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COMBINING TILT DERIVATIVE FILTERS:
NEW APPROACHES TO ENHANCE MAGNETIC ANOMALIES

Fabrício Rodrigues Castro, Saulo Pomponet Oliveira,
Jeferson de Souza and Francisco José Fonseca Ferreira

ABSTRACT. We extend the concept of two earlier enhancement techniques based on the local phase of the magnetic anomaly, namely the vertical (TDR) and horizontal

(TDX) tilt angles, which are defined by the inverse tangent of ratios involving the total horizontal gradient and the vertical derivative. These filters are useful to locate

both shallow and deep sources, because they equalize the signal amplitudes. The proposed approach is based on the addition and subtraction of TDR and TDX. The

TDR+TDX filter produces constant values over the causative bodies, while TDR-TDX generates peaks over the center of bodies and is constant out of them. By applying

the proposed techniques to synthetic and aeromagnetic data we show that they locate more clearly the centers and edges of the sources in comparison to TDR and TDX,

respectively. The combined filters have essentially the same computational cost as TDR and TDX and can replace them as auxiliary interpretation tools.

Keywords: qualitative methods, local phase filters, aeromagnetic data.

RESUMO. Estendemos o conceito de duas técnicas de realce baseadas na fase local da anomalia magnética: as inclinações do sinal analítico (TDR) e do gradiente

horizontal total (TDX), definidos pelo arco tangente de razões envolvendo o gradiente horizontal total e a derivada vertical. Estes filtros são úteis para localizar tanto

fontes rasas quanto profundas. O método proposto baseia-se na adição e subtração dos filtros TDR e TDX. O filtro TDR+TDX produz valores constantes sobre as fontes

causadoras, enquanto que o TDR-TDX produz picos sobre o centro dos corpos e é constante onde fontes causadoras não são verificadas. Aplicando as técnicas propostas

aos dados sintéticos e reais mostra-se que elas localizam mais claramente os centros e as bordas dos corpos em comparação com o TDR e o TDX, respectivamente.

Os filtros combinados têm essencialmente o mesmo custo computacional dos filtros originais, TDR e TDX, e podem substituí-los como ferramentas de interpretação.
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INTRODUCTION

Enhancement methods based on first-order derivatives of gravity
and magnetic data are commonly employed to locate edges
and centers of causative sources. These techniques are robust
in the sense that they can cope with low-quality data, and
require low computational effort (Pilkington & Tschirhart, 2017).
Some traditional methods of this class are the analytic signal
amplitude (Nabighian, 1972, 1974; Roest et al., 1992) and the
total horizontal gradient (Cordell & Grauch, 1985).These methods
have been applied to delineate causative sources in aeromagnetic
data (Behrendt et al., 1996; Bastani & Pedersen, 2001), besides
being used as ingredients to develop other filters (Wijns et al.,
2005; Cooper, 2009; Ferreira et al., 2013).

Later on, several methods have resorted to normalization
in order to balance low and high amplitudes due to shallow and
deep sources, respectively. Among these, we focus on local phase
filters such as Tilt Angle (Miller & Singh, 1994), Theta Map (Wijns
et al., 2005), and Horizontal Tilt Angle (Cooper & Cowan, 2006).
These filters have been extended to higher-order derivatives as
well (Verduzco et al., 2004; Ferreira et al., 2013).

It is well known that some of these methods are equivalent to
each other (Pilkington & Tschirhart, 2017). In particular, Ferreira
et al. (2013) observed that |T DR|= T H , as well as |T DR|=
π/2−T DX . In this work we explore the latter relation, which
grants special properties to two particular combinations of these
filters: TDR+TDX and TDR-TDX. Even though TDR and TDX have
shown to be useful tools for geophysical mapping (Oruç & Selim,
2011; Jordan et al., 2013), these methods do not clearly indicate
the boundaries of interfering sources (Zuo et al., 2018).

As we shall see next, TDR+TDX represents an improvement
over TDX in the sense that its maximum values are located not
only near the edges of the sources, but over the whole sources,
resulting in a plateau over them. Likewise, TDR-TDX not only
produces a peak over the center of the bodies as TDR, but also
generates a plateau over the regions in absence of sources.
The plateaus provided by these combined techniques render the
potential field easier to interpret.

METHODOLOGY

Let us recall that the TDR and TDX filters are respectively defined
as follows:

T DR = tan−1

(
Mz

Mh

)
(1)

and

T DX = tan−1

(
Mh

|Mz|

)
, (2)

where Mz and Mh are vertical and total horizontal derivatives
of the anomaly M. Both formulas equalize the field responses
due to the characteristics of the arctangent, whose limits range
from −π/2 to π/2. Moreover, since | tan−1(x)|= tan−1(|x|),
it follows that

|T DR|= tan−1

(
|Mz|
Mh

)
= cot−1

(
Mh

|Mz|

)
, (3)

thus, tan(T DX) = cot(|T DR|). If Mz = 0, then T DX = π/2
and |T DR|= 0, i.e., |T DR|= π/2−T DX . Otherwise, since

tan(T DX)− cot(|T DR|) = cos(T DX + |T DR|)
cos(T DX)sin(|T DR|)

(4)

and tan(T DX) − cot(|T DR|) = 0, it follows that
cos(T DX + |T DR|) = 0, and again |T DR|= π/2−T DX .
This relation can be written as follows: T DR+T DX = π

2 , if T DR > 0,

T DR−T DX = −π

2 , if T DR < 0.
(5)

Since TDR is positive over a source and negative elsewhere
(Miller & Singh, 1994), it turns out that the combined filter
TDR+TDX provides a plateau with value +π/2 over the sources,
whereas TDR-TDX produces plateaus with value −π/2 in
regions where sources are not expected.

The TDR+TDX and TDR-TDX filters are implemented
within GRAV-MAG SUITE, an open-source MATLAB© graphical
environment for processing potential field data (Castro et al.,
2018). For implementation in Geosoft’s Oasis Montaj© package,
we recommend to compute the local phase filters (TDR and TDX)
in the “Grid Math Expression Builder” section of “Grid and Image”
menu to ensure that all filters will be enclosed in the range
[−π/2,π/2].

Synthetic example

To illustrate the properties of the proposed methods, a synthetic
model with three equally-spaced prisms was generated using
GRAV-MAG PRISM software (Bongiolo et al., 2013), representing
parallel dike-like bodies with different depths to the top (Fig.
1). The model parameters are shown in Table 1. The strength,
declination and inclination of the induced field vector are
57000 nT, 0, and 90 degrees, respectively, and no remanent
magnetization was considered.
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Figure 1 – 3D view of synthetic model.

Table 1 – Geometrical parameters of the synthetic model. X, Y, Z are the
coordinates of the prisms.

Prism A B C

X(km) 5 10 15

Y(km) 10 10 10

Z(km) 0.2 0.4 0.6

Length (km) 18 18 18

Width (km) 1 1 1

Thickness (km) 18 18 18

Figure 2 shows the magnetic anomaly, whereas Figures
3 and 4 show TDR+TDX and TDR-TDX, respectively. As we
previously mentioned, the TDR+TDX map (Fig. 3) shows that the
plateaus are located over the sources. Likewise, Figure 4 shows
that the TDR-TDX values are maximal over the center of each
prism and constant out of them.

The profiles at 10km are gathered in Figure 5. Figure 5a
shows the Total Magnetic Intensity (TMI) profile and Figure
5b shows the TMI vertical and horizontal derivatives. Note that
TDR-TDX improves TDR by flattening its response away from
the sources (Fig. 5c). Moreover, while the TDX produces two
sharp peaks over the body’s edges, the TDR+TDX yields a plateau
between them, which makes the source locations more easily
identifiable (Fig. 5d).

Field example

The Ponta Grossa Arch (PGA) is a large uplifted tectonic
structure with main axis dipping toward the Paraná Basin interior
in a NW direction (Ferreira, 1982). It is composed by four
narrow lineaments with approximate extensions of 600 km and
widths varying from 20 km to 100 km. These lineaments are
approximately aligned to the PGA axis and played an important
role in the tectonic evolution of Paraná Basin (Algarte, 1972;
Vieira, 1973; Ferreira et al., 1981, 1984; Ferreira, 1982; Almeida,
1983, 1986) (Fig. 6).

The study area comprises part of the Guapiara Lineament
which defines the northern limit of Ponta Grossa Arch (Ferreira,
1982). This feature is marked by a swarm of NW Eocretaceous
diabase dikes and characterizes a crustal suture related to
reactivation of Ponta Grossa Arch, due to huge diastrophism
during the Mesozoic (Ferreira et al., 1981). This structure
was interpreted by Ferreira & Algarte (1979) as an underfloor
expression related to basaltic spills, and alkaline/ultrabasic
alkaline vulcanism conditioned by the Guapiara lineament. Figure
7 shows the geological map of study area indicating the diabase
dikes (in green) according to Machado Junior (2000).

The aeromagnetic data of study (see location in Fig. 6) were
acquired along a north-south flight lines spaced at 500 m and
tie lines at 10 km with a mean terrain clearance of 150 m (CPRM,
2011). Figure 8 shows TMI intensity reduced to the pole, whereas
Figures 9 to 12 show the corresponding maps of TDR, TDX,
TDR+TDX and TDR-TDX, respectively.

The TMI anomaly (Fig. 8) shows that the amplitude of some
NW-SE anomalies decreases suggesting an increasing depth to
top of the corresponding dikes. This behavior is not verified in
local phase filters (Figs. 9-12) as the inverse tangent equalizes
anomalies related to both deep and shallow sources. On the other
hand, these filters may overestimate the lateral limits of deep
sources as observed in the synthetic example (Figs. 5c-d).

Note that the dikes contained in the Guapiara Lineament,
located at the SW portion of the TMI map (Fig. 8), are blurred by
a single anomaly pattern. These dikes can be seen with the TDR
filter (Fig. 9) but are best identified in the TDR-TDX map (Fig.
12). The peaks of TDX are difficult to be interpreted as edges
without auxiliary filters (e.g., TDR). These peaks are connected
by plateaus in TDR+TDX, where no further filtering is needed to
avoid ambiguity.

The applicability of TDR ± TDX is valid for reduced to
the pole anomalies and vertical dipping dikes. For low latitudes
and subvertical dipping dikes the magnetic anomalies present

Brazilian Journal of Geophysics, Vol. 36(3), 2018



338 COMBINED TILT ANGLES TO ENHANCE MAGNETIC ANOMALIES

Figure 2 – Total magnetic intensity of the synthetic example with indication of
bodies limits (dashed lines) and profile at y=10 km (red line).

Figure 3 – TDR+TDX of the data in Figure 2 with indication of bodies limits (dashed
lines) and profile at y=10 km.

Figure 4 – TDR-TDX of the data in Figure 2 with indication of bodies limits (dashed lines) and profile at y=10 km.
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Figure 5 – Profiles at 10km: (a) TMI profile (extracted from Fig. 2); (b) first-order derivatives (red line: Mz and blue line: |Mx|); (c) TDX (red line) and TDR-TDX (blue
line); (d) TDR (red line) and TDR+TDX (blue line).

Figure 6 – Sketch map of Ponta Grossa Arch with indication of four lineaments and dike swarm (Ruberti et al., 2005; Gomes et al., 2018)
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Figure 7 – Geologic map of study area (see location in Fig. 6) listing the main lithotypes and structures over a grey shaded relief. Q (Quaternary deposits);
PCi (Carboniferous Permian - Itararé Sub-Group); NPy (Neoproterozoic - Pos-tectonic granites); NPEOy (Neoproterozoic - Polimitic; greywacke, and meta-arkose
conglomerates); MPxg (Mesoproterozoic - Micaxists); MPx (Mesoproterozoic - Schists); MPs (Mesoproterozoic - Phyllites); MPr (Mesoproterozoic - Meta-sandstones);
MPq (Mesoproterozoic - Quartzite); MPm (Mesoproterozoic - Marbles); MPf (Mesoproterozoic - Meta-rhythmites); MPcb (Mesoproterozoic - Meta-conglomerates
and meta-breccias); MPc (Mesoproterozoic - Calcissilictics with phyllite or schist associated); and MPb (Mesoproterozoic - Mafic meta-vulcanics), modified from
Machado Junior (2000).

Figure 8 – TMI reduced to the magnetic pole (see location in Fig. 6).
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Figure 9 – TDR of the data in Figure 8. Figure 10 – TDX of the data in Figure 8.

Figure 11 – TDR+TDX of the data in Figure 8. Figure 12 – TDR-TDX of the data in Figure 8.

a dipolar character and the positive peaks do not necessarily
correspond to the bodies’ horizontal limits. The application of the
proposed filters in these situations may result in shifted peaks
and plateaus.

CONCLUSIONS

In this preliminary study, we have verified that simple
combinations of well-known tilt derivative filters have shown
to improve the focus on the edges and centers of the sources, in
both synthetic and field data. As illustrated in the chosen field
data (Fig. 8), TDR-TDX flattens out the anomaly in the absence of
structures of interest to geological mapping.

The proposed filters naturally inherit some limitations from
the primary ones. Both TDR+TDX and TDR-TDX products spread
those lateral limits according to increasing depth, for example,
for deep sources the limits of body edges will appear greater than
actual ones. Low-latitude magnetic anomalies present a dipolar

character that remains after the application of proposed filters,
as in typical local phase filters. A similar behavior is noticed on
subvertical dipping dikes where dipolarity is also observed.

The idea of combining filters could be applied to other
qualitative methods (e.g., second order filters). Moreover,
TDR+TDX has great potential in the processing of noisy data. In
contrast with TDR and TDX, where the sources are identified by
peaks which may be confounded with noise, the plateaus over the
sources in TDR+TDX could be easily distinguished from those
artifacts.
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