, especially for real data.
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tion of Well logs]. Universidade Federal do Pará, Centro de Geociên-
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GUERRA CE. 2004. Modelagem Numérica de Perfis Sônicos em Reser-
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professor, level II, at the UFPA. He has experience in the geosciences, with emphasis on wireline logging and he mainly focuses on the following themes: formation
evaluation, petrophysics (core analysis), and intelligent algorithms (artificial neural networks, fuzzy inference, and evolutionary methods).
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