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INVERSION OF BOTTOM HOLE TEMPERATURES FOR GRADIENT DETERMINATION
BY THE DAMPED LEAST SQUARES METHOD FOR NOISE ATTENUATION

Artur Santos Benevides1 and Amin Bassrei2

ABSTRACT. This study consists in obtain the 1-D distribution of the geothermal gradient from the inversion of Bottom Hole Temperature (BHT) data. Before the

inversion procedure, Horner correction method was used to determine the correct formation temperature. The inversion was performed in a synthetic model based on

real data from Pineview Field (Utah, USA), in this case, to obtain geothermal gradients from nine formations using BHT data from 32 wells. The Z matrix of the geothermal

problem contains the elements zi j , i.e., the thickness of the i-th layer logged in the j-th well. The least squares method was used, and, because of the occurrence of noise,

damping was required. The numerical implementation of the inversion, i.e., the determination of the inverse operator
(
ZT Z

)+ or
(
ZT Z + ε2I

)+ was performed by

singular value decomposition. Initial inversions did not produce satisfactory results, but they significantly improved with the introduction of damping. The improvement

of the results is quantitatively explained by the fact that the condition number of the matrix to be inverted greatly reduced with the use of the damping. In turn, damping

requires the choice of an optimal parameter, and the L-curve was used for this purpose.

Keywords: inverse problems; geothermal gradient, bottom hole temperature.

RESUMO. Neste trabalho foram utilizados dados BHT - Bottom Hole Temperature ou temperatura de fundo de poço na inversão de dados com o objetivo de obter a

distribuição 1-D do gradiente geotérmico. Antes da inversão propriamente dita, foi utilizado o método de correção de Horner, para determinar a temperatura correta da

formação. A inversão foi realizada em um modelo sintético inspirado em dados reais do Campo de Pineview (Utah, EUA), no caso, com o objetivo de obter gradientes

geotérmicos de nove formações utilizando dados BHT de 32 poços. A matriz Z do problema geotérmico contém os elementos zi j , ou seja, a espessura da i-ésima

camada perfilada no j-ésimo poço. O método dos mínimos quadrados foi utilizado, e devido à existência de ruído foi necessário o amortecimento. A implementação

numérica da inversão, ou seja, a determinação do operador inverso
(
ZT Z

)+ ou
(
ZT Z + ε2I

)+ foi através da decomposição em valores singulares. As inversões

iniciais não geraram resultados satisfatórios, melhorando bastante com a introdução do amortecimento. A melhoria dos resultados é explicada quantitativamente pelo

fato do número de condição da matriz a ser inversa reduziu bastante com a utilização do amortecimento. Por seu turno, o amortecimento demanda a escolha de um

parâmetro ótimo, sendo que foi utilizada a curva L para esse fim.
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INTRODUCTION

Many theories or hypotheses created to explain the geological
events that occur depend on terrestrial heat, which provides
the energy required for overlays, faults, inelastic deformations,
and the movements of magma and water (Fowler, 2005).
Geothermal heat is one of the required elements for hydrocarbon
maturation in sedimentary basins. In the last decades several
studies of sedimentary basins were carried out by analysis of
measured temperature, geothermal gradient and geothermal flow
calculations (Fontes, 1980).

Bottom Hole Temperature (BHT) measurement is part of
the geophysical well logging practice and is measured in a
short period after the well drilling is performed at each well
stage (Chapman et al., 1984). During drilling, a thermal field
disturbance occurs in the adjacent formations, caused mainly
by two factors. The first cause is the release of heat by the drill
during drilling, resulting in heating in the formations adjacent to
the well, especially in regions closer to the surface. The second
cause is the circulation of the drilling mud, which assists in the
lubrication of the drill bit and the transport of the crushed material.
The mud moves down to the drilling point and then rises to
the surface. This convection movement removes the heat from
deeper regions and brings it to the surface. To obtain good quality
data, it is necessary to correct the BHT measurements. Thus, this
study applied the Horner method, which uses two measurements
collected at the same depth at different times to determine the
equilibrium temperature.

This study aimed to determine the geothermal gradient g
of the various formations along a profile. In addition to the BHT
data, surface temperature measurements and thicknesses of the
subsurface formations were also used. The geothermal gradient
is considered to vary only in the direction of the z axis, which
is the depth. The average g of a stack of sedimentary layers is
equal to the ratio between the temperature variation (well bottom
to the surface) and the depth, which is the distance z between
measurement points. An average gradient is then calculated for
a well and its surrounding region. This procedure is carried
out because of the lack of temperature information, which is
due to non-continuous measurement during well logging, unlike
other conventional geophysical well logs, where measurement is
performed every 0.5 ft or approximately 15 cm.

Because of this limitation in the measurement process, we
used the data inversion methodology, a technique to estimate
the model parameters, which in this application is the 1-D
distribution geothermal gradient written as the vector g. The input

data of the problem are the temperature differences between the
well bottom and the surface. The thicknesses of the layers form
the matrix Z, whose inverse must be calculated to determine the
model parameters. Since the matrix Z is generally singular, the
classical inverse cannot be calculated, but rather the generalized
inverse Z+ (Penrose, 1955), using singular value decomposition
or SVD (Lanczos, 1961). In addition to the inversion of the matrix
Z, the least squares method usually applied to overdetermined
systems, was also used, as well as an extension of it, the damped
least squares method, which aims to compensate the singularity
of the matrix ZT Z. In the latter method, there is the need to choose
the damping parameter, and the appropriate choice will provide a
solution with both physical feasibility and reasonable accuracy.

The inversion was performed in a synthetic model based
on real data from Pineview Field (Utah, USA). The model has
nine different formations, each one with a specific gradient and
32 BHT data. The inversions using least squares method did
not bring good results, but the quality of the solutions improved
significantly with damping, which was proven by the reduction of
the RMS error between the true model and the estimated solution.
As previously mentioned, damping requires the choice of an
optimal parameter, which was derived from the L-curve, where
the abscissas correspond to the norm of the error vector between
the observed and calculated data, ‖e‖ =

∥∥Zgest−∆T obs
∥∥, and

the ordinates correspond to the solution norm ‖gest‖. When
displayed on a log-log scale, this curve usually resembles the
shape of the letter L, where the inflection region represents the
region of interest because it indicates the best regularization
parameter. In this case, ε2 = 104 was chosen for the three noise
levels.

BOTTOM HOLE TEMPERATURE AND CORRECTIONS

After the well drilling, the well logging process starts, before
the well casing. At the well bottom, there is an accumulation of
the drilling mud that is supposed to be in thermal equilibrium
with the formations neighboring the well walls. At this point,
the BHT measurement is performed as shown in Figure 1, with
more than one measurement in the same well and at the same
depth. The BHT measurements mostly do not correspond to the
true formation temperatures, since during drilling the well bottom
temperature is disturbed by the drilling tool and by the variation
of the drilling fluid itself (Bullard, 1947).
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Figure 1 – Diagram showing the bottom hole temperature measurement. Adapted
from Cavalcante (2004).

The thermal perturbations caused by the drilling activity
occur because of two processes that act in opposite directions
(Cardoso, 2007): (i) heating, mainly in the regions closer to
the surface, because of the great heat release generated by the
friction of the drill bit with the rock formation being drilled; (ii)
cooling, more evident in deeper regions, because of the fact that
the injected fluid is usually at lower temperatures than those of the
geological formations in depth and acts as a convection process,
taking the heat from the deeper regions to the surface of the earth,
which has lower temperature.

Figure 2 shows a diagram of the temperature evolution with
depth, in which a rise temperature is observed at relatively small
depths (around hundreds of meters), where the effect of heating
is greater than the cooling process because of the process of the
drill bit. At higher depths, the effect of cooling is greater than that
of heating, and thus the temperature reduces. These two sources
of heat exchange tend to generate two distinct zones of thermal
disturbance within the well.

The BHT data correction methodologies can be divided
into two classes. The first one aims to simulate the temperature
evolution in the well using the drilling history, requiring data such
as the composition of the drilling mud, the mud temperature in
the injection, the circulation rate of the fluid, physical properties
of rocks, among others. The second class aims to determine the
true temperature by mathematical modeling.

The correction method described as the first class becomes
infeasible most of the time, because we do not have enough
information, which leads us to require to mathematical models,
which in turn would have two subclasses: (i) mathematical
modeling and (ii) empirical methods. Mathematical modeling
generally relies on physical laws that can relate well geometry,
heat sources involved, and physical properties of rocks, among
others. The empirical methods generally assign a correction
factor obtained by the analysis of the BHT and STF measurements
(static temperature of the formation), to which, most of the time,
a correction is made considering the depth of the measurements.
These methods are mostly calibrated for a given region.

In this study, we used a mathematical method called Horner
correction. Among the researches that used this method, we can
mention Fontes (1980), Luheshi (1983), Chapman et al. (1984),
Deming & Chapman (1988), and Cavalcante (2004). The Horner
method was adapted for the borehole temperature problem by
Lachenbruch & Brewer (1959) and it uses the thermal recovery
model in a well after periods of disturbance by mud circulation
proposed by Bullard (1947):

T∞ = T (ts)+
Q′

4πK

[
ln
(

ts

ts + tc

)]
(1)

where T (ts) is the BHT at a given moment after cessation
of mud circulation, T∞ represents the assumed STF, tc is the
mud circulation period, ts is the rest time of the of mud on
well (between the end of the mud circulation and the BHT
measurement), Q′ represents the energy of the linear heat source
emanating from the center of the well, and K is the thermal
conductivity of the mud formation system.

We can obtain STF by the Horner method by plotting for
each data set measured at the same depth a straight line that
best fits the points of T∞× ln(ts/ts + tc) , in which we need to
obtain T∞, which will be the STF when the difference between the
exponential integrals ln(ts/ts + tc) is zero. For this to occur, ts

must tend to infinity. Adjusting Eq. (1) by least squares method,
the value of T∞ is obtained by extrapolating the adjusted straight
line.

INVERSE PROBLEMS AND SINGULAR VALUE
DECOMPOSITION

The inversion aims to determine parameters from observed
data, or, because of the inevitable limitations in the actual
measurement processes, the maximum possible information
about such parameters. The direct problem can be represented as:
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Figure 2 – Schematic representation of the effect of perturbations on temperatures caused by drilling
activity. Adapted from Cardoso (2007).

∆T = Zg (2)

where ∆T = [∆T 1,∆T 2, ...,∆T M]
T is the vector of observed

data, in this case the temperature differences between the well
bottom and the surface, and g = [g1,g2, ...,gN ]

T is the vector of
model parameters that are the geothermal gradients of subsurface
layers. Z is an M ×N matrix that relates the M observed data
to the N model parameters, and is expressed as:

Z =



z11 z12 z13 z14 z1N

z21 z22 z23 z24 z2N

...
...

...
. . .

...

zM1 zM2 zM3 . . . zMN


(3)

One can solve the system so that:

gest = Z+
∆T obs, (4)

where Z+ is the pseudo-inverse matrix. For the case in
which the system has more equations than unknowns, i.e.,
an overdetermined system, the least squares method is used,
obtaining the solution that minimizes the square of the error,
whose solution is:

gest = (ZT Z)+ZT
∆T obs (5)

An extension of the least squares method, called damped
least squares method, proposed by Levenberg (1944) and
Marquardt (1963), allows one to obtain a solution when the matrix
is singular, with addition of a non-negative parameter ε2 in the
main diagonal of ZT Z:

gest =
(
ZT Z + ε

2I
)+

ZT
∆T obs (6)

The choice of factor ε2 should maintain a compromise
between a small value that does not compromise the solution
and a value large enough to amend the poor conditioning of the
system.

In the analysis of the inversion results, one must calculate
the errors involved. The relative RMS (Root Mean Square) error
between the true and estimated model is expressed as:

eRMS,g =

√
∑

N
i=1 (g

true
i −gest

i )
2√

∑
N
i=1 (g

true
i )

2
×100%, (7)

while the error between the observed and calculated data
(∆T cal = Zgest ) is given by:

eRMS,∆T =

√
∑

M
i=1

(
∆T obs

i −∆T cal
i

)2√
∑

M
i=1

(
∆T obs

i

)2
×100%. (8)

In this study the pseudo-inverse is calculated by singular
value decomposition or SVD (Lanczos, 1961). Let Z be a real
M×N matrix. The Z+ with dimensions N×M will be its unique
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pseudo-inverse, if the following conditions are satisfied (Penrose,
1955): (i) ZZ+Z = Z, (ii) Z+ZZ+ = Z+, (iii) (ZZ+)

T
=

ZZ+, and (iv) (Z+Z)T
= Z+Z. Assuming a rectangular matrix

ZM×N with rank k, its decomposition is obtained from the
formula Z = UΣV T , where UM×M is the matrix containing
the orthonormalized eigenvectors of ZZT , ΣM×N is the matrix
containing the singular values of Z, and VN×N is the matrix
containing the orthonormalized eigenvectors of ZT Z. Then, the
pseudo-inverse, or inverse generalized, is the N × M matrix
Z+ = V Σ

+UT , where the N × M matrix Σ+ contains the
reciprocal of the nonzero singular values of Z, as follows:

Σ
+ =

E 0

0 0

 (9)

where E is the diagonal k×k matrix whose i-th diagonal element
is eii = σ−1

i for 1≤i≤k :

E =



σ
−1
1 0 . . . 0

0 σ
−1
2 . . . 0

...
...

. . .
...

0 . . . 0 σ
−1
k


(10)

BHT DATA INVERSION FOR THE DETERMINATION OF
THE GEOTHERMAL GRADIENT
Consider the hypothetical situation with five wells in a medium
with three horizontal layers. Given the measurements of T in a
well, the geothermal gradient g can be defined by:

g =
∂T
∂Z

(11)

Eq. (11) gives the average value g, which would be the
contribution of all the formations present between the surface
and the well bottom. The average g value does not consider
the different thermal properties inherent to the lithology of each
formation, as observed in Figure 3. Given a constant thermal flux,
the geothermal gradient is related to the thermal conductivity of
the rocks, which is an intrinsic property of the material and that
varies significantly along with the lithology of the formations.
Thus, a reexamination of Figure 3 indicates that, since there are
three different formations, the average geothermal gradient will
not be uniform, varying from formation to formation.

Consider that the temperature variation is calculated as

∆T = BHT −TSup (12)

where BHT is the bottom temperature of the well and TSup the
surface temperature. Substituting the above expression in Eq.
(11), one has ∆T/∆z = g or

∆T = ∆zg (13)

Generalizing Eq. (13) for a set of M wells and N geological
layers, we have the following system of linear equations:

∆T 1 = z11g1+ z12g2+ . . . +z1NgN

∆T 2 = z21g1+ z22g2+ . . . +z2NgN

...
...
...

...
. . .

...

∆T M = zM1g1+ zM2g2+ . . . +zMNgN

,

which is expressed in vector notation as:

∆T = Zg (14)

where ∆T is the observed data vector that contains the
temperature differences between the well bottom and the surface,
g represents the vector of model parameters that are the thermal
gradient of the formations, and Z is a M ×N matrix containing
the thicknesses of the logged formations: zi j is the thickness of
the i-th logged layer in the j-th well. The inversion of Eq. (14) can
be obtained from several approaches, according to Eqs. (4), (5)
and (6). In the particular case of Eq. (4), the operator Z+ must be
obtained using SVD, so that the solution obtained is g = Z+∆T .

FIELD-BASED SYNTHETIC DATA FROM PINEVIEW FIELD
(UTAH, USA)

The inverse problem approach for determining the geothermal
gradient was employed by Deming & Chapman (1988) for
Pineview Field, using l1 and l2 norms. Pineview Field (see Fig.
4) is located in the northwestern part of the state of Utah, United
States, near the border with the state of Wyoming. The field is
part of the Absaroka complex called the Absaroka thrust belt.
The field was discovered in 1975, and for several years was
a major oil producer. It is contained in a complex geological
environment with several structures mostly caused by tectonic
efforts. The present faults are of thrust type, mostly with a
tendency toward the north-northeast directions, and are due to
compressive tectonic movements. The edges of these faults are
physically and structurally complex, with numerous folds and
secondary faults (Chidsey & Sprinkel, 2005).

Figure 5 shows a stratigraphic column representative of
Pineview Field. The most recent formation, Tw (Wasatch), is
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Figure 3 – Section illustrating a geological situation with five wells in three flat layers with different
lithologies and geothermal gradients.

Figure 4 – Pineview Field localization, from Chidsey & Sprinkel (2005).
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composed of conglomerate; the second formation, Kec, is also
composed of conglomerate; Kh (Hilliard) has predominant shale
lithology; Kf (Frontier) has a greater predominance of sandstone
and secondary participation of shale; Ka (Aspen) is composed
of shale and, along with Kf, has the smallest representations in
the matrix of thicknesses; Kk (Kelvin) has greater representation
and is composed of shale; Jsp is the union of the Stump and
Preuss members, composed of sandstone, limestone, silt and a
layer of salt; the last two formations are Jtc (Twin Creek), with
intercalations of limestone and shale, and Jn (Nugget), which is
a sandstone reservoir of oil and gas.

Deming & Chapman (1988) corrected a set with 32 BHT
data using the Horner method, which served to determine the
thermal gradient of nine formations by the least squares method,
which is norm l2, and they also used l1 norm. They considered
the l1 norm solution to be the most representative for the Pineview
Field data. Thus, this solution was chosen as a reference for our
forward modeling. The locations of the wells can be seen in Figure
6. Based on the gradients determined by the l1 norm and the
layer thicknesses (see Table 1), Eq. (14) was used to calculate
∆T , which has its values listed in the last column of Table 1.
The ∆T values form the 32-point vector ∆T , which will be the
input data in the inversion algorithm. Note that the average surface
temperature was estimated by analyzing the daily and annual
variations, and the average value of TSup adopted for the region
was 12°C (Eldorado County Weather, 2018).

RESULTS AND DISCUSSION
For the forward modeling and inversion simulations, the data
explained in the previous item and shown in Table 1 were used.
With the thicknesses of the layers, the 32 × 9 matrix Z was
constructed, which characterizes an overdetermined system, i.e.,
more equations than unknowns. The output of the inverse process
are the estimated model parameters gest . Figure 7 shows gest ,
obtained by the least squares method according to Eq. (5). The
various lithologies are presented on the horizontal axis, with no
geographical significance. The geothermal gradient is shown on
the vertical axis with the unit °C/km. The inversion of matrix
ZT Z was obtained by the SVD technique. Note that the estimated
solution matches the true model. This is due to the fact that the
inverse problem in this case is well-posed, because of the amount
of information, and also because the data do not contain noise.
However, in real conditions noise always exists, so that to make
the simulations realistic, the observed temperature differences
were contaminated with Gaussian noise in the following way:

∆T obs
j = ∆T obs,∗

j (1+αr j) , j = 1, . . .M,

where ∆T obs
j is the temperature difference contaminated by noise,

∆T obs,∗
j is the temperature difference uncontaminated by noise, α

is the noise factor, and r j is the pseudorandom sequence. In this
study three noise levels were tested: α = 0.035, α = 0.07,
and α = 0.1. These noise factors resulted, respectively, in the
following relative RMS deviations between the contaminated and
uncontaminated data: RMS0.035 = 1.04%, RMS0.07 = 2.08%
and RMS0.1 = 2.98%. Or roughly to 1, 2, and 3% of added RMS
noise, respectively. The effect of noise impaired the quality of the
solution, so that to compensate for this effect, the damped least
squares method was used. Thus, instead of inverting the matrix
ZT Z, we proceeded to the inversion of (ZT Z+ε2I), using SVD
technique again. Choosing the damping parameter is a problem
in itself. The ideal ε2 would be the value that would result in the
smallest eRMS,g calculated by Eq. (7). After some tests the range
from 100 to 105 was established for the value of ε2. Out of this
range, the results become too inconsistent. Figure 8 shows the
curves of the error eRMS,g as a function of ε2 for the three noise
levels.

A total of 18 inversions were performed, that is, six
inversions for each curve. Each inversion used a different value
of ε2. Note that eRMS,g is the minimum for ε2 = 104 for all three
noise levels. Values of ε2 smaller than 104 would characterize
an underdamped solution, and for values greater than ε2 = 104,
the solution would be overdamped. However, the choice of ε2

based on the curve of eRMS,g is suspect, and only possible in
a simulation with synthetic data, where the true model gtrue is
known. In other words, this criterion does not apply to real data.
The curves of the data error eRMS,∆T were also plotted using
Eq. (8), as shown in Figure 9. However, due to the existence of
noise and the fact that the inverse problem is essentially ill-posed,
the minimum of the eRMS,∆T curve does not correspond to the
minimum of the eRMS,g curve. In other words, Figure 9, although
didactic, is not useful, since eRMS,∆T is minimum for the range
of ε2 between 100 and 103, but the value of eRMS,g in the same
range becomes too high with inconsistent results. In summary, it
is not surprising that the error criterion is useless and at the same
time it is important that the choice of ε2 is not only based on the
trial and error criterion.

There are several techniques for choosing the optimal
parameter, for example, the L-curve (Hansen, 1992) and the
generalized cross validation or GCV (Wahba, 1990). Recent uses
of these techniques are presented by Rodrigues & Bassrei (2016),
who used the L-curve in traveltime tomography. GCV was recently
used by Mojica & Bassrei (2015) in inversion of gravity data and
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Table 1 – Set of 32 wells with the thickness (in meters) of each formation and the computed
temperature variation (observed data). Data collected from Deming & Chapman (1988).

Well
Formation and thickness (m)

∆T obs(°C)
Tw Kec Kf Ka Kk Jsp Salt Jtc Jn

P1 0 125 600 175 1175 405 45 325 200 77

P2 0 90 650 150 1175 380 45 275 0 69

P3 0 125 625 150 1200 380 45 0 0 59

P4 0 125 625 175 1300 455 45 350 300 85

P5 0 125 575 175 1300 455 45 300 0 75

P6 0 150 500 150 1350 505 45 325 275 82

P7 0 125 550 150 1250 455 45 200 0 68

P8 0 150 350 150 1250 480 45 325 325 77

P9 0 150 250 175 1300 505 45 325 300 76

P10 0 125 50 175 1500 605 45 350 0 72

P11 0 125 0 75 1525 555 45 325 125 70

P12 0 125 0 0 1550 455 45 0 0 51

P13 0 175 0 0 1800 535 45 350 225 79

P14 50 200 0 0 1425 535 45 350 0 65

P15 150 175 0 0 1550 635 45 350 275 78

P16 175 150 0 0 1500 380 45 375 125 69

P17 225 175 0 0 1575 435 45 375 75 74

P18 250 150 0 0 1400 405 45 0 0 53

P19 350 200 0 0 1400 455 45 375 275 77

P20 350 225 0 0 1200 455 45 0 0 52

P21 375 200 0 0 1150 435 45 250 0 60

P22 400 225 0 0 1075 455 45 325 225 67

P23 500 350 0 0 1775 305 45 350 300 91

P24 500 325 0 0 1050 180 45 325 0 61

P25 575 350 0 0 1150 205 45 350 375 76

P26 600 375 0 0 1200 135 45 350 375 78

P27 600 325 0 0 1050 180 45 325 350 65

P28 750 350 0 0 925 305 45 225 0 62

P29 725 350 0 0 775 380 45 275 0 60

P30 775 325 0 0 675 535 45 375 100 67

P31 700 325 0 0 725 780 45 425 175 74

P32 625 325 0 0 675 1035 45 200 0 62
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Figure 5 – Pineview Field stratigraphic column, adapted from Deming & Chapman (1988).

by Silva & Bassrei (2016) in waveform seismic inversion. In this
study we used the L-curve, which is so called because it often
has the format of that letter of the alphabet. It is a parametric
curve, where each point is associated with a parameter ε2. The
horizontal axis represents the inversion error, i.e., the modulus of
the difference between the observed data and the calculated data,
and the vertical axis represents the energy of the model, which

is simply the module of the estimated model. The L-curve has
found application in a variety of inverse problems, including in
Geophysics, as previously mentioned. However, the visualization
of the knee and the consequent extraction of the optimal parameter
are not always trivial tasks, especially when the L-curve does
not have the letter L shape. Six values for ε2 were used, in the
same range from 100 to 105. Figure 10 shows the L-curve for
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Figure 6 – Cross section of the Pineview Field with the location of the wells (P1 to P32), adapted
from Deming & Chapman (1988).

Figure 7 – True (black curve) and estimated (red curve) geothermal parameters. The estimated parameters were
obtained by noise-free data inversion using least squares by SVD with all nine singular values. The coincidence
between the two curves is due to the well-posedness of the inverse problem.

α = 0.035, α = 0.07 and α = 0.1. As mentioned before, the
L-curve is parametric, and the parameter is precisely the damping
parameter ε2, i.e., each point on the curve is associated with a
specific value of ε2. The four initial points are close, and the knee
of the L-curve corresponds to the next value, that is, ε2 = 104.

Note that this is exactly the value of ε2 that generates the solution
with the minimum value of eRMS,g, as shown in Figure 8.

Figure 11 compares the true model (black curve) with
the estimated values of the geothermal gradient, when the
temperature differences were contaminated with noise of factor

Brazilian Journal of Geophysics, 37(4), 2019
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Figure 8 – Relative RMS model error between true geothermal gradients gtrue and estimated geothermal gradients
gest, obtained by damped least squares as a function of the damping parameter ε2 for different noise levels given by
the factor α . Six values of ε2 were tested, from 100 to 105. For all noise levels the minimum RMS error is associated
with the optimum ε2 = 104.

Figure 9 – Relative RMS data error between observed temperatures ∆Tobs and calculated temperatures ∆Tcal, as a
function of the damping parameter ε2 for different noise levels given by the factor α . Six values of ε2 were tested,
from 100 to 105. For all noise levels, four values of ε2 are associated with minimum RMS data error (100 to 103). The
best solution, ε2 = 104, defined from Figure 8, does not have the minimum RMS data error.
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Figure 10 – Parametric L-curve for the selection of the optimum damping parameter ε2. The observed temperatures ∆Tobs were corrupted
by noise given by the factors α = 0.035, α = 0.07 and α = 0.1. The corner of the L-curve provides the trade-off between the amount of
regularization (y axis) and data error (x axis); in all three cases, the optimum is ε2 = 104.

α = 0.035. The least squares solution is represented by the
red curve and the damped least squares method (blue curve) was
obtained using the damping parameter ε2 = 10 from the L-curve
(Fig. 10). Note that the blue curve is closest to the true model.
The deviation is more significant for Salt formation, which has
two problems. First, the thickness of 45 m is small, compared to
the other layers. It is true that the other formations are not present
in all wells. However, when they are present, their thicknesses
are a few hundred meters, in average. Second, salt has a high
heat flow (for a given geothermal gradient) but a low geothermal
gradient (for a given heat flow). Compare to other formations, the
salt’s geothermal gradient is small. These two aspects resulted
in a higher sensibility to noise when estimating the geothermal
gradient from BHT data.

As a matter of fact, the salt layer has two problems.
The RMS error eRMS,g between the true model and the

estimated least squares method is 1.52%, whereas the deviation
between the true model and the model estimated by the damped
least squares is 0.61%, considerably smaller. The behavior is
similar to other noise levels. Figure 12 shows the results with the
noise factor α = 0.07, with a deviation being 5.72% between
the true model and the least squares solution, which reduces to
1.03% between the true model and the damped least squares
solution. Finally, Figure 13 presents the results for α = 0.1, with

deviations of 10.88% and 1.82%, respectively. In summary, the
damped least squares method greatly improved the solution, i.e.,
the addition of ε2 on the principal diagonal of ZT Z increased the
matrix stability. This can be quantitatively explained by the fact
that the matrix condition number, which is the ratio between the
largest and the smallest singular value, decreased from 40160 in
the least squares method to 5635 in the damped least squares
method.

CONCLUSIONS

The objective of this study is to obtain the 1-D distribution
of the geothermal gradient from the inversion of Bottom Hole
Temperature (BHT) data. Before the inversion procedure, Horner
correction method was used to determine the correct formation
temperature. The inversions were performed in a synthetic model
based on real data from Pineview Field (Utah, USA), in this case,
to obtain geothermal gradients from nine formations using BHT
data from 32 wells. The inversions using the least squares method
did not produce good results, mainly for the determination of
gest for Salt formation, because the inversion stability was
affected by the low representativeness of this layer. The quality
of the solutions improved significantly with damping, which was
evidenced by the reduction of the RMS error between the true
model and the estimated solution. Damping requires the choice
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Figure 11 – Comparison between the true geothermal gradients gtrue (black curve) and the estimated solutions by least squares (red
curve) and damped least squares (blue curve). The observed temperatures ∆Tobs were corrupted by noise given by the factor α = 0.035.
The optimum damping parameter is ε2 = 104, provided by the L-curve presented in Figure 10.

Figure 12 – Comparison between the true geothermal gradients gtrue (black curve) and the estimated solutions by least squares (red
curve) and damped least squares (blue curve). The observed temperatures ∆Tobs were corrupted by noise given by the factor α = 0.07.
The optimum damping parameter is ε2 = 104, provided by the L-curve presented in Figure 10.
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Figure 13 – Comparison between the true geothermal gradients gtrue (black curve) and the estimated solutions by least squares (red
curve) and damped least squares (blue curve). The observed temperatures ∆Tobs were corrupted by noise given by the factor α = 0.1.
The optimum damping parameter is ε2 = 104, provided by the L-curve presented in Figure 10.

of an optimal parameter, which was obtained from the L-curve.
This can be quantitatively explained by the fact that the matrix
condition number, which is the ratio between the largest and
the smallest singular value, decreased from 40160 in the least
squares method to 5635 in the damped least squares method.
The results using the damped least squares method were in
accordance to those obtained by Deming & Chapman (1988).
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