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HYBRID INVERSION OF INTERVAL VELOCITIES IN MULTISCALE APPROACH

Rodrigo de S. Santos1 and Milton J. Porsani2

ABSTRACT. The understanding of the interior of the planet by using the seismic method of reflection requires knowledge of the velocities with which the seismic
waves propagate in the subsurface of the Earth. This work presents strategies to obtain the velocity intervals using RMS velocity inversion. Using a hybrid algorithm that

combines the Very Fast Simulated Annealing (VFSA) global optimization method and the Fletcher-Reeves local search method, we have sought to reduce the dependence
between the accuracy of the results and the model by which the optimization process begins. The main innovative contribution of this study was the development and

presentation of the named inversion strategy of multiscale parameters. This technique allows the use of the VFSA method in inversion problems in which the number of
variables is significantly large. The hybrid algorithm with multiscale approach was used to solve 1D and 2D problems, estimating models with high degrees of accuracy,

which allowed to confirm the efficiency of the proposed method.
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RESUMO. O entendimento do interior do planeta por meio do método sı́smico de reflexão requer o conhecimento das velocidades com que as ondas sı́smicas se

propagam na subsuperf́ıcie da Terra. Este trabalho apresenta estratégias para a obtenção das velocidade intervalares por uso inversão de velocidades RMS. Utilizando
um algoritmo hı́brido, que combina o método de otimização global Very Fast Simulated Annealing (VFSA), e o método de busca local Fletcher-Reeves, buscou-se

reduzir a dependência entre a acurácia dos resultados e o modelo pelo qual o processo de otimização se inicia. A principal contribuição inovadora deste estudo foi o
desenvolvimento e apresentação da estratégia de inversão nomeada de multiescala de parâmetros. Esta técnica possibilita o uso do método VFSA em problemas de

inversão em que o número de variáveis é significativamente grande. O algoritmo hı́brido com abordagem multiescala foi usado para solucionar problemas 1D e 2D,
estimando modelos com elevado grau de acurácia, o que permitiu confirmar a eficiência do método proposto.
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INTRODUCTION

Due to its ability to record mirrorings related to reflectors, located
kilometers deep from the surface, the reflection seismic method
had become over the years one of the main tools of geophysics
applied to hydrocarbon exploration. The understanding of the
planet interior through seismic method requires the mapping of
the propagate velocities of the elastic waves in the subsurface,
i.e., the knowledge of the seismic velocities field. For that rea-
son, the interval velocities determination is a persistent problem
in seismic analysis and is critically important for efficient seismic
imaging. The most conventional way of the obtained velocities is
with Dix equation (Dix, 1955). However, the use of Dix equation is
restricted to situations where the data is free from noise, because
small variations in the RMS profile cause abrupt and anomalous
variations in the obtained results. For that reason, many studies
have dealt with the problem of interval velocities with the use of
inversion techniques (as: Schultz (1982); Stewart (1984); Rocha
Junior & Porsani (2013); Santana & Bassrei (2015)). Many of
those approaches have limitations such as strong dependence on
the initial model, or they need priori information. In this work,
improved techniques were developed to obtain interval veloci-
ties, by inversion of RMS velocities, which is done independently
from the initial model.

Local and global search methods have been consistently
applied in solving inverse problems. In this work, we developed
a hybrid algorithm that combines the global method Very Fast
Simulated Annealing – VFSA (Sen & Stoffa, 1995), with the
Fletcher-Reeves local method – FR (Wright & Nocedal, 1999),
in a multiscale approach in the parameter domain. The combina-
tion of local and global methods allowed us to estimate veloc-
ity models with high degrees of accuracy without the need of an
initial model.

The efficiency and accuracy of inversion methods remain
closely linked to the number of inversion parameters. In typical
geophysical nonlinear inverse problems, we can easily have thou-
sands of inversion parameters and several secondary maxima. In
this work, it is presented a multiscale parameter strategy, which
allows a successful estimate of a variety of parameter problems.

THEORY

In CMP processing, the difference between the zero-offset reflec-
tion time (t0) and the time for another offset is called normal
move-out (NMO) difference (Δtn,NMO) 3. The NMO’s effect in
a CMP panel make the midpoint reflections hyperbolic, and

NMO’s correction is the process that removes these effects in a
CMP panel (Fig. 1). Δtn,NMO is evaluated by:

Δtn,NMO =
[
t20,n +

( X

VNMO

)2]1/2
− t0,n, (1)

whereX represents the offset, VNMO is the NMO’s velocity and
t0,n the double-time of the zero-offset reflection (Yilmaz, 2001).

Figure 1 – Demonstrative diagram of the NMO correction application and hori-
zontalization of the reflection hyperbole.

For a medium with a single layer VNMO is this interval
measure of velocity. Taner & Koehler (1969) showed that when
the medium is composed of n isovelocity layers with velocities
v1, v2, . . . , vn, and double-time between top and bottom of
each of them is t1, t2, . . . , tn, VNMO can be approximated
by the Root Mean Square velocity (RMS velocity or VRMS ), and
this can be calculated by:

VRMS,n =

√√√√ 1

t0,n

n∑
i=n

v2i ti, (2)

where t0,n is the total double-time between the source and reflec-
tion point at the n-th layer. In the CMP processing, VRMS,n is
obtained by the velocity analysis process as velocities that hor-
izontalizes the reflection’s hyperboles in the NMO’s correction.
In this work, the Eq. (2) was used to obtain vi, a nonlinear inverse
problem solution, which has as input data the RMS velocities.

Solving the inverse problem means finding the model’s pa-
rameters (m) when problem’s data (d) is known. The inverse
problem solution is based on the minimization of the objective
function Q(m), where such a function usually measures the en-
ergy of the errors between observed data (d) and calculated data
(dcal) as shown in the equation below:

Q(m) = eTe where e = d− dcal, (3)
3The term NMO is used for plan reflectors and moveout dip for dip reflectors
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with,

dcal = G(m)

or
dcal = Gm if m and d are LD (linearly dependent).

(4)

In the problems where m and d are linearly independent (LI), Q
(m) represents a rough surface with various local minima (Fig. 2),
and for this type of problem the inversion methods are divided
in local and global, and each has advantages and disadvantages.
The local methods are sensitive to the initial model (mo) and
converges it to the nearest minimum. Unlike local method, global
methods allow the global minimum to be found independent from
the initial model. In this work the nonlinear problem was solved
by combining the global method Very Fast Simulated Annealing
(Sen & Stoffa, 1995), with the local method Fletcher-Reeves
(Wright & Nocedal, 1999).

Figure 2 – Objective function of the nonlinear problem with local and global
minima. This scheme exemplifies how the local method can estimate least local
when the initial model is 2 or 3 (Sen & Stoffa, 1995).

Fletcher and Reeves Method – FR

The linear conjugate gradient method was proposed by Hestenes
and Stiefel in the 1950s as an iterative method for solving lin-
ear systems with positive definite coefficient matrices (Hestenes
& Stiefel, 1952). Fletcher & Reeves (1964) showed how to extend
the conjugate gradient method to nonlinear functions by making
two simple changes in it.

First, the nonlinear objective function gradient is calculated at
each iteration by:

∇Qk+1 = ∇Q(mk+1), (5)

Thus, at each iteration the model is updated by (6):

mk+1 =mk + αkvk, (6)

where vk is calculated by:

vk+1 = −∇Qk+1 + βFRk+1vk, (7)

with

βFRk+1 =
∇QTk+1∇Qk+1
∇QTk∇Qk

. (8)

Second, for the computation of the step length αk, we need to
perform a line search which identifies as an approximate mini-
mum of the nonlinear function Q along vk (Wright & Nocedal,
1999). The step length αk need to satisfy the strong Wolfe con-
ditions written here as:

Q(mk + αkvk) ≤ Q(mk) + C1αk∇Q(mk)Tvk,

|∇Q(mk + αkvk)Tvk| ≤ −C2∇Q(mk)Tvk,
(9)

where 0 < c1 < c2 < 1/2 (Wright & Nocedal, 1999). The
Fletcher-Reeves Method is a local search method, and the re-
ferred estimated model represents the closest minimum to the ini-
tial model (Fig. 2).

Very Fast Simulated Annealing – VFSA
The Very Fast Simulated Annealing method permits to find the
global minimum of the objective function (Sen & Stoffa, 1995).
It is a variant of the Simulated Annealing, which allows narrow-
ing the search interval at each iteration, resulting in faster con-
vergence. From an initial model mk, updating occurs through
Eq. (10), where each parameter mik is disturbed by a factor yi ,
generated randomly by the equation below (Sen & Stoffa, 1995):

mk+1i =mki + yi
(
mmaxi −mmini

)
. (10)

The parameter yi is generated from the following distribution:

gT (y) =

NM∏
i=1

1

2
(|yi|+ Ti) ln(1 + 1

Ti

)

=

NM∏
i=1

gTi(yi).

(11)

Thus a random number ui drawn from a uniform distribution
u[0, 1] can be mapped into the above distribution with the
formula:

yi = sgn
(
ui − 1

2

)
Ti

[(
1 +

1

Ti

)|2ui−1| − 1
]
, (12)

with mmaxi and mmini representing the bounds of the model,
and ui is generated randomly. Ingber (1989) showed that the
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overall minimum is obtained statistically using the cooling cri-
terion shown in Eq. (13), where the temperature Ti is reduced at
each iteration with:

Ti(k) = T0ie
−Cik1/NM . (13)

The model generated by Eq. (10) will be taken as the cur-
rent model based on the criterion of metropolis (Metropolis et al.,
1953). The statistical character of generation and acceptance al-
lows the algorithm to surpass from local minimum.

Hybrid Optimization Methods

Local and global optimization algorithms are used commonly in
geophysical data inversion. Each type of algorithm has unique
advantages and disadvantages. Chunduru et al. (1997) showed
that hybrid algorithms are computationally more efficient than
conventional global optimization methods. Hybrid search algo-
rithms have the potential to make use of the important features of
both global and local algorithms, as they do not require a good
starting solution; are computationally less expensive compared to
global algorithms and can obtain good models with poor starting
solutions (Chunduru et al., 1997). In this work, we combine the
local FR method with a global VFSA approach to solving prob-
lems of geophysical interest. The method structure is FR at the
end of the VFSA, where the VFSA gets the starting model for FR.
The FR combination with VFSA is named of the hybrid Fletcher-
Reeves (HFR).

RESULTS

Treating the velocity intervals as a solution to the inverse problem,
we can see, by comparing Eqs. (4) and (2):

m = [v1 . . . vN ]
T

d = [VRMS,1 . . .VRMS,M ]
T ,

(14)

where the data vector (d) is represented by the RMS velocity pro-
files samples set, and the model parameters (m) is represented
by the interval velocity profiles samples. We will show the result of
the application of the HFR method in the solution of this problem.

The method performance was evaluated using the criterion
of relative RMS deviation of the data (εdRMS ) and of the model
parameter (εmRMS ), defined as:

εdRMS =

√∑N
i=1(di − dcali )2√∑N

i=1(di)
2

, (15)

and,

εmRMS =

√∑M
k=1(m

ver
k −mestk )2√∑M

k=1(m
true
k )2

, (16)

with d and dcal representing the observed and calculated data
vectors, respectively, and mtrue and mest the true and esti-
mated parameter models.

M1 Model

The M1 model represents an interval time velocities (v) profile,
withN samples separated by 4 ms (4.10–3s), where each velocity
represents a model’s parameter that is calculated by the equation:

vi = 800×
[
3− sin

(
i× 6, 5231
N

)]
m/s

with i ε [1, . . . , N ].

(17)

The M1 model assumed four different configurations: N = 10,
N = 30, N = 50 and N = 100. For each M1 model con-
figuration, an RMS velocity profile was generated by Eq. (2) with
ti = 2ms and M = 2N .

Using the HFR inversion method we estimate the model pa-
rameters’ vector (vi), starting from an initial constant model
V0 = 2400 m/s. Figures 3(a), 3(b), 3(c) and 3(d) show the
results for the configurations N = 10,N = 30,N = 50 and
N = 100, were the true, estimated and initial models are shown.
Table 1 shows the RMS errors of this data.

The analysis of the Figures 3(a), 3(b), 3(c) and 3(d) together
with analysis of Table 1, makes it possible to conclude that with
the inversion parameters number’s increase, there is a significant
reduction in the accuracy of the results. It occurs because, with
the increase in the parameters number, there is an increase in
the model solution space, and consequently it directly affects the
VFSA stochastic method’s efficiency. Thus, the number of inver-
sion parameters is a limiting factor for the use of probabilistic
methods, and is the main reason why this class of methods is not
used in solving problems with a high number of inversion param-
eters, such as FWI (Full Waveform Inversion) for example. In order
to solve this problem, we developed a technique called Parameter
Multiscale Approach, which will be presented below.

Multiscale Approach

The parameters multiscale approach is applied in problems where
the number of inversion parameters is large enough to compro-
mise the results. This technique consists of resolving the problem

Revista Brasileira de Geof́ısica, Vol. 35(4), 2017
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(a) Velocity profile M1 model withN = 10. (b) Velocity profile M1 model withN = 30.

(c) Velocity profile M1 model withN = 50. (d) Velocity profile M1 model with N = 100.

Figure 3 – Interval velocity profiles as a function of time. The figures from (a) to (d) show the true initial and estimated velocities for the M1 model with the different

values ofN . WithN = 10 in (a)N = 30 in (b)N = 50 in (c) andN = 100 in (d).

Table 1 – RMS errors calculated for M1 model withN = 10,30,50 and 100.

RMS errors of the M1 model
εdRMS εmRMS

N = 10 7.35× 10−4 5.17× 10−3
N = 30 6.29× 10−4 7.05× 10−3
N = 50 8.29× 10−4 1.18× 10−2
N = 100 4.41× 10−3 4.81× 10−2

in successive rounds, using different scales in the solution space.
In the first round, the number of inversion parameters is much
smaller than the number of model parameters, as are the minima
of the solution space, increasing in number at each round. The
model obtained in the previous round is taken as the initial model

of the next round. This process repeats itself until the problem is
completely solved.

The physical principle behind the technique is the same as
one used by Bunks et al. (1995) in the frequency multiscale used
in FWI. When the process starts with a number of parameters

Brazilian Journal of Geophysics, Vol. 35(4), 2017
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much lower than the number of true parameters, it is possible
to recover larger structures, however, without great detail. As
the number of parameters increases at each round, the obtained
model shows greater detail and is closer to the true model.

In short, this approach is done in three steps:

• Step 1 – to assume that the velocity model to be obtained
is represented by a profile withN different parameters. In
this step, a windowing of this profile is created and divided
it into cells.

• Step 2 – the problem is solved by assuming that all pa-
rameters of the same cell are represented by a single value.

• Step 3 – each cell is re-divided, and step 2 is executed
again by taking the model estimated in the previous round
as the initial model.

Using the multiscale approach, the problem of the M1 model
was solved again with two new configurations, N = 300 and
N = 1000, and again starting with a constant initial model
with V0 = 2400. These results are shown in Figures 4(a) and
4(b), and RMS errors are shown in Table 2. Figures 4(c) and 4(d)
show the function evolution at each round of the multiscale. These
results demonstrate the multiscale method’s efficiency in solving
the velocity problem.

M2 Model – Marmousi
The Marmousi model was created by the Institut Français du
Pétrole (IFP) in 1988, and synthetic seismic data were gener-
ated from this model (Brougois et al., 1990). The geometry of
this model is based on a profile through the North Quenguela
trough in the Cuanza basin. Figure 5(a) shows this model,
whose dimensions are 375 × 369. That model is performed at
one-dimensional and two-dimensional modelling and inversion.
Using the 375 velocity samples from the 100-th column of the
Marmousi model, a RMS profile with 125 samples was modelled.
This RMS profile has been inverted, generating the interval profile
with 375 samples, in a typical sub-determined problem, using the
multiscale approach shown in the Figure 5(b), with

εdRMS = 9, 02× 10−5 and εmRMS = 7, 13× 10−2.

Figure 5(c) shows the function evolution for each multiscale
round.

This experiment was repeated with all 369 columns of the
model, and the inverted results were interpolated, generating the
estimated 2D model shown in the Figure 5(d).

M3 Model – Ray Tracing Seismic Modeling

The M3 model shown in Figure 6(a) was subjected to a simulated
ray tracing modelling, according to the parameters of Table 3.

The generated seismic line was organized in CMPs and sub-
jected to velocity analysis, generating a stacking velocities field
which approximates the VRMS field. From this field, the RMS
profile corresponding to CMP 146 was selected, which has 1160
VRMS samples spaced 2 ms apart. This profile was inverted re-
sulting in the interval profile shown in Figure 6(b) with 580 sam-
ples separated by 4 ms of time. The Figure 6(c) shows the evolu-
tion of the function to each round of the multiscale.

By repeating the experiment performed on the CMP 146, in
each of the 497 CMP’s of the data, the 2D inverted section was
obtained through the interpolation of these profiles, as shown the
Figure 6(d).

CONCLUSIONS

In this work, the VFSA methods with FR were combined in the
search for the solution of the nonlinear inverse problem. The FR
action is after the VFSA, so the hybrid method’s sucess depends
on the VFSA’s sucess. Generally, the use of the VFSA method
makes it possible to estimate the overall solution of the inverse
problem, even when a good initial estimate of the solution is not
known. One of the main barriers to the use of this type of method
is related to the number of inversion parameters.

When the problem has a few variables, the method behaves
effectively and efficiently, as shown in the Figure 3(a). However,
as the number of variables grows, it becomes increasingly diffi-
cult to perform inversion (Fig. 3(b) and 3(c)), so that when the
number of parameters is significantly large, it becomes imprac-
ticable to use this type of method (Fig. 3(d)). In this work, this
problem was solved using the multiscale parameter approach, as
seen in Figure 4(a) and 4(b), even in situations where there are
many variables to determine, it is possible to obtain relative accu-
racy in the problem’s solution. As in the M1 model, the use of
the multiscale in the Marmousi model provided the problem’s
solution with a high degree of accuracy, which validates the
proposed method’s success.

The multiscale approach was developed and used success-
fully to solve the problem of interval velocities, but it is believed
that this approach is applicable to different problems where it is
desired to estimate a large number of variables with stochastic
methods.

The velocity estimation performed on the M1 and M2 mod-
els were performed with noise-free data in situations of over-

Revista Brasileira de Geof́ısica, Vol. 35(4), 2017
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(a) Velocity profile M1 model withN = 300. (b) Velocity profile M1 model withN = 1000.

(c) Objective function M1 Model with N = 300. (d) Objective function M1 Model with N = 1000.

Figure 4 – Interval velocity profiles as a function of time. The figures from (a) to (d) show the true, initial and estimated velocities with the multiscale approach, in M1

model with (a)N = 300 and (b)N = 1000. In (c) and (d) the evolution of the objective function versus multiscale rounds is shown.

Table 2 – RMS errors calculated for M1 model withN = 300 and 1000, with the multiscale approach.

RMS errors of the M1 model with multiscale

εdRMS εmRMS

N = 300 1.38× 10−6 1.08× 10−5
N = 1000 2.43× 10−6 2.57× 10−5

Table 3 – Information from the seismic line modeled by the Cshot ray tracing.

Seismic modeling parameters in the M3 model

Shots amount total 200 CMP’s amount total 497
Channels amount 96 CMP fold 48 trace

Distance between channels 51 (ft) Number of samples 1300

Registration time 2.6 sec Sampling interval 2 m

Brazilian Journal of Geophysics, Vol. 35(4), 2017
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(a) Marmousi Model. (b) Marmousi 1D inversion.

(c) Objective function. (d) Marmousi 2D inversion.

Figure 5 – 1D and 2D models estimated by the hybrid multiscale approach method – Marmousi.

determined and under-determined problems, respectively, result-
ing in an estimate with a high degree of accuracy. In the M3 model,
seismic modelling was performed, and the VRMS was obtained
through velocities analysis, which resulted in noise contaminated
data. This set of residues present in the data had a significant in-
fluence on the estimation of the model; it can be concluded that
the main limitation of obtaining interval velocities with a high de-
gree of accuracy by such approach is related to the difficulty of
accurately estimating VRMS .

Therefore, the need to explore other ways of obtaining VRMS
is left as a proposal for future works, such as the use of high-
resolution velocity spectra.
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(a) Cshot Model. (b) Cshot 1D inversion.

(c) Cshot objective function. (d) Cshot 2D inversion.
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