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DISCRETE AIRY BEAM PROPAGATION IN DEEP OCEANS
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ABSTRACT. In this work, based on the theory of modal propagation of acoustic energy in deep oceans and using the analogy between acoustics and quantum

mechanics, we show that it is possible the existence of almost dispersionless Airy beams propagation at great distances with simultaneous wave packet shape

preservation.

Keywords: normal modes, wave propagation, ocean acoustics, Airy beam.

RESUMO. Neste trabalho, baseado na teoria de propagação da energia acústica por modos em oceanos profundos, mostraremos que é possível a existência de feixes

de Airy que se propagam em grandes distâncias, com pouca dispersão da energia acústica e preservação de sua forma.
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INTRODUCTION AND MOTIVATIONS

In the late 70s, Berry & Balazs (1979) published a pioneering
work on the foundations of quantum mechanics calling attention
to the important fact that, even for a free particle type problem,
a wave packet (representing these particles) in the form of Airy
beams are accelerated, and even more, such beams minimize
diffractive effects throughout their propagation (Durnin et al.,
1987; Siviloglou & Christodoulides, 2007).

In other words, in addition to preserving the transverse
shape of the pulses, the Airy beam propagates its main amplitude
along a parabolic path. Associated with this movement, the beam
is said to be self-accelerating.

Therefore, motivated by similar results, both theoretical
(Berry, 2005) and experimental, in areas involving wave
propagation, such as optics (Salandrino & Christodoulides,
2011), underwater acoustics and ocean waves (Fu et al.,
2017), we have developed a theoretical model that accurately
describes the propagation of Airy beams in an acoustic waveguide
represented by a deep and unlimited ocean.

For this purpose, we have created an acoustic propagation
algorithm which, simultaneously, takes into account certain
characteristics of ray tracing (Popov, 2002; Cerveny, 2005;
Bleistein, 2008), together with the theory of normal modes in the
ocean (Porter & Bucker, 1987; Jensen, 1994).

In the next section we will present a brief review on the
semi-classical WKB theory of acoustic propagation by normal
modes and ray tracing in deep oceans. We will show that under
certain conditions, these theories provide equivalent results
and subsidies for the development of a discrete Airy beam
propagation model. Finally, in the last section, we will summarize
our results and discuss possible outcomes.

METHODOLOGY: FUNDAMENTALS OF THE
PROPAGATION OF GENERALIZED AIRY BEAMS

WKB analysis for modal propagation in the Munk
canonical acoustic guide

For harmonic acoustic displacement fields Φ, with a time
variation exp(−iωt), propagating in an ocean with density ρ(~r)
and sound velocity profile c(~r), it is assumed that the acoustic
pressure P, in the frequency domain, behaves as P = ρω2Φ,
where ω = 2π f is the angular frequency Jensen (1994).

Within this formalism and for cases where the density ρ

is constant or varies smoothly throughout the water layer, the
acoustic displacement field Φ, generated by point sources, are

the propagating solutions of Helmholtz wave equation (Jensen,
1994) (

O2 +

[
ω

c(~r)

]2
)

Φ = Aδ (~r−~rs) , (1)

where, A is the amplitude of the signal emitted by a source
positioned at ~r = ~rs. In deep oceans, due to the azimuthal
symmetry of the problem, we will adopt the polar cylindrical
coordinate system, such that the ocean depth is represented by
the z-axis, while r is the radial distance to this axis.

In deep water, since the sound velocity variability in depth
is greater than in distance, we can assume c(~r)≈ c(z) where r
can vary by some tens of kilometers and z few thousand meters.
Under these conditions, the general solution of Eq. (1) can be
described by the following Hankel transform (Jensen, 1994)

Φ(r,z,zs) =
1
2

+∞∫
−∞

dkrΨ(z,zs)krH1
0 (krr) , (2)

where H1
0 is the first kind and zero order Hankel function. This

solution is compatible with the Sommerfeld radiation condition in
cylindrical coordinates. Moreover, the Green function Ψ satisfies
the differential equation Jensen (1994)

∂ 2Ψ

∂ z2
+

[(
ω

z
c(z)

)2

− k2
r

]
Ψ = Aδ (z− zs) . (3)

Unfortunately in the case of Munk’s canonical profile (Fig.
1), described by Eq. (4) related to hydrodynamic acoustical
parameters L and ε ,

c(z)≡ cmin

(
1+ ε

[
2
(z− zmin)

L
−1+ exp

(
−2

(z− zmin)

L

)])
, (4)

it is not possible to solve explicitly the differential equation
(Eq. 3).

However we can gain some physical insights about the
problem, initially restricting our analysis at depths below the
mixed layer (Fig. 1). It means that, in a first approach, we will not
consider the reflection of the propagating waves on the surface
of the ocean and we will use approximate methods, as the WKB
theory.

For example, within this approximation, it is known that
the propagating modes are associated with discrete values of the
radial wave number, kr → k[n]

r , such that k[n]
r must satisfy the

Bohr-Sommerfeld quantization criterion (Jensen, 1994)
zB∫

zA

dz k[n]
z (z) =

(
n+

1
2

)
π ; n = 0,1, ...,nmax , (5)
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where, for any of the n’s, among the nmax + 1 possible positive
integers, we define k[n]

z as the discrete vertical wave number

k[n]
z (z)≡

√(
ω

c(z)

)2

− k[n]2
r , (6)

which, together with Eq. (5), show us that the integration limits
zA and zB are the classical turning points, and they are the real
solutions of

k[n]
z (zA) = 0 = k[n]

z (zB) . (7)
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Figure 1 – Comparison between typical sound velocity profiles and the
theoretical model of Munk (Eq. 4), as a function of depth, for deep waters. In a)
we see that, in the deeper layers, the behavior of both profiles resemble both the
thermocline and the SOFAR. However, in b), we see that the Munk profile (Eq. 4)
does not satisfactorily describe the velocity behavior of sound in shallow waters
relative to the interior of the mixed layer.

It is also observed, from Eq. (6), that k[n]
z reaches its

maximum value, k[Max,n]
z , inside the SOFAR (Sound Fixing and

Ranging) channel when z = zmin (Jensen, 1994). In Jensen
(1994), we also find typical values referring to the minimum
depths and sound velocities, respectively zmin = 1300m and

cmin = 1500m/s. Associated with these parameters we can define
the cutoff frequency of the Munk waveguide as

fc ≡
cmin

2zmin
, (8)

which is the smallest frequency below which there can be no
propagating waves inside the guide. Throughout this work, we
have adopted a frequency of 50Hz, which is about eighty times
greater than the cutoff frequency of a typical Munk guide. In
addition, we will explicitly adopt the following values for deep
water, L = zmin = 1300m and ε = 0.00737, referring to Eq.
(4), wich characterize the parameters of Munk profile (Fig. 1).

In the early 80’s, Chapman & Ellis (1983), using the WKB
formalism, showed that it is possible to relate the ray trajectories,
which have passed at least once through the return point, to a
specific set of adjacent normal modes. An analogy was made
between the time, τΓ, that a wave travels through a trajectory of
length Γ,

τΓ ≡
∫

Γ

d`
c
, (9)

and the time scale, τn, of two adjacent modes, n and n+1, inside
a waveguide, that traveled radially through half modal interference
length Ln, expressed by

τn ≡
Ln

c[n]
g

. (10)

In situations of low dispersion of the acoustic wave field
(Chapman & Ellis, 1983), we have τΓ ≈ τn (Fig. 2).

According to Jensen (1994), Ln, in Eq. (10), satisfies

Ln ≡
π

k[n]
r − k[n+1]

r

, (11)

and the modal group velocity, c[n]
g , is denoted by

c[n]
g =

∂ω

∂k[n]
r

. (12)

Similarly, as seen in Jensen (1994) and Chapman & Ellis
(1983), for a given frequency ω , the modal phase velocity, c[n]

p ,
is defined by

c[n]
p ≡ ω

k[n]
r

. (13)

In addition, for a given mode n, from Eqs. (6), (7) and
(13), we can see that the sound velocity equals the modal phase
velocity at the turning points zA 7→ z[n]A and zB 7→ z[n]B ,

c(zA) = c[n]
p = c(zB) . (14)
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Figure 2 – Ray tracing for a f =50Hz source frequency, positioned in the SOFAR
in zs = zmin = 1300m. In a), b) and c), the initial output angles of the source
were the discrete modal angles θn with n = 1,17 and 47, respectively. It is
noted in all these cases that the ray that passed through the turning points z[n]B

and z[n]A after traveling radially the length Ln, the relative percentage difference
∆τn between τΓ(Eq. 9) and τn(Eq. 10) is less than 0.5%, showing an equivalence
between modal and ray tracing theories in full accordance with Chapman & Ellis
(1983).
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Figure 3 – Normal modes propagation parameters of the acoustic wave field,
within the WKB formalism, to the Munk profile, with frequencies of 50Hz. The
a) shows the behavior of the preferred angles of propagation in the range of
0 < |θn| < 15◦, associated with normal modes n ranging from 0 ≤ n ≤ 60.
b) and c) tell us that these modes are not very dispersive, since c[n]g ≈ c[n]p and
its propagation occurs mostly paraxially in the radial direction.

Therefore for each mode n, in the vicinity of the turning points z[n]A

and z[n]B , the wavefront moves with velocity similar to the sound
velocity profile c.

On the other hand, with respect to the plane z = zs (parallel
to the surface), where the source is located and wich contains k[n]

r ,
we can make a complementary geometric view of modes (Figs. 3
and 2). Relating k[n]

r to the discrete shooting angles θn, expressed
by

θn ≡ arccos
(

cmin

c[n]
p

)
, (15)

With these ideas in mind, we will now attempt to analyze
the problem of how should behave an Airy beam that has
characteristics similar to propagating modes in a Munk acoustic
guide.

RESULTS: AIRY DISCRETE BEAM PROPAGATION

We have seen in the previous section that non-dispersive
modes propagating paraxially (Chapman & Ellis, 1983), may be
associated with rays that are delimited between regions which are
classically allowed and forbidden (Figs. 3 and 2). Motivated by
these results, let’s discuss the possibility of the existence in deep
oceans of discrete Airy beams.

For a given mode k[n]
r associated with the Munk profile

(Eq. 4), we propose that the discrete displacement field Φn (r,z),
solution of the wave equation (Eq. 1), behave as

Φn (r,z)≡
Ψn (r,z)ei

(
k[n]r r+k[n]z (z−zs)

)
4

√
r2 +(z− zs)

2
. (16)

We observed in Eq. (16) that, both the Sommerfeld radiation
condition and the singular behavior of the Green function, in the
vicinity of the source, are satisfied.
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On the other hand, assuming that Ψn (r,z) varies more
rapidly in depth than radially, the paraxial beams theory says that
Ψn asymptotically satisfies the following Schrödinger differential
equation like,

2 i k[n]
r

∂

∂ r
Ψn (r,z)+

∂ 2

∂ z2
Ψn (r,z)≈ 0. (17)

Since the 80’s (Berry & Balazs, 1979), the beams theory
shows that Airy function may be solution of PDE’s like Eq.
(17). However, Airy functions are not square-integrable because,
among others, it has a slow decay and has only one turning
point. Therefore such beams do not preserve energy when
they propagate into unlimited media. To overcome this strong
constraint, for example, Airy beams are convolved with Gaussian
beams (Bandres & Gutiérrez-Vega, 2007).

However, here we are addressing the problem of Munk
waveguide modes, and we will adopt a different strategy that
consists of correlating two Airy beams in SOFAR; one associated
to the region between the surface and SOFAR delimited by the
depths 0 ≤ z ≤ zmin; and other associated to the region zmin ≤
z < ∞, where the propagation occurs between SOFAR and the
deep ocean.

Furthermore, in analogy with the problem of Schrödinger
for quantum mechanics, we will require that the acoustic energy
flow be preserved at z = zmin, which means that the logarithmic
derivative of the beam is preserved in z = zmin. Thus, in
conformity with Berry & Balazs (1979), we will require that the
beam, when initiating the propagation in r = 0, can be described
by the following composition of Airy functions, related to n–nth
mode of the Munk profile, namely

Ψ
0
n (z)≡Ψn (r = 0,z)=An


Ai
(

z[n]A −z
λn

)
if 0 ≤ z and z ≤ zmin

BnAi
(

z−z[n]B
λn

)
if zmin < z

,

(18)
where Ai(u) is the Airy function of argument u, An is an
arbitrary normalization constant, and the turning points z[n]A and
z[n]B , associated with the Munk profile (Eq. 4), are calculated in the
WKB approximation, discussed in the previous section (see Eq.
7). Moreover, as a consequence of the continuity of Ψ0

n and its
derivative in z = zmin, we have that Bn satisfies the equation

Bn =
Ai
(
− zmin− z[n]A

λn

)
Ai
(
− z[n]B − zmin

λn

) , (19)

where, λn is the wavelength of the Airy beam (see Figs. 4 and 5),
and they are the n–nth solution of the transcendental equation
(20), given by

Ai

(
z[n]A − zmin

λn

)
Ai′
(

zmin − z[n]B

λn

)
=

=− Ai

(
zmin − z[n]B

λn

)
Ai′
(

z[n]A − zmin

λn

)
,

(20)

where we denoted Ai′(u) as the first derivative of of Airy function
Ai(u), with respect to the argument u.

We observe in the Figure 5 that, for a given n, the amplitude
of the initial Airy beam (|Ψ0

n|) has (n+ 1) peak values spaced
from λn, as the depth z varies. In this sense and within the WKB
approximation, we have that an estimate for λn is given by

λn ≈


2

[√(
zmin − z[n]A

)3
+

√(
z[n]B − zmin

)3
]

3π (n+1/2)


2/3

. (21)

From Eq. (21) and Figures 5 and 6, we see that, as n
increases the value of λn decreases.

Moreover, it is noted in both Figures 4 and 5, that in the
vicinity of the turning points, z[n]A and z[n]B , the beam Ψ0

n reaches
its maximum amplitude before evanescing.

Again using the WKB method, we can obtain an estimate
of how much the beam penetrates the region of penumbra, until
it falls to a value of around 30% of its maximum amplitude. For
this, we denote σn as the penetration length, namely

σn ≈ λn

(
3
2

)2/3
[

1+
(2π)

2/3

2

]
≈ 3.54 λn. (22)

It means that the acoustic energy (see Figs. 5 and 6) penetrates
in the region of penumbra, significantly, a greater distance than
triple wavelength λn.

Finally, similar to the theory developed in Berry & Balazs
(1979), it is shown that for the initial condition Ψ0

n (Eq. 18),
the envelope Φn of the field Φn (Eq. 16) satisfies the following
equation

Ψn (r,z) =

= An


Ai

(
−

[
z+ r2

(
4zmink[n]r

2
λ 3

n

)−1

− z[n]A

]
λn

−1

)
if 0 ≤ z ≤ zmin

BnAi

( [
z− r2

(
4zmink[n]r

2
λ 3

n

)−1

− z[n]B

]
λn

−1

)
if zmin < z

.

(23)
On the other hand, we have seen in previous sections that

beyond the extreme sensitivity of the beam to the initial condition
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Figure 4 – The behavior of initial condition Ψ0
n for the beams, with f =50Hz and r = 0 (see Eq. 18). Note that for

any n–discrete, Ψ0
n is evanescent in the classically forbidden regions and oscillates (n+1)-times in the classically

allowed regions.

Ψ0
n in Eq. (18), Φn in Eq. (16) has a behavior that is intended to

propagated in classically allowed or forbidden regions.
In the first region the beam can oscillate enough, while in the

other it is always evanescent. To bypass these difficulties inherent
for this type of beam, we will use the strategy of associating each
mode n, of Munk profile, with a trajectory Γ 7→ Γn of a ray, with
angle of shot θn, and throughout its propagation, it has traveled
radially, that at least, half length of modal interference Ln (see Fig.
2).

With this, we hope to guarantee a lower dispersion, as well
as to maintain the validity of the paraxial approximation of the
beam (see Fig. 3).

In this sense, the computation of their transmission losses
T LΓn

(Jensen, 1994), provides us a good quantitative picture on
the physical behavior of the beam Φn (Eq. 16) as its propagates
over Γn, which is given by

T LΓn
≡ 20 log10

(∣∣∣∣Φn ( r(Γn), z(Γn))

Φs
n

∣∣∣∣) . (24)

where Φs
n is the reference value of the beam, to the equivalent at

irradiated pressure of 1µPa at the distance of r = 1m, beyond
the position of the source in z = zs (Jensen, 1994).

Therefore, within the WKB approximation to characterize the
allowed and forbidden areas of the Munk waveguide for frequency

of 50Hz, first we trace the ray with shooting angles θn, which
trajectories Γn traveled, at least, the radial distance of Ln (see
Fig. 7a).

Subsequently, we calculated the values of T LΓn
(Eq. 24) in

the points of the trajectory Γn (see Fig. 7b). As the wavelengths
λn and penetration σn change with n (see Fig. 6), several regions
of the Munk waveguide can be sounded, not just those classically
allowed, but also large extensions of the forbidden areas.

CONCLUSIONS, FINAL REMARKS AND FURTHER
PERSPECTIVES

In this work, based on the pioneering ideas of Berry & Balazs
(1979) and Berry (2005), we have developed a model that shows
that it is possible to propagate Airy beams over long distances
and to sonify vast regions of a deep ocean (see Fig. 7b). In order
to do so, we first had to adapt these beams to the fundamental
characteristics of the propagating modes of Munk’s acoustic
waveguide (Eq. 4).

More explicitly, within the WKB formalism (Eq. 5) we
calculate the discrete radial wave numbers k[n]

r and the respective
turning points (z[n]A and z[n]B ) associated with a given mode n of the
Munk waveguide (see Figs. 4 and 5). Then, to use the equivalence
between the normal modes and ray theories (Chapman & Ellis,
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Figure 5 – For r = 0 and f =50Hz, in arbitrary units and in function of the depth, shows the
behavior of the amplitude

∣∣Ψ0
n
∣∣ of initial condition for the discrete Airy beam (see Eq. 18).

Note that as n increases, there are (n+1) peaks equally spaced in λn (see Eq. 21). It is also
noted that the highest intensity peaks occur in the neighborhoods of the turning points z[n]A

and z[n]B (see Fig. 4) and the beam penetrates beyond them, evanescently (see Eq. 22).

Figure 6 – Comparation of the wavelengths λn and penetration lengths σn as a function of
n, for f =50Hz. Note that the higher values of both are reached for the smallest values of n,
and both λn and σn decrease more slowly when n increases. It is also noted that the values
of σn are always higher than λn (see Eqs. 21 and 22).
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Figure 7 – Wave field modeling for Munk profile (Eq. 4) and f =50Hz. a) Ray tracing with all the possible trajectories Γn of the acoustic
rays associated with a discrete set of shooting angles θn, with 0 < |θn|< 15◦ and 0 ≤ n ≤ 60. Note that such trajectories Γn delimit
the regions classically allowed and forbidden. b) Airy beam propagation Φn showing the transmission losses T LΓn (Eq. 24) in a color
map (dB) Note that for a discrete Airy beam trajectory Γn, the acoustic energy propagates in regions that are classically permitted as
well as substantially penetrate into the forbidden ones.
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1983), we associate each wave vector k[n]
r (normal mode theory)

with shooting angles θn (ray theory), from a source positioned at
z = zs (see Figs. 3, 4 and 5).

Finally, as shown in Fig. 7b, we analyze the propagation
of discrete Airy beams (see Eqs. 16 and 23) along of n rays
trajectories Γn. We verified that the acoustic energy propagates in
the classically allowed regions and has penetrated substantially
in the classically forbidden regions (see Fig. 7b).

Despite of its computational cost to be a little high, since
the calculation of the discrete Airy beam, in Eq. (24), requires,
previously, the use of some numerical methods, in extended
precision, for the development of WKB theory and the subsequent
ray tracing, we believe that present theory can improve accuracy in
some inversion problems in oceanographic acoustic tomography
(Marin et al., 2016).

We show here that discrete Airy beams carry acoustic
energy in both classically allowed and forbidden regions with
modal times equivalent to travel times (see Fig. 2). We can use
this fact to adapt the usual algorithms of travel time tomography
(Popov, 2002; Bleistein, 2008; Marin et al., 2016) to the present
theory of discrete Airy beams. Efforts in this direction are being
made and planned to published shortly.
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