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ABSTRACT. The use of remote sensing is a valuable method for geological mapping as it provides synoptic coverage at relatively low cost. In the Amazon region, radar

imagery has a potential for geological applications due the enhanced sensitivity to topography (macrotopography), surface roughness (microtopography), and dielectric

properties of materials, independent of weather, sun angle, and illumination conditions. As the roughness is highlighted, SAR textural attributes can be used for mapping

iron-ore mineralized laterites in N1 deposit, located in the Carajás Province. For mapping the lateritic cover, the airborne SAR was used from Surveillance of the Amazon

System (SIVAM/SIPAM, L-hh, L-hv, L-vv) to simulate orbital Multi-Application Purpose SAR (MAPSAR). The images were analyzed through textural classifications

derived from second-order measure (GLCM) with the objective of mapping the mineralized laterites for iron ore. Differences are highlighted when comparing the

classified maps and the ground information. Not all classes were separated, but a high performance for textural attributes was presented by the hematite class. This class

was sensitive to the sensor and target parameters, especially macrotopography and physics characteristics. The results showed that for mineral exploration, the radar

images at L-band can be used as a practical tool for a preliminary mapping, and as a guide for field-based verification.

Keywords: Amazônia, SAR, MAPSAR, textural attribute, laterite cover, SIVAM/SIPAM, L-hh, L-hv, L-vv.

RESUMO. Imagens de radar são úteis em geologia devido à visão sinóptica e a uma cobertura a um custo relativamente baixo. Particularmente na região amazônica, o

uso de imagens de radar em aplicações geológicas é favorecido pela capacidade de realce do relevo (macrotopografia), da rugosidade superficial (microtopografia) e da

constante dielétrica, independente da presença de nuvens, ângulo solar e condições de iluminação. A microtopografia do terreno, realçada neste tipo de imagem, permite

que a textura das imagens de radar possa ser usada no mapeamento das coberturas laterı́ticas mineralizadas em ferro do depósito N1, localizado na Provı́ncia de Carajás.

A investigação se baseou em imagens adquiridas por radar aerotransportado (SIVAM/SIPAM, banda L-hh, L-hv e L-vv), cujas faixas de voo foram degradadas visando à

simulação do SAR orbital MAPSAR. Os dados foram analisados através de classificações texturais, derivadas de medidas obtidas por meio de Matriz de Co-ocorrência

dos Nı́veis de Cinza (MCNC) com o objetivo de mapeamento das unidades laterı́ticas em N1. Muitas diferenças foram encontradas entre as classes mapeadas e o mapa

de verdade terrestre. Nem todas as classes foram separadas, mas a hematita apresentou alto desempenho na classificaç ão. Esta classe foi sensı́vel aos parâmetros do

alvo e do sensor, especialmente a macrotopografia e as caracterı́sticas f́ısicas. Os resultados mostraram que a classificação baseada em MCNC pode ser usada como

ferramenta preliminar de mapeamento das lateritas e como um guia para verificação de campo.
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INTRODUCTION

The Carajás Mineral Province is located on the easternmost bor-
der of the Amazon region. It is one of most important mine-
ral provinces in the world, with a predominating iron produc-
tion and enormous potentials for Mn, Cu, Au, Ni, U, Ag, Pd, Pt,
Os, and others (Lobato et al., 2005). This mineral province area
is on a mountainous terrain with altitudes higher than 900 m,
surrounded by southern and northern lowlands with altitudes
around 150-200 m with thick oxisols (“latosols”) as a result of
deep chemical weathering and with few rocks outcrops. The vege-
tation cover is typical of the Equatorial forest with complex, mul-
tilevel canopies and numerous species (Paradella et al., 1994).

Since 1967, when the iron deposits were discovered, a re-
markable geobotanical contrast given by the iron-mineralized
laterites and specific vegetation types has been recognized. The
deposits are related to a set of plateaux covered by thick hard
iron-rich crusts developed over volcanic rocks and ironstones.
A specific low-density campos rupestres vegetation (Silva et al.,
1986) is associated with the deposits, and shows a strong con-
trast with the dense equatorial forest. This contrast was detectable
through radar airborne C-band imageries during the SAREX’92
(South American Radar Experiment’92) campaigns (Morais et al.,
2002). The province was almost completely covered during the
SAREX’92 campaign in preparation for ERS-2 and RADARSAT-
1 launches. Details of the SAREX’92 can be found in Wooding
et al. (1993).

In the Amazon region, C-band backscatter intensity is stron-
gly controlled by decameter scale changes in the surface slope,
and by centimeter scale roughness characteristics of the crown
scattering, including multiple scattering within the crowns. The
preliminary evaluation, by textural classifications, of this SAR data
has shown that the backscattered C-band responses are sensitive
to this geobotanical contrast in depicting variations in the duri-
crust vegetation associations (Morais et al., 2002).

Due to the economic importance of this area, there is a
practical need to provide accurate and up-to-date surface maps
to support mineral exploration and environmental programs.
The province has been extensively covered by various airborne
(RADAMBRASIL, INTERA, SAREX) and spaceborne SAR (ERS-1,
JERS-1, RADARSAT-1) surveys. These data have played an im-
portant role in the acquisition of geological information in the
Carajás Province (Paradella et al., 1997, 2000). In addition,
with SAR system satellites (ALOS/PALSAR and RADARSAT-2)
having new characteristics (resolution, polarization, incidence,
wavelength) the practical utility of textural SAR classification for
mapping remains to be demonstrated.

The Brazilian-German MAPSAR (Multi-Application Purpose
SAR) is a proposal for an innovative L-band sensor whose main
mission is to assess and monitor natural resources. The MAP-
SAR mission is a small spaceborne SAR conceived by Brazilian-
German scientific and technical cooperation between INPE
(Instituto Nacional de Pesquisas Espaciais ) and DLR (Deutschen
Zentrums für Luft- und Raumfahrt ) (Schröder et al., 2005). Even
before its lauching, imagery simulation was an important aspect
for the potential-use investigation of SAR. Thus, before its laun-
ching, the simulation of MAPSAR imagery is now performed by
using images provided by the airborne SAR L-Band sensor, the
R99 of the SIVAM/SIPAM (Surveillance of the Amazon System)
(Schröder et al., 2005). In this stage, a set of test sites was se-
lected covering fields like Agriculture, Forestry, Geology and Mi-
neral Exploration, Disaster Management, Coastal Zone Studies,
Geomorphology, Hydrology and Environmental Analysis.

The images of the Carajás Mineral Province were acquired on
June 2005 as part of this campaign. The area was covered in June
2005 by an airborne SAR-R99B with adapted processing and si-
mulation techniques to simulate the expected MAPSAR imagery
products. Since the lateritic compositions play an important role
in the expression of the macro and micro topographical rough-
ness, it was considered worthwhile to evaluate the SAR texture
obtained from MAPSAR L-band on lateritic crust.

The main objective was mapping iron ore laterites from the N1
Deposit in Carajás Mineral Province through MAPSAR imagery
simulation. The research used the L-band with the expectation
that this proposed approach could be used as a tool for mapping
other similar areas.

STUDY AREA

The N1 is an iron-ore deposit located in the Carajás Mineral Pro-
vince, on the easternmost border of the Amazon region (Fig. 1).
The total ore resources for the Carajás Province are estimated to
be 17.8 billion tons having a 66.1% iron concentration (Beisiegel
et al., 1973). The N1 deposit is a plateau with altitudes of around
700 m and an approximate area of 24 km2.

The N1 deposit is related to rocks of the Grão Pará Group,
displaying complex patterns of folding and faulting. The Grão
Pará Group has been subdivided into two units: volcanic rocks of
the Parauapebas Formation (Meirelles et al., 1984), and the iron-
stones of the Carajás Formation (Beisiegel et al., 1973). The vol-
canic rocks are a bimodal sequence of basalts, dolerites and
rhyolites. The ironstones of the Carajás Formation are compo-
sed of several types of iron ore of various oxide facies. They
are mainly jaspilite and interlayered hematite and silica (Tolbert
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Figure 1 – Location map of N1 deposit.

et al., 1971), which are either of soft or hard hematite (Lobato
et al., 2005). The jaspilites have variable compositions with
17.11-43.40% Fe and 35.10-60.84% SiO2 presenting typical
interlayering of dark and light centimetre-thick mesobands and
microbanding with iron-oxide layers intercalated with white to
pale or bright red layers composed of crypto to microcrystalline
SiO2 (jasper and chert) with inclusions of cryptocrystalline hema-
tite (Tolbert et al., 1971; Beisiegel et al., 1973).

Under the humid tropical climate of the Amazon region, fer-
ruginous and latosoils are extensively developed in the plateau.
These weathered products show varying degrees of alteration that
are responsible for the differences in composition, hardness and
textures. The N1 area was mapped during the economic evalu-
ation of the iron reserves in the province (Resende & Barbosa,
1972). The following types of ferruginous crusts were identified
in the area: duricrust (in situ duricrust with limonite blocks), che-
mical crust (hematite fragments with goethitic pisolites), iron-ore
duricrust (hematite ore blocks and subordinately specularite, ce-
mented with hydrous ferric oxides), and hematite (mainly hematite
outcrops). In addition, a latosoil unit was also mapped in a res-
tricted area, associated with arboreal vegetation. The surface map
of the plateau is seen in Figure 2.

Situated on rock outcrops N1 vegetation has a typical aspect
of the tropical scrubs called campos rupestres (Silva et al., 1986).

It is predominantly composed of herbs and arboreal plants types
with less development of the semi-arboreal type. Semi-arboreal
ecosystems are common in restrict lands; others areas have arbo-
real species strictly found in latosoil. Gramineae and Legumino-
sae plant families have a large geographic distribution. A geobo-
tanical control is evident in N1 ferruginous area showing relations
between vegetation and relief that support the crusts (Silva et al.,
1986). As seen in Figure 3, on the top of the hills with many rock
outcrops a layer of soil is very restricted and plant species are of
short types. Coming down the hills it is common to see some soil
and organic matter, which permit the development of plant species
of higher sizes in fissures over the crusts. On the basis of the hills
the flora attains its maximum development with a major growth of
species. Many lakes are covered by a vegetation of the Typha sp.
type regionally known as “taboa”, where outcrops of the crusts are
exposed during the dry seasons.

DATASET

The research was based on airborne SAR imagery obtained from
the Amazon Surveillance System (SIVAM/SIPAM, L-hh, L-hv,
L-vv) aiming for the simulation of orbital Multi-Application Pur-
pose SAR (MAPSAR) used for the assessment and monitoring of
natural resource applications in the Amazon region. The charac-
teristics of SAR-R99B data are shown in Table 1.
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Figure 2 – Surface-Cover Map from N1 plateau adapted from Resende & Barbosa (1972).

Table 1 – SAR-R99B characteristics.

Parameter Specification

Platform EMB-145

Band L

Polarization hh, hv, vv

Acquisition Date June 2005

Incident Angle (deg) 48/53◦

Spatial Resolution (m) 11 × 11

Image Format 8-bits

Illumination Geometry Look Azimuth: 282◦

METHODOLOGY

The research was based statistical approach known as Grey Le-
vel Co-occurrence Matrix (GLCM) proposed by Haralick (1979).
Grey tone spatial dependence approach characterises texture
by the spatial relationships among grey tones in a local area.
Grey tone co-occurrence can be specified in a matrix of relative
frequencies Pi j in which two neighbouring resolution cells se-
parated by distance d occur on the image, one with grey tone
i and the other with grey tone j . Such matrices of spatial grey
tone dependence frequencies are symmetric and are a function

of the angular relationship between the neighbouring resolution
cells as well as a function of the distance between them (Hara-
lick, 1979). Several statistical parameters can be extracted from
the GLCM, which can be used as input data in an automatic clas-
sification process. Weska et al. (1976), and Welch et al. (1990)
consider a class of local properties based on absolute differen-
ces between pairs of grey levels. The Grey Level Difference Vector
(GLDV) is based on absolute differences between pairs of grey
levels i and j at a distance d and at a angle θ .

The textural analysis based on GLCM is a common technique
which proved to be effective in earlier studies, e.g. Shanmugan et
al. (1981), Ulaby et al. (1986), Yanasse et al. (1993), Baraldi &
Parmiggiani (1995), and Kurvonen & Hallikainen (1999), but few
examples have focused on the geological applications in tropical
environments (Azzibrouck et al., 1997).

The investigation was based on textural descriptors extrac-
ted from the GLCM and GLDV used as input for an unsupervised
classification scheme. Some of these parameters are related to
specific first-order statistical concepts, such as contrast and vari-
ance, with clear textural meaning (pixel pair repetition rate, spatial
frequencies detection, etc.), while other parameters contain tex-

Revista Brasileira de Geof́ısica, Vol. 29(1), 2011



“main” — 2011/7/25 — 18:14 — page 103 — #5

MORAIS MC, MARTINS JUNIOR PP & PARADELLA WR 103

Figure 3 – Vegetation changing × relief on N1 plateau.

tural information associated with more than one specific textural
meaning (Baraldi & Parmiggiani, 1995).

No speckle filtering was applied to the images in order to
keep the original texture of SAR scenes. Representative samples
of nine classes were chosen, on the basis of field observations
and the mapped surface: C1 = Latosoil, C2 = Soil (anthro-
pogenic effects), C3 = Duricrust (chemical), C4 = Duricrust,
C5 = Iron-ore duricrust (with shadow), C6 = Iron-ore duri-
crust, C7 = Hematite (with shadow), C8 = Hematite, and C9
= Lake. The inclusion of some classes with shadow-effects
was necessary since shadow effects were pronounced on the
SAR images. Based on these samples, second-order measures
derived from GLCM (mean, homogeneity, contrast, dissimila-
rity, entropy, energy, correlation) and from Grey-Level Difference
Vector-GLDV (energy, entropy, mean, contrast) were analyzed.
The second-order measures were computed with nine configu-
rations of distance (d), i.e., (–2.0), (–2.1), (–2.2), (–1.2), (0.2),

(1.2), (2.2), (2.1), and (2.0). Since 82 measures were made, it be-
came impracticable to use such a large number of configurations
in the classification.

Therefore, texture measure selection was based on the Dis-
criminant Factor decision rule that evaluates the separability be-
tween classes which details of method can be found in (Rennó et
al., 1998). Thus, for two hypothetical classes A and B, and one
texture measure k, the Discriminant Factor was computed accor-
ding to the variation between and within these classes, given by
Equation (1):

DFAB,k =

n A ∙
n A∑

i=1

(
X Ai,k − X B,k

)2 + nB ∙
nB∑

i=1

(
X Bi,k − X A,k

)2

n A ∙
n A∑

i=1

(
X Ai,k − X A,k

)2 + nB ∙
nB∑

i=1

(
X Bi,k − X B,k

)2
(1)

where Xωi,k is the i th sample of class ω for the measure k,
Xω,k is the mean value of measure k class ω, and nω is the
number of samples of class ω.
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According Equation (1), the texture measure chosen to sep-
arate classes A and B is one that selects the highest value of
DFAB for all k, indicating the best separateness for these clas-
ses. DFAB,k values near one denote that there is confusion
between classes A and B for the texture measure k. Thus, for
each pair of nine N1 classes, the best set of measures were se-
lected by the criteria described above, using only high DF, which
gave (visually) a good performance for classification.

The next step was to generate selected textural channels
using texture analysis. For a better control of the grey levels, the
textural channels were processed with 32-bits. A 7×7 window
pixel cell size was selected in order to maintain GLCM sensiti-
vity to the smallest details of the targets while reducing both noise
effects. An unsupervised ISODATA classifier (Mather, 1987) was
used for the classification. The classifications were based on the
best sets of texture measures for each polarization isolated (hh, hv,
and vv) and combined (hh and hv; hh and vv; hv and vv; hh, hv,
and vv). In order to refine the results, a post-classification Mode
filter algorithm was also applied.

The classification results were analyzed through a confusion
matrix to estimate the amount of correctly and incorrectly classi-
fied pixels for each class. The method used to evaluate its accu-
racy was the kappa coefficient of agreement (Foody, 1992), which
was evaluated through test samples extracted from the Surface-
Cover Map (see Fig. 2). On each classified map, 48 points were
randomly allocated for two classes: hematite and no hematite. The
statistic test used to evaluate the significant differences between
the two classifications is given by Equation (2). All tests for the
significant difference between classification results were carried
out at a 95% confidence level. At this level, two results may
be considered significantly different if 1k̂ >1.96 (Benson &
DeGloria, 1985).

1k̂ =

∣
∣k̂1 − k̂2

∣
∣

√
σ̂ 2

∞

[
k̂1

]
+ σ̂ 2

∞

[
k̂2

] , (2)

where k̂ kappa and σ̂ 2
∞

[
k̂
]

is the variance kappa.
In the radar images, small-scale surface roughness refers to

microrelief that may modulate the radar return in flat terrain. The
roughness varies with radar wavelengths, incidence angle, and
the topography. The roughness may closely relate to underlying
geological substrate and may also be caused by weathering pro-
cesses, by soil composition, or vegetation associations (Werle,
1988).

The roughness is a very important target parameter that influ-
ences the performance of the textural classification, and rough-
ness measurements were also collected at 73 representative si-

tes of the main classes. Surface roughness is generally difficult
to measure accurately in the field, but the in situ measurements
were considered a first approximation to categorise lateritic crusts
as smooth, intermediate, or rough. The height values from each
unit were obtained, in RMS (root mean square) values, by inser-
ting a thin plate into the surface (Fig. 4) photographing it, and
digitising the profile. The roughness classification was based on
the criterion proposed by (Peake & Oliver, 1971) calculated for
local incident angles at L-band wavelength.

RESULTS

For each SAR configuration, Table 2 shows the best selected
textural measures used in the classifications with distances d
(distance in pixels at considered direction for measures related
to GLCM). The mean and GLDV contrast measures were sensiti-
ve for all data.

Table 2 – Best selected textural measures with the d dis-
tances for each SAR configuration used in the classification.

SAR data Measures d

L-hh

Mean –2.1

Dissimilarity 1.2

GLDV contrast 1.2

GLDV energy 2.1

L-hv

Mean 1.2

Contrast –2.1

GLDV contrast 2.2

Entropy –2.2

L-vv

Mean –1.2

Entropy –2.0

Homogeneity 1.2

GLDV contrast –2.1

The set of selected measures was used as input for the un-
supervised classification with hh, hv, vv – L bands and their
combinations, hh and hv; hh and vv; hv and vv; hh, hv and vv.
The best textural classification for L-band is shown in Figure 5
(hh and vv). The results indicate that not all classes were discrim-
inated on SAR-R99B images when compared with the Surface-
Cover Map (see Fig. 2). The latosoil, duricrust (chemical), iron
ore duricrust, and lake were not classified. Backscattered L-band
responses are no sensitive to these classes. For latosoil the
volume scattering effect was predominant, since response was
affected by forest canopy over the terrain.

L-band is very sensitive to small-scales variations in surface
roughness and the backscatter is affected by the terrain below
a vegetation canopy (Tapley, 2002). The dielectric properties of
surface materials can also influence on radar return signal. A very
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Figure 4 – Plate on the lateritic cover (120cm length × 40cm height).

low dielectric constant in dry environments allows longer radar
wavelengths to penetrate to greater depth (Werle, 1988). Lateri-
tic crusts have capability to retain high water volume on the rainy
seasons, but the area was affected by the strong drought, which
occurred in the Amazon region, from November 2004 to the end
of 2005 (Marengo et al., 2008).

The drought influenced SAR imagery acquisition on June
2005, corresponding to the low rain mean of that year (Fig. 6).
At this condition, duricrust (chemical) showed very dry grass
vegetation in flat terrains, and the low backscattering can be re-
lated to low values of dielectric. This effect was also observed in
dry lakes. At normal rain conditions, it was expected the typical
aquatic vegetation on lakes, and as a consequence a higher radar
responses. Therefore, grasses vegetation appears smooth at L-
band, as showed in Figure 7, and it has affected the classification
that may results on confusion where dry lakes were incorrectly
classified as soil (anthropogenic effects).

Although the soil (anthropogenic effects), duricrust, and he-
matite were relatively well classified, they presented confusion
with other classes. For this reason, the statistical analysis was
made between hematite and no hematite classes. Table 3 shows
the kappa values for all classifications, where duricrust and soil
(anthropogenic effects) were grouped into the “no hematite” class
and evaluated with “hematite” class. According to this table, the
hh classification was better than vv polarization, while the cross
polarization presented the worst result. The best results are for
both hh and vv classification, showed by the confusion matrix (Ta-
ble 4) obtained by test samples based on the field-investigated
points, where the rows present the percentage results of the
classification and the columns are the truth obtained from ran-
dom test samples. According these results, hematite showed a
god performance on textural classification. The application of
the kappa ranking, as proposed by Landis & Koch (1977),
supports this results and indicates the following: (1) the best

Brazilian Journal of Geophysics, Vol. 29(1), 2011
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Figure 5 – Textural classification for the L-band (hh and vv) data.

Figure 6 – Rain mean for 2005 year in the area (Source: ANA – National Water Agency).
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Figure 7 – Responses by polarized L-band radar backscatter for soil (anthropogenic effects) – letter A and dry lake – letter B.

results (very good in the ranking) were obtained when the clas-
sifications were based on both polarization under hh and vv, (2)
the best classification with only one band occurred when using hh
(bad in the ranking), and (3) the cross polarization was considered
the worst result for the classifications.

Table 3 – Kappa coefficients for the unsupervised
classifications obtained by test samples from field.

SAR data K (%) Kappa variance (%)

L-hh-vv 0.720 0.009

L-hv-vv 0.560 0.011

L-hh-hv 0.450 0.013

L-hh-hv-vv 0.400 0.012

L-hh 0.372 0.013

L-vv 0.360 0.013

L-hv 0.320 0.016

Table 4 – Confusion matrix for the classification based on textural attributes
extracted from airborne SAR data (hh, hv, and vv).

Classified data
Truth reference data

no hematite hematite number of pixels

no hematite 80% 20% 30

hematite 24% 76% 20

number of pixels 25 25 50

These results indicate that for N1 deposit hh polarization
suffers less attenuation from the vertically arboreal and semi-
arboreal vegetation. The hh capacity to penetrate surface mate-
rials, which presents a compact horizontal structure, was favo-
red by a large amount of hematite outcrops. Signal polarization
has a good performance for vv due the ability to provide better
discrimination between targets with similar roughness charac-

Brazilian Journal of Geophysics, Vol. 29(1), 2011
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Figure 8 – Roughness classification for all classes.

teristics, like vegetation, soil (anthropogenic effects), duricrust
(chemical) and dries lakes. The cross-polarized caused a de-
creased on kappa values when it added on both hh and vv classi-
fications as it can be derived by a loss of signal radar on cross-
polarized response. Also, cross-polarized signal provided a
better discrimination between specular and diffuse signal re-
turn, like classes covered by dry grasses and arboreal and semi-
arboreal vegetation.

In relation to roughness classification, N1 plateau with a re-
lative flat topographic relief and low elevations variation (Fig. 9)
is controlled by microrelief. A small range of incident angles
occurred since N1 plateau as located in the centre of swath. With
regards to L-band, the surface roughness of lateritic crusts de-
rived from 73 in situ measurements based on a scheme propo-
sed by Peake & Oliver (1971) were not sensitive to the variations
(Fig. 8). According to these results, most classes were classified
as intermediate, i.e., the diffuse reflection is observed and this
results in medium backscattering SAR. Duricrust (chemical) and
soil (anthropogenic effects), presented the best results and were
classified as smooth, as expected at L-band. The reduced size
particles of these classes, located at flat areas, showed a specular
reflection at this wavelength.

The influence of macrotopography was evident on hematite
results classification. This class exhibits a stronger influence on
relief in eastern segment of the plateaux given by bright returns
and shadows (front/back slopes). Further, the 282◦ look azimuth
direction favoured the relief enhancing terrain oriented at NW-SE,
with many occurrence of hematite.

CONCLUSIONS

Textures attributes derived from second-order measures (GLCM)
from airborne SAR L-band can be used with limitations as a
practical tool for a preliminary map. The investigation has shown
that textural descriptors were sensitive to the (1) SAR wavelength,
(2) SAR polarization, and (3) target parameters (dielectric cons-
tant, macro and microtopography). L-band was very sensitive to
small-scale areas of vegetation and the surface backscatter was
affected by the terrain below this vegetation. For forest canopy
on flat terrain, the volume scattering effect was predominant.
The hh polarization has better performance than vv to penetrate
materials with a compact horizontal structure, like hematite. Alre-
ady vv polarization presented better performance on discrimina-
tion targets with similar roughness characteristics, like vegetation,
soil (anthropogenic effects), duricrust (chemical), and dry lakes.
The cross-polarized signal caused a decreased on classification
results and it can be due to the loss of signal radar on cross-
polarized response. The dielectric constant can be affected area
submitted targets to drought conditions. The hematite compact
structure, on higher areas of the plateau, was sensitive to macro-
topography and, and it contributed to discriminate it from others
classes. The surface roughness was poorly classified at L-band
and most classes were classified as intermediate. Most classes
were classified as smooth at specular reflection conditions. From
all these factors, it can be observed that the wavelength was the
most important factor to discriminate iron-mineralized laterites in
N1, as previously observed at C-band in N1. Also, this approach
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Figure 9 – DEM generated from topographic curves – N1 plateau.

can be used as a practical tool for a preliminary map, which may
serve as a guide for detailed iron-mineralized laterites mapping in
Carajás, and other minerals, like phosphate-titanium mineralized
laterites in Maicuru. Multi-wavelength SAR images is desirable
for a better classes discrimination. Finally, an additional appro-
ach will deserve attention for future research with use of textural
classification derived from polarimetric SAR data.
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– Université Pierre et Marie Curie – Paris VI, Laboratoire de Géologie Dynamique in 1977. Professor-Researcher at the Federal University of Ouro Preto and Science
and Technology Researcher at Minas Gerais Tecnological Center Foundation – CETEC. Experience on the following topics: Epistemology, Agrarian and Environmental
Geosciences, Modeling watersheds environmental management, Ecology-Economy, System development for Architecture of Knowledge, Cartographic developments in
ecology, energy and economy and Certification Methods Geo-environmental and economic.

Waldir Renato Paradella. Geologist (University of São Paulo – IGUSP, 1973), Master’s Degree in Remote Sensing (National Institute for Space Research – INPE,
1976), Ph.D. in General Geology (University of São Paulo – IGUSP, 1983) and post-doctoral at CNPq (1988-1989) and CIDA – Canadian International Development
Agency (1995-1996) in Canada. III Researcher holder of the Remote Sensing Division (RSD) of INPE. Experience in the Geosciences, Applications of radar images
in Geology and Cartography, with emphasis in Radargrammetry, Polarimetry, and Interferometry. Coordinator of radar symposia in 2000 (Rio de Janeiro) and 2008
(Oslo, Norway) of the International Geological Congress.

Brazilian Journal of Geophysics, Vol. 29(1), 2011


