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POROELASTIC MODELING IN STRATIFIED MEDIA ACROSS ALL FREQUENCIES

Igor Barbosa de Oliveira1, Marcia Miranda Azeredo1,
Mariane Ribeiro Silva Tiradentes Miranda1 and Viatcheslav Ivanovich Priimenko1,2

ABSTRACT. There is considered a layered heterogeneous poroelastic isotropic medium with physical parameters characterized by piecewise constant functions of

the depth only. We derive a mathematical algorithm for calculating reflected/transmitted poroelastic waves across all temporal frequencies. To define the frequency effect

we use the dynamic permeability expression proposed by Johnson, Koplik and Dashen; in the time domain, this coefficient introduces order 1/2 shifted fractional time

derivative involving a convolution product. The algorithm proposed is based on the formalism introduced by Ursin. The algorithm is tested numerically in a 1D-case.

The numerical experiments confirm the effectiveness of the proposed algorithm in identifying the main wave events in both low frequency and high frequency regimes

in the reservoir and laboratory scales.

Keywords: stratified porous medium, Biot and Biot-JKD models, Ursin’s formalism.

RESUMO. Neste trabalho, consideramos um meio poroelástico estratificado, isotrópico e heterogêneo com parâmetros físicos caracterizados por funções constantes

por partes em relação à profundidade. Nós derivamos um algoritmo matemático para calcular as ondas poroelásticas refletidas/transmitidas em todas as frequências

temporais. Para definir o efeito da frequência, usamos a expressão de permeabilidade dinâmica proposta por Johnson, Koplik e Dashen; no domínio do tempo, este

coeficiente introduz a derivada do tempo fracionária de 1/2 de ordem de deslocamento envolvendo um produto de convolução. O algoritmo proposto é baseado no

formalismo introduzido por Ursin e foi testado numericamente para o caso 1D. Os experimentos numéricos confirmaram a efetividade do algoritmo na identificação dos

principais eventos de onda nos regimes de baixa frequência e alta frequência, nas escalas de reservatório e laboratorial, respectivamente.
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INTRODUCTION

Reflection and transmission of elastic waves propagating through
successive layers of fluid-filled porous media is inherent to
many theoretical and practical applications in geophysics and
petroleum engineering, where porous media filled with fluid
and/or gas is of great interest.

There are many works devoted to the development
and application of analytical/semi-analytical methods for wave
propagation analysis in stratified elastic media, see, for instance,
Akkuratov & Dmitriev (1984), Brekhovskih (1960), Fatianov &
Mikhailenko (1988), Fatianov (1990), Haskell (1953), Karchevsky
(2005a,b), Kunetz & D’Erceville (1962), Molotkov (1984, 2002),
Ursin (1983), Thomson (1950). The development of similar
methods in the case of stratified porous media (low frequency
range, static permeability case) is very important too, see Allard
et al. (1989), Baird et al. (1996), Molotkov (2002) and Carcione
(2007).

Now, let us comment on some results in the literature
concerning the poroelastic modeling in stratified media across
all frequencies (dynamic permeability case). Carcione (1996)
presented a finite-differencing approach that allows for the
dynamic permeability by approximating it as a sum of Zener
relaxation functions. Hanyga & Lu (2005) designed a numerical
method based on the combination of the Fourier pseudo-spectral
and predictor-corrector methods. Masson & Pride (2010) used an
explicit time-stepping finite-difference scheme for solving Biot’s
equations of poroelasticity across the entire band of frequencies.
Blanc (2013) proposed an explicit finite-difference scheme based
on the diffusive representation of fractional derivatives when the
convolution kernel is replaced by a finite number of memory
variables that satisfy local-in-time ordinary differential equations.
Li et al. (2015) proposed a new algorithm based on the rational
expansion of dynamic permeability and the combination of
the generalized phase-shift scheme and the pseudo-spectral
method. Recently, Milani et al. (2016) presented a finite-element
technique to solve the one-dimensional Biot equations (with
the dynamic permeability) in the space-frequency domain; there
was considered the case of a medium composed of periodically
distributed mesoscopic layers. A review of the various techniques
and discussion of the numerical implementation aspects for
application to seismic modeling and rock physics, as for instance
the role of Biot’s diffusion wave as a loss mechanism and interface
waves in porous media, was done in Carcione et al. (2010).

We now comment on some theoretical results concerning
existence, uniqueness and continuous dependence of the

solution to Eqs. (1)–(3). To our knowledge the only paper
about the subject was the paper Lorenzi & Priimenko (2014),
where the authors studied well-posedness of an initial
boundary-value problem. As a result of the investigation, the
authors proved a uniqueness and continuous dependence result
for a generalization of Eqs. (1)–(3) related to a general bounded
open set Ω in any spatial dimension n = 1,2,3, both on the
unbounded time interval (0,+∞) and on the bounded time
interval (0,T ); however, the existence question remains open.

In this paper, we derive the mathematical basis for an
efficient computer code for poroelastic modeling in stratified
media across all frequencies. Our method is based on a formalism
introduced by Ursin (1983), who gives a unified treatment of
electromagnetic waves, acoustic waves, and the isotropic elastic
waves in plane layered media. We apply Ursin’s formalism for the
case of a stack of homogeneous layers, that is, when the material
parameters are piecewise constant functions of depth. In this case
many quantities can be computed with explicit algebraic formulas
which can then be made the basis of a fast computer code.

In 2006 this formalism was applied to the Pride equations
for simulation of the electrokinetic phenomena in layered media,
see White & Zhou (2006). Although the results obtained by
White and Zhou allow, under certain conditions, to split Pride’s
equations and select only the poroelastic part, we examine the
case of a more complete poroelastic system, characterized by
presence in the Darcy law of an inertial force connected with
the effective density of pore fluid and by dynamic permeability
introduced by Johnson, Koplik and Dashen, see Miranda (2016)
and Oliveira (2018) for details. For the low-frequency range a
similar algorithm was formulated by Azeredo (2013) and Azeredo
& Priimenko (2015).

This paper is organized as follows. The original Biot-JKD
model is briefly outlined and then we state our problem.
We give a self-contained derivation of Ursin’s diagonalization
method, derive formulas for propagator matrices, jump matrices,
and reflection/transmission matrices, coupling the results with
general sources and boundary conditions. Some numerical
experiments performed with realistic values of the physical
parameters are described. Finally, the discussion of the results
obtained and the conclusions and some futures lines of research
are presented.

GOVERNING EQUATIONS

In 1956, Biot presented a theory of poroelasticity, which forms
the basis of most investigations into elastic wave propagation
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in porous media containing a fluid. However, first works on
poroelastodynamics are those of Frenkel (1944). Further work in
the Russian scientific community based on this pioneering work
is reviewed in Nikolaevskiy (2005). The connection of Frenkel’s
work to the Biot theory is presented in Pride & Carambois (2005),
where it is shown that both researchers have developed the same
theory. The theory of Biot predicts two bulk compressional waves
and one shear wave, which are dispersive and dissipative. The
second bulk compressional wave, also known as the slow wave
of Biot, was experimentally observed in a water-saturated porous
solid by Plona (1980) using an ultrasonic mode conversion
technique.

For the higher frequency range, Biot (1956) presented a
formula for the dynamic permeability with two particular types of
pore geometry: two-dimensional flow between parallel walls and
three-dimensional flow in a circular duct. Modeling this dynamic
permeability behavior along with finding proper microstructural
pore-space descriptors has received considerable attention in the
literature, see Auriault et al. (1985). Perhaps the most popular
dynamic permeability model has been suggested in Johnson et al.
(1987). They published a general expression for the dynamic
permeability in the case of random pores with constant radii,
leading to the so-called Biot-JKD model. In this model, viscous
stresses depend on the square root of the temporal frequency; the
only additional parameter is the viscous characteristic length Λ.

Using the dynamic permeability proposed by Johnson,
Koplik and Dashen, we can rewrite the Biot system in the Biot-JKD
form

ρ∂
2
t u+ρ f ∂

2
t w = ∇ · τ + f ,

ρ f ∂
2
t u+ρw∂

2
t w+

η

κ0
h∗ [∂ 2

t w+ωc∂tw] =−∇p+g,
(1)

with the following constitutive laws (isotropic media case):

τ = (λ∇ ·u+ c∇ ·w)I +µ(∇u+∇uT ),

p =−c∇ ·u−m∇ ·w,
(2)

where the following notations were introduced:

ρw = Feρ f , ρ = φρ f +(1−φ)ρs, P =
4aκ0

φΛ2 , ωc =
2π fc

P
,

h(t) =
e−ωt
√

πωct
, h∗ z(t, ·) =

∫ t

0
h(t − s)z(s, ·)ds.

(3)

This model involves the following functions and physical
parameters: the elastic stress tensor τ and the acoustic pressure
p, the relative displacement vector w = (w1,w2,w3)

T of the

fluid phase, the volume density of the body force for the pore
fluid g = (g1,g2,g3)

T , the density ρ f and the dynamic viscosity
η of the fluid; the displacement vector u = (u1,u2,u3)

T of the
solid phase, the volume density of the body force for the saturated
porous medium f = ( f1, f2, f3)

T ; the porosity 0 < φ < 1,
the electrical formation factor Fe, the steady-flow limit of the
permeability κ0, the density ρs and the Lamé coefficients λ ,µ

of the elastic skeleton, and the two Biot coefficients c and m of
the saturated matrix; ωc is the circular frequency at which viscous
boundary layers first develop, fc is the transition frequency, and
P is the Pride number; I is the 3× 3-identity matrix. In (1) the
convolution term denotes the viscous dissipation induced by the
relative motion between the fluid and the elastic skeleton.

STATEMENT OF THE PROBLEM

We shall consider wave propagation in a porous medium R =

∪N
k=0Rk, composed by stratified layers identified with Rk =

{x = (x1,x2,x3 ≡ z) ∈ R3 : zk < z < zk+1}, with 0 =

z0 < z1 · · ·< zN+1 = ∞. The Biot-JKD equations (1)–(3) in the
temporal frequency (ω) domain, at each point x ∈ R, are (time
dependence of e−iωt is assumed)

− iω(ρv+ρ f q) = ∇ · τ + f ,

− iω(ρ f v+ρwq)+d(ω)q =−∇p+g,

− iωτ = (λ∇ · v+ c∇ ·q)I +µ(∇v+∇vT ),

− iω p =−c∇ · v−m∇ ·q,

(4)

where v = −iωu,q = −iωw are the solid and relative fluid
velocities, and

d(ω) =
η

κ0

1
√

ωc
(ωc − iω)1/2.

Remark 1. In the low frequency range limω→0 d(ω) = η/κ0,
i.e., we obtain the classical low frequency variant of the Biot
system.

We assume that all material parameters are represented
by piece-wise constant functions depended only the depth
coordinate z, with the discontinuities at the points z = zk, k =

1,2, . . . ,N. At the internal layer boundaries z = zk, we suppose
that the following functions are continuous:

v, q, p, τ13, τ23, τ33.

The boundary conditions at the free surface z = 0 are

p = τ13 = τ23 = τ33 = 0.
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And finally, at the infinity the solution satisfy the following radiation conditions:

lim
|x|→∞

(v,q) = 0.

METHOD

Special format

Consider the Fourier transform in the two coordinates x1,x2

X̂(k1,k2,z) = Fx1x2

(
X
)
≡

∫
R2

e−i(k1x1+k2x2)X(x1,x2,z)dx1dx2 .

Let (k1,k2)
T be the horizontal wave number and k =

√
k2

1 + k2
2,γ = kω−1. Applying the Fourier transform to Eqs. (4) we obtain the

system of ordinary differential equations (ODE’s) represented in the terms of f̂ , ĝ, v̂, q̂, τ̂, p̂. The ODE’s obtained after application of
the Fourier transform can be simplified if we define

ṽ = Ωv̂, q̃ = Ωq̂, τ̃ = Ωτ̂Ω
T , p̃ = p̂, f̃ = Ω f̂ , g̃ = Ωĝ, (5)

where

Ω =
1
k


k1 k2 0

−k2 k1 0

0 0 k

 . (6)

A straightforward calculation uncouples this system

dΦ(m)

dz
=−iωM(m)

Φ
(m)+S(m) ,m = 1,2 , (7)

where Φ(m), m = 1,2, are the 2nm-vectors (n1 = 3,n2 = 1) defined as

Φ
(1) = (ṽ3, τ̃13,−q̃3, τ̃33, ṽ1, p̃)T ,Φ(2) = (ṽ2, τ̃23)

T ,

S(m) are the source 2nm-vectors, and M(m) are the 2nm ×2nm-matrices

M(m) =

 0 M(m)
1

M(m)
2 0

 (8)

with symmetric nm ×nm-matrices M(m)
1 ,M(m)

2 . For Systems 1 and 2 the sub-matrices and the corresponding source vectors are

M(1)
1 =


−βm βγ(c2 −λm) −βc

βγ(c2 −λm) ρ +
iωρ2

f

d−iωρω

−4βγ2µ(c2 −m(λ +µ)) 2βγµc− iωρ f γ

d−iωρω

−βc 2βγµc− iωρ f γ

d−iωρω

−β (λ +2µ)+ iωγ2

d−iωρω



M(1)
2 =


ρ γ −ρ f

γ µ−1 0

−ρ f 0 − d−iωρω

iω

 , S(1) = (0,− f̃1 −
iωρ f

d − iωρω

g̃1,
ik

d − iωρω

g̃1,− f̃3,0, g̃3)
T

(9)
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and

M(2)
1 = µ

−1, M(2)
2 = ρ −µγ

2 +
iωρ2

f

d − iωρω

, S(2) = (0,− f̃2 −
iωρ f

d − iωρω

g̃2)
T . (10)

Here β = (c2 −m(λ +2µ))−1. Once Φ(1) and Φ(2) have been determined, we may compute

τ̃11 = β
(
−4γµ(c2 −m(λ +µ))ṽ1 +(c2 −λm)τ̃33 +2µcp̃

)
,

τ̃22 = β
(
−2γµ(c2 −λm)ṽ1 +(c2 −λm)τ̃33 +2µcp̃

)
,

q̃1 =
1

d − iωρω

(−ik p̃+ iωρ f ṽ1 + g̃1), q̃2 =
1

d − iωρω

(iωρ f ṽ2 + g̃2), τ̃12 =−µγ ṽ2.

(11)

The boundary conditions for Systems 1 and 2 at the free surface z = 0 are

p̃ = τ̃13 = τ̃23 = τ̃33 = 0. (12)

Note that Eqs. (12) gives n1 = 3 conditions for System 1 having 2n1 = 6 variables, and gives n2 = 1 condition for System 2, which
has 2n2 = 2 variables. It means that for each system we need nm, m = 1,2 additional conditions to completely specify the solution.
These relations we obtain using the radiation condition, which means that there are no up-going waves from z = ∞.

Diagonalization

Consider matrices of the form (8), where for simplicity we drop the superscript (m). Assume that M1M2 has n distinct nonzero
eigenvalues λ 2

j , j = 1,2, . . . ,n, with associated eigenvectors a j, such that aT
j M2a j = λ j. Here λ j =

√
λ 2

j with the branch chosen
so that Im(λ j)≥ 0 and λ j > 0 if λ j is real. Define b j = λ−1

j M2a j. This vector is an eigenvector of M2M1 with eigenvalue λ 2
j . Using

symmetricity of M1,M2 we obtain aT
j bi = δ i

j , where δ i
j is the Kronecker delta.

Let L1 be the n×n-matrix whose j-th column is a j, and let L2 be the n×n-matrix whose i-th column is bi, then L−1
1 = LT

2 ,
L−1

2 = LT
1 . Introduce Λ = diag(λ1,λ2, . . . ,λn). Then L2Λ = M2L1 and M1L2 = L1Λ, which implies

M1 = L1ΛLT
1 ,M2 = L2ΛLT

2 . (13)

Introducing the diagonal matrix Λ̃ = diag(Λ,−Λ) and using Eqs. (13), we finally obtain

M = LΛ̃L−1 , (14)

where

L =
1√
2

L1 L1

L2 −L2

 , L−1 =
1√
2

LT
2 LT

1

LT
2 −LT

1

 .
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In our case the explicit formulas for λ j,a j,b j, are:
System 1. There are three modes: fast compressional wave (λ (1)

1 ), Biot slow wave (λ (1)
2 ) and vertical shear wave (λ (1)

3 ).

(λ (1)
j )2 =−γ

2 +β
(
cρ f −

mρ

2
+

(λ +2µ)(d − iωρω)

2iω

)
±

± β

2

√(
mρ +

(λ +2µ)(d − iωρω)

iω

)2 −4(mρ f + c
d − iωρω

iω
)(cρ − (λ +2µ)ρ f )

j = 1,2, with (+) for j = 1 and (-) for j = 2,and (λ (1)
3 )2 =−γ

2 +µ
−1
(
ρ +

iωρ2
f

d − iωρω

)

a(1)
j = a j(−1,2µγ,ξ j)

T , j = 1,2 , a(1)
3 =

a3

λ
(1)
3

(
γ,µ(λ (1)

3 )2 −µγ
2,− iωγρ f

d − iωρω

)T

b(1)
j =

a j

λ
(1)
j

(
2µγ

2 −ρ −ρ f ξ j,γ,ρ f −ξ j
d − iωρω

iω

)T
, j = 1,2 , b(1)

3 = a3(2µγ,1,0)T

where

ξ j =
cρ − (λ +2µ)ρ f

(λ
(1)
j )2+γ2

β
− cρ f + i(λ +2µ) d−iωρω

iω

, j = 1,2 ,

a j =

√
λ

(1)
j

ρ +2ρ f ξ j + iξ 2
j

d−iωρω

iω

, j = 1,2 , a3 =

√
λ

(1)
3

µ(λ (1)
3 )2 +µγ2

.

System 2. There is the horizontal shear wave (λ (2)) only.

(λ (2))2 =−γ
2 +µ

−1
(
ρ +

iωρ2
f

d − iωρω

)
, a(2) =

√
1

µλ (2)
, b(2) =

√
µλ (2).

Reflection and transmission matrices

Firstly, we consider a homogeneous source-free region of space. Dropping (m) we have a 2n-dimensional system of the form (7) with
M constant and S = 0. Let

Φ = LΨ and Ψ =
(
U,D

)T
, (15)

where U,D are n-vectors. Inserting Eqs. (15) into Eqs. (7) and using Eq. (14) we arrive at

d
dz

Ψ =−iωΛ̃Ψ.

Then
Ψ(z) =

(
e−iωΛ(z−z0)U(z0),eiωΛ(z−z0)D(z0)

)T
, (16)

where z0 is a fixed point in the same source-free region. The vectors U,D characterize up-going (U) and down-going (D) waves.
Next, consider an interface at z = z, where the material parameters vary discontinuously across z. We denote by ± quantities evaluated
at z± = z±0. Since Φ is continuous across z, we obtain

Ψ
+ = JΨ

−, Ψ
− = J−1

Ψ
+, (17)

where the jump matrix is

J = (L+)−1L− =

JA JB

JB JA

 , J−1 =

 JT
A −JT

B

−JT
B JT

A


and JA,JB are the n×n-matrices

JA =
1
2
[(

L+
2

)T
L−

1 +
(
L+

1

)T
L−

2

]
, JB =

1
2
[(

L+
2

)T
L−

1 −
(
L+

1

)T
L−

2

]
.
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Next, we consider a stack of layers 0 < z1 < · · ·< zN < ∞. We denote by subscript j a quantity at interface z = z j, with superscripts
± as before. Then (

U−
N ,D

−
N

)T
= J−1

N

(
0,D+

N

)T
,

where we have used that there is no up-going wave below the last interface at z = zN . So, we obtain

U−
N = ΓND−

N , D+
N = TND−

N ,

where
ΓN =−JT

B,N

(
JT

A,N

)−1
, TN =

(
JT

A,N

)−1
. (18)

Here ΓN is the reflection matrix and TN is the transmission matrix from the last interface z = zN .
Let j < N and 4z j = z j+1 − z j, j = 0,1, . . . ,N −1, is the layer thickness. Then by jumping across the layer boundary and

using Eqs. (16) and (17) we obtain

U−
j = JT

A, je
iωΛ j4z jU−

j+1 − JT
B, je

−iωΛ j4z j D−
j+1, D−

j =−JT
B, je

iωΛ j4z jU−
j+1 + JT

A, je
−iωΛ j4z j D−

j+1. (19)

Define reflection and transmission matrices Γ j,Tj by the relations that for any incident wave D−
j at the top of stack of layers underlying

z = z j

U−
j = Γ jD−

j , D+
j = TjD−

j . (20)

Therefore Γ j computes the reflected wave from the stack and Tj computes the transmitted wave below the stack, when the incident
wave is known. From Eqs. (19) and (20) we obtain by induction

Γ j =
(
JT

A, jΓ̃ j+1 − JT
B, j

)(
− JT

B, jΓ̃ j+1 + JT
A, j

)−1
, Tj = Tj+1eiωΛ j4z j

(
− JT

B, jΓ̃ j+1 + JT
A, j

)−1
, (21)

where Γ̃ j+1 = eiωΛ j4z j Γ j+1eiωΛ j4z j . Again, by induction it can be shown that Γ j is symmetric. Thus all the reflection and transmission
matrices can be calculated by Eqs. (21), starting with Eqs. (18).

Sources and boundary conditions

Consider a 2n-dimensional system of the form (7) with (m) omitted. Let the source be of the form

S = S0δ (z− zs)+S1δ
′(z− zs), (22)

with S0,S1 independent of z. Here δ is the Dirac function. Define n-vectors SA,SB by the following formula(
SA,SB

)T
= iωMS1 −S0. (23)

Applying the standard procedure we obtain the following jump condition across the source

Φ(z−s ) = Φ(z+s )+
(
SA,SB

)T
. (24)

Inserting a fictitious layer boundary at z = z+s , we compute the reflection matrix Γs ≡ Γ(z+s ) from the top of this layer. Note that at z+s ,
JA = I,JB = 0, since the material properties do not change at zs. Then the up-going wave Us ≡Us(z+s ) is related to the down-going
wave Ds ≡ Ds(z+s ) there by Eqs. (20). Then we have

Ψ(z+s ) =
(
ΓsDs,Ds

)T
. (25)

Using Eqs. (15), (24) and (25) we obtain

Ψ(z−s ) =
(
ΓsDs,Ds

)T
+

1√
2

(
LT

2 SA +LT
1 SB,LT

2 SA −LT
1 SB

)T
.
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This expression may now propagated upwards through layers, using Eq. (16) and jumped upwards across layers boundaries using
Eqs. (17) until we reach the free surface at z = 0+. Then the n boundary conditions at z = 0 can be used to find the n unknowns Ds.

Consider now one particular case when zs ∈ (0,z1). In this case

Ψ(0+) =
(
eiωΛszs ΓsDs,e−iωΛszs Ds

)T
+

1√
2

(
eiωΛszs(LT

2 SA +LT
1 SB),e−iωΛszs(LT

2 SA −LT
1 SB)

)T
. (26)

We next write
Φ(0+) =

(
GAΦ0,GBΦ0

)T
, (27)

where Φ0 is an n-vector of unknowns at z = 0 and GA,GB are n×n matrices. For System 1, let

Φ
(1)
0 =

(
ṽ3,−q̃3, ṽ1

)T

z=0+
, G(1)

A =


1 0 0

0 0 0

0 1 0

 , G(1)
B =


0 0 0

0 0 1

0 0 0

 .

We can check that Eq. (27) holds for System 1 with the boundary conditions given by Eqs. (12). For System 2, let

Φ
(2)
0 = ṽ2(0+), G(2)

A = 1, G(2)
B = 0.

It may be checked that Eq. (27) holds for System 2 with the boundary conditions given by Eqs. (12).
Using Eqs. (15), (26) and (27) we obtain

Φ0 =
(

eiωΛzs ΓseiωΛzs
(
LT

2 GA −LT
1 GB

)
−
(
LT

2 GA +LT
1 GB

))−1

×

× eiωΛzs

(
Γs

(
LT

2 SA −LT
1 SB

)
−
(
LT

2 SA +LT
1 SB

))
,

Ds =
1√
2

eiωΛzs
(
LT

2 GA −LT
1 GB

)
Φ0 −

1√
2

(
LT

2 SA −LT
1 SB

)
.

(28)

In particular, when the source is situated just below the surface we get

Φ0 =
((

Γs − I
)
LT

2 GA −
(
Γs + I

)
LT

1 GB

)−1

×
((

Γs − I
)
LT

2 SA −
(
Γs + I

)
LT

1 SB

)
as zs → 0+. (29)

Φ0 defines all of Φ at the free surface, and Ds,Us = ΓsDs give all of Φ just below the source. Now we are able to compute Φ in any
z ∈ R+ by propagating through the layers using Eqs. (16) and (17).

Remark 2. Propagation of an upward-going wave in the downward direction will be unstable numerically using Eq. (16), because the
complex exponentials grow rather than decay with distance. Therefore, numerically one has to obtain U from D using the reflection or
transmission matrices.

Inverting Eqs. (5), we can calculate the hat (ˆ) variables, i.e.,

v̂ = Ω
T ṽ, q̂ = Ω

T q̃, τ̂ = Ω
T
τ̃Ω, p̂ = p̃. (30)

To get the solution in real space we need to apply the inverse Fourier transform F−1
x1x2

. The matrices for Systems 1 and 2 depend only on
the magnitude k. However, factors k1 and k2 are introduced by Eq. (6) and possibly by the directionality of the source. For any function
ĥ(k) let

T j1, j2

(
ĥ
)
≡ F−1

x1x2

(
k j1

1 k j2
2 ĥ(k)

)
= (−i) j1+ j2 ∂

j1
x1

∂
j2

x2
F−1

x1x2

(
ĥ(k)

)
.

We can compute these quantities as Hankel transforms in the cylindrical coordinates r,θ ,z. Define

B j1 , j2

(
ĥ
)
=

1
2π

∫
∞

0
k j1 J j2(kr)ĥ(k)dk,
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where J j2 is the Bessel function and j1, j2 are nonnegative integers. Then, in particular,

T0,0 = B1,0, T1,0 = icosθB2,1, T0,1 = isinθB2,1, T1,1 = sinθ cosθ
(
B3,0 −

2
r

B2,1

)
,

T2,0 = cos2
θB3,0 −

cos2θ

r
B2,1, T0,2 = sin2

θB3,0 +
cos2θ

r
B2,1.

(31)

Dynamite source

A dynamite source imposed on the solid and the fluid can be defined in the following form

f (x) = g(x) =−s(ω)∇δ (x− xs),

where xs = (0,0,zs)
T is the source position and s(ω) is the spectrum of the seismic moment. Applying the Fourier transform Fx1x2

we obtain

f̂ = ĝ =−s(ω)
(
ik1δ (z− zs), ik2δ (z− zs),δ

′(z− zs)
)T
.

The rotation by Ω yields

f̃ = g̃ =−s(ω)
(
ikδ (z− zs),0,δ ′(z− zs)

)T
. (32)

Substitution of Eq. (32) into Eqs. (9) gives the source for System 1 in the form (22) with

S(1)
0 = s(ω)

(
0, ik− ωρ f

d − iωρω

,
k2

d − iωρω

,0,0,0
)T

, S(1)
1 = s(ω)(0,0,0,1,0,−1)T . (33)

Substitution of Eq. (32) into Eqs. (10) shows that S(2) is zero, then ṽ2, τ̃23 associated with System 2 are zero too. This is to be expected
result because System 2 is related to SH-waves, which are not excited by the dynamic source. Substitution of Eqs. (33) into (23) gives

S(1)
A = iβ s(w)

(
ω(c−m),2kµ(m− c),ω(λ +2µ − c)

)T
, S(1)

B = (0,0,0)T . (34)

Eqs. (34) may be used in Eqs. (28) or (29) for a shallow source, to obtain all the tilde (˜) functions.
To invert the rotation Ω, using Eqs. (30), note that from Eqs. (11) and the vanishing of System 2, ṽ2, q̃2, τ̃12, τ̃23 are identically

zero. All the remaining tilde functions depend of k only and can be calculated by the following formulas

v̂1 =
k1

k
ṽ1, v̂2 =

k2

k
ṽ1, v̂3 = ṽ3, q̂1 =

k1

k
q̃1, q̂2 =

k2

k
q̃1, q̂3 = q̃3,

τ̂11 =
k2

1 τ̃11 + k2
2 τ̃22

k2
, τ̂12 =

k1k2(τ̃11 − τ̃22)

k2
, τ̂22 =

k2
2 τ̃11 + k2

1 τ̃22

k2
, τ̂13 =

k1τ̃13

k
, τ̂23 =

k2τ̃13

k
, τ̂33 = τ̃33.

(35)

Then the Fourier transform Fx1x2 can be inverted in cylindrical coordinates (r,θ ,z) using Eqs. (31) to obtain the solid and fluid velocities

v =
(
iB1,1(ṽ1)

)
er +

(
B1,0(ṽ3)

)
ez, q =

(
iB1,1(q̃1)

)
er +

(
B1,0(q̃3)

)
ez (36)

and the stress tensor components

τ11 = T2,0

(
k−2

τ̃11

)
+T0,2

(
k−2

τ̃22

)
, τ12 = T1,1

(
k−2(τ̃11 − τ̃22)

)
,

τ22 = T0,2

(
k−2

τ̃11

)
+T2,0

(
k−2

τ̃22

)
, τ13 = T1,0

(
k−1

τ̃13

)
, τ23 = T0,1

(
k−1

τ̃13

)
, τ33 = T0,0(τ̃33).

(37)

These stresses may now be computed in cylindrical coordinates from Eqs. (31) using the Hankel transforms of the appropriate tilde
functions.
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Vertical source

Consider a vertical point force acting on the free surface z = 0, i.e.,

f (x) = g(x) = (0,0,1)T s(ω)δ (x1)δ (x2)δ (z− zs),

where zs → 0+ puts the force on the free surface. This models hammer, weight drop, and vibroseis sources. Applying the Fourier
transform Fx1x2 and rotation Ω we arrive at

f̃ = g̃ = f̂ = ĝ = (0,0,1)T s(ω)δ (z− zs). (38)

Substitution of Eqs. (38) into Eqs. (9), (10) yields the source for Systems 1 and 2 in the form

S(1) = (0,0,0,−1,0,1)T s(ω)δ (z− zs), S(2) = (0,0)T . (39)

Thus, all variables in System 2 are zero, as it was in the case of the dynamite source. From Eqs. (22), (23) and (39) we obtain

S(1)
A = (0,0,0)T , S(1)

B = (1,0,−1)T s(ω).

Now all the tilde variables at the free surface may be computed from Eqs. (29) as zs → 0+ and propagated anywhere else in space.
Note that S(1)

A ,S(1)
B are independent of k1,k2, so that the tilde variables depend only on k and not on wavenumber direction. Therefore,

similar to dynamite we can transform to the hat variables using Eqs. (35) and transform back to the spatial coordinates using Eqs. (36)
and (37).

RESULTS

A one-dimensional analysis of horizontally stratified geological models composed of three homogeneous and isotropic layers is
considered.

Dispersion and attenuation analysis

In a recent paper, Blanc (2013) derived the dispersion relationship between frequency and wave number. Thus, given the wave numbers
kp f (ω), kps(ω), where kp f is the wave number for the fast P-wave, kps is the wave number for the slow P-wave, we obtain the phase
velocities

cp f (ω) =
ω

Re[kp f (ω)]
, cps(ω) =

ω

Re[kps(ω)]
,

where 0 < cps < cp f , and attenuations
αp f = Im[kp f (ω)], αps = Im[kps(ω)].

Figures 1 and 2 show the dispersion and attenuation curves corresponding to the Biot and Biot-JKD models (fast and slow
P-waves only) for four distinct experiments: 100% porous medium saturated with (1) water; (2) light oil 36◦ API; (3) 24.7◦ API
medium oil and (4) heavy oil 14.8◦ API. The physical properties of the porous media and fluids were taken from the works of Blanc
(2013) and Al-Besharah et al. (1987), and are present in Table 1.

Numerical simulation

The physical properties of each layer, used in the numerical simulations, are listed in Table 2.
In order to perform the elastic wave propagation simulations, a source was used, represented by a truncated sine wave function

defined by the following formula, see Blanc (2013):

H(t) =

{
sin(ωdt)− 21

32 sin(2ωdt)+ 63
768 sin(4ωdt)− 1

512 sin(8ωdt), if 0 ≤ t ≤ f −1
d

0, if t > f −1
d

,

where ωd = 2π fd . The shape of H(t) with the dominant frequency 20 Hz is shown in Figure 3.
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(a)

(b)
Figure 1 – Phase velocity curves: fast (a) and slow (b) waves.

(a)

(b)
Figure 2 – Attenuation curves: fast (a) and slow (b) waves.

Figure 3 – Shape of H(t).
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Table 1 – Physical properties used for dispersion and attenuation analysis.

Property Symbol Unity Values

Density of water ρw kg/m3 1000

Density of light oil ρol kg/m3 844.8

Density of medium oil ρom kg/m3 905.9

Density of heavy oil ρoh kg/m3 967.2

Viscosity of water ηw Pa.s 10−3

Viscosity of light oil ηol Pa.s 8.03×10−3

Viscosity of medium oil ηom Pa.s 73.79×10−3

Viscosity of heavy oil ηoh Pa.s 853.78×10−3

Density of solid ρs kg/m3 2644

Shear modulus µ Pa 7.04×109

Porosity φ – 0.2

Tortuosity a – 2.04

Permeability κ0 m2 3.6×10−13

Lamé parameter λ Pa 1.06×1010

Biot modulus m Pa 9.7×109

Biot modulus c – 0.72

Viscous characteristic length Λ m 5.88×10−6

Table 2 – Physical properties used for simulation of poroelastic waves.

Property Symbol Unity Layers 1&3 Layer 2

Density of fluid ρw kg/m3 1040 1000

Viscosity of fluid ηw Pa.s 10−3 10−3

Density of solid ρs kg/m3 2650 2644

Shear modulus µ Pa 1.85×109 7.04×109

Porosity φ – 0.3 0.2

Tortuosity a – 2 2.04

Permeability κ0 m2 10−12 3.6×10−13

Lamé parameter λ Pa 8.4×109 1.06×1010

Biot modulus m Pa 7.05×109 9.7×109

Biot modulus c – 0.88 0.72

Viscous characteristic length Λ m 7.3×10−6 5.88×10−6
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The results of the simulations are presented separately in
relation to the frequency domain they belong to: low frequencies
(reservoir scale) and high frequencies (laboratory scale). For the
low frequency domain a source with a dominant frequency of
20 Hz was used. It was considered that both the source and the
receiver are located on the free surface, as shown in Figure 4(a).

(a)

(b)
Figure 4 – Physical models used in numerical experiments: reservoir (a) and
laboratory (b) scales.

Figure 5(a) shows the result obtained in this simulation,
where the absolute displacement velocity of the solid phase
was plotted for both the Biot model (blue curve) and the
Biot-JKD model (red curve). The numbered arrows indicate the
arrival times of the events detected in the simulation. For low
frequencies the medium does not support the slow wave, which
becomes diffusive. Moreover, since a one-dimensional analysis
was performed, there is no presence of the shear wave, so all the
observed events refer to the propagation of the fast compressional
wave in the poroelastic medium. Figure 5(b) presents the same

result of Figure 5(a), but with a zoom in the vertical axis for better
visualization of the events that have smaller amplitudes.

For the domain of the high frequencies, a source with a
dominant frequency of 200 kHz was used. And, likewise, both
the source and the receiver are located on the free surface, see
Figure 4(b). For high frequencies, besides the presence of the
fast wave, we can observe the slow wave propagating in the
poroelastic medium, see Figure 6. Another phenomenon seen in
this simulation was the presence of the the converted fast-slow
P-wave, where the elastic wave converts its propagation mode
by refracting or reflecting at a discontinuity interface between two
distinct poroelastic media, as observed by Bouzidi (2013).

DISCUSSION

By dispersion and attenuation analysis of the waves propagating
in a 1D poroelastic medium (Figs. 1 and 2) it was found that for
low frequencies and for frequencies much larger than the critical
frequency, the denser the fluid, the lower the velocity of phase of
the rapid wave. In addition, the more viscous the fluid, the slower
the attenuation of the slow wave, both for the Biot model and
the Biot-JKD model and for low frequencies, the more viscous
the fluid, the lower the fast wave attenuation, even at very high
frequencies, the opposite occurs: the more viscous the fluid, the
greater the attenuation of the fast wave, for both models.

Based on the theory of poroelasticity, we sought to analyze
the results of the simulations. The first analysis was the
confirmation that the arrival times of the seismic events, for the
simulations in the two domains of low and high frequencies, were
correct. For this purpose we used the following formula tm =

δ z/cp, where tm indicates the transit time of the compressional
wave within the layer under analysis, δ z represents the distance
traveled by the wave within the layer m and cp is the wave
propagation speed in the layer, whether the wave is fast or slow.

Then, it was observed that the results obtained for the
high frequency domain (Fig. 6) presented an amplitude difference
for the seismic events related to the slow wave between the
two models used, of Biot and Biot-JKD. The explanation for
such phenomenon is found in the dispersion and attenuation
analysis of the waves propagating through a 1D poroelastic
medium (Figs. 1 and 2), more specifically in Figure 2(b), where
it can be observed that the attenuation for the Biot-JKD model
is higher than for the Biot model in the high frequency domain.
However, there were no differences in amplitude between the
Biot and Biot-JKD models in the low frequency range, which
was already expected theoretically, given that for this domain the
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(a)

(b)
Figure 5 – Reservoir scale results (a) and the same with zoom in the vertical axis
(b). The arrow 1 refers to the reflected wave in the first interface, according to the
simulated physical model (Fig. 4a), numbering 2 indicates the reflected wave in
the second interface, and arrows 3 and 4 refer to the internal multiple.

(a)

(b)
Figure 6 – Laboratory scale results (a) and the same with zoom in the vertical axis
(b). Numbering 1 refers to the fast wave reflected on the first interface, according to
the simulated physical model (Fig. 4b), arrow number 2 indicates the fast-slow or
slow-fast converted wave, whereas the third arrow indicates the slow wave reflected
in the first interface, the fast wave reflected in the second interface is indicated
by the arrow number 4, the fifth number indicates the slow wave that began its
propagation from the source, but was converted to fast wave by refracting at the
first interface and then reflected in the second interface and return to the surface,
and the numbering 6 refers to the internal multiple of the fast wave.

dispersion curves are similar, as can be seen in Figure 1. Another
very important phenomenon that was observed in the simulation
results for the high-frequency domain (Fig. 6) was the conversion
of the fast-slow and also slow-fast compressional waves.

CONCLUSION

A mathematical algorithm is presented here for simulating
reflected/transmitted poroelastic waves in stratified media across
all frequencies. We have shown how the Biot-JKD equations
can be put into Ursin’s form in a plane-layered medium.
Using this form we have derived explicit formulas that can be
used as the basis of an efficient computer code. Numerical
experiments performed in some academic cases (1-D stratified
media) confirmed the reliability of this approach, identifying the

main wave events in both low frequency and high frequency
regimes in the reservoir and laboratory scales.

Some suggestions for future works:

• Analysis of the numerical stability of the algorithm in the
case of 3-D stratified porous media.

• Evaluation of the results of physical modeling of
the poroelastic waves propagation using the Biot and
Biot-JKD equations.
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