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ABSTRACT. Pore pressure prediction has been an increasing concern during well designing due to the numerous accidents recorded because of mistaken estimations

of high pressure fields. This paper depicts a predictive modelling of pore pressure using multivariate geostatistics tools called LVM and collocated cokriging. The resulting

maps of LVM and collocated cokriging were compared. Geostatistics were used to estimate pore pressure distribution in unsampled places considering the two different

scales and spatial variation from well measurements (pore pressure) and 3D seismic velocity data. When pore pressure gradients recorded in the wells have been defined

and the seismic interval velocity analyzed, pore pressure estimation can be done by using the geostatistics approaches. This is a method for estimating the geopressure

field distribution at basin or reservoir level that offers the advantage of the possibility of extracting pore pressure information at any place within the modeled area.
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RESUMO. Devido aos numerosos acidentes registrados por estimativas equivocadas de campos de alta pressão, a preocupação com a previsão de pressão de

poros tem aumentado durante projetos de poços. Este artigo descreve uma modelagem para previsão de pressão de poros usando duas ferramentas da geoestatística

multivariada, a LVM e a cokrigagem colocada. Neste estudo, essas duas metodologias foram comparadas. A geoestatística foi utilizada para estimar a distribuição de

pressão de poros em locais não amostrados, permitindo a integração dos dados das duas variáveis, velocidade sísmica e dados de poço, em diferentes escalas e

variação espacial. Quando os gradientes de pressão de poros, registrados em poços, são definidos e a velocidade intervalar da sísmica é analisada, existindo correlação

entre eles, a previsão de pressão de poros pode ser feita utilizando a abordagem geoestatística. A vantagem de uma modelagem geoestatística 3D de gradiente pressão

de poros é a possibilidade de extração de informação de pressão em qualquer local dentro da área modelada.
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INTRODUCTION

Pore pressure modelling has been fundamental on several
applications and stages of hydrocarbon exploration, evaluation,
development and production. Previous studies have shown
that there are significant changes in the P-wave velocities at
overpressured zones. Wells data and velocity seismic data were
used to estimate pore pressure using multivariate geostatistics
that allow the integration of data at different scales. This
integration results in a more consistent pore pressure model
attracting the attention of geoscientists and engineers as a
framework to attain more accurate estimates and predictions of
geopressured fields.

Multivariate geostatistical techniques are promising tools
for generation of high-quality maps of pore pressure distribution
and are fast, robust and easy to implement. Its primary objective is
to estimate the values and the prediction uncertainty of a sampled
variable over an area of interest. Its main tool is the variogram, a
function directly extracted from the sampled data that describes
the spatial structure of the phenomenon. This results in an image
of the phenomenon that honors sampled data and provides an
estimate uncertainty map associated with the model. During oil
exploration and exploitation operations, the acquisition of direct
or primary data, such as well data, is scarce due to the elevated
costs, which makes the estimates of the numeric model and the
characterization of the reservoir less realistic. Thus, to increase
the accuracy of the final models, indirect or secondary data such
as sampled seismic data are used, which results in a better pore
pressure model.

In this study, multivariate methods have been applied with
a view to estimate the distribution of geopressures in subsurface
at basin in reservoir levels using the software Petrel (2020). The
results of two multivariate geostatistical methods are compared
as:

(1) LVM (locally varying mean) kriging; and

(2) collocated cokriging.

These methods are used for estimating pore pressure
(primary variable), supported by seismic velocity data (secondary
variable). The integration of these data resulted in more coherent
pore pressure models.

METHODOLOGY

Data description

This study is based on exploration data from an exploration
block in the Brazilian equatorial margin. Direct pore pressure

measurements from five wells were used as predicted variable.
This dataset is a compilation of information from: formation tests,
mud weight, pore pressure estimations from drilling parameters
and leak off tests (LOT). In relation to a second variable, a 3D cube
of seismic interval velocity was used. This cube was estimated
based on data from the seventeen 2D Pre-Stack Depth Migration
(PSDM) seismic lines.

Multivariate geostatistical approach

The geostatistical technique is an important tool for quantifying
the uncertainties of a given oil reservoir from the elaboration of a
numerical model that allows representing the reservoir attribute
as a continuous function in the whole of the 3D space.

In short, the generation of the geostatistical models
estimated in this study consists in four main stages:

(1) Data preparation: this stage must be planned and executed
by the interpreter. During the modelling of an interval,
seismic attributes must correlate with the geological
property under investigation;

(2) Exploratory analysis: primary data are evaluated through
frequency histograms and crossplot dispersion graphics
to evaluate the correlation between them and the form of
data distribution;

(3) Variography: study of spatial continuity through structural
functions in various directions;

(4) Estimate: application of cokriging algorithms, resulting in
an image with minimal variance.

The estimation workflow is summarized below.

Variogram analysis

A variogram consists in the study of spatial continuity. It is a
mathematical function defined to represent the level of linear
dependence between random variables as a function of the
distance and direction between the sampled points (Verfaillie et
al., 2006). Figure 1 shows the main parameters explained by the
experimental semivariogram:

• Range, distance in the variogram in which samples
become independent;

• Sill, semivariogram value corresponding to its range. It
reflects the proper dispersion (variance) of the variable for
distances superior to the range;
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• Nugget effect, quota of the point in which the
semivariogram intersects the vertical axis. It reflects
microstructures and small-scale variability that are not
detected by the sampling. It also reflects sampling errors.

Figure 1 – A hypothetical semivariogram in two directions and the corresponding
parameters.

The extent of the correlation between samples decreases
as the distance between them increases. This stage of spatial
continuity analysis is one of the most important in geostatistical
studies, since it is used for calculating the final estimates map,
directly influencing the kriging results.

Interpolation with kriging and cokriging

Kriging is a technique for estimating values in non-sampled
locations, through the linear combination of known values,
utilizing weights. The result is the construction of an image of
the phenomenon that honors the sampling points and guarantees
a minimal variance of estimation error in non-sampled locations.
It is classified in two forms:

(1) Kriging: the values have the same attribute;

(2) Cokriging: values with different attributes are used.

LVM and collocated cokriging methods, are techniques
used in multivariate geostatistics applications for the integration
of data from different attribute types, described below, were used
in this study.

Simple Kriging with LVM

This technique is applied when the secondary variable is
exhaustive and is sampled in the whole region. LVM is a simple

kriging in which the average value of the system is replaced by a
value contained in the place to be estimated. Thus, the secondary
variable must be in the same unit of the primary data. Otherwise,
it is necessary to unify the measures through the calibration
process, which consists in applying a regression function for
converting the secondary data to the unit of the primary data.

Figure 2 presents the parameters of a given place for the
LVM system in profile. According to Doyen (2007).

Figure 2 – LVM kriging scheme (Doyen, 2007).

where,

• x(u), defines the primary variable, given by: x(u) = m(u) +
R(u)

• m(u), is the local average value, being: E{x(u)}

• R(u), residue between the primary and secondary
variables, given by: E{R(u)}

R(u) is stationary and characterized by the covariance
CRR(h).

The local estimate in LVM Cokriging consists of mapping
the residuals by the linear kriging system and adding the mean
given by the secondary variable.

For example, considering primary information sampled in
n number of uα locals:

{z(uα), α = 1, ...,n} (1)

In LVM, secondary information is present in each u local
for which it is necessary to have an estimate. Then, the stationary
average of the simple kriging system in the u position can be
replaced by non-stationary local averages given by the secondary
variable m*:

Z∗
lvm(u)−m∗(u) =

n(u)

∑
α=1

λ
α
· [Z(uα)−m∗(uα)] (2)

The estimated value of the Z variable in the u position
follows the stages below:
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(1) the average of the primary variable is determined as a
function of the y secondary variable:

m∗(u) = f (y(u)) (3)

(2) the kriging weights are determined by solving the system:

n(u)

∑
β=1

λ
β
·CR(uα −uβ ) =CR(uα −u),

α = 1, ...,n(u),

(4)

where, CR(h) is the covariance function of the R(u) random
residual variable;

(3) the experimental residues are determined:

r(uα) = z(uα)−m∗(uα) (5)

(4) the variogram of the residues is calculated;

(5) the variogram of the residues is modeled;

(6) the residues are estimated by means of kriging;

(7) the result is obtained by adding the average of the
secondary variable to the residue estimates.

Collocated Simple Cokriging (CKCS)

The cokriging technique is the extension of the kriging method
that adds auxiliary variables in the resolution of the linear system.
For instance, if a seismic variable (Z2) with n2 points distributed in
uα2 locals is spatially added to the set of the primary variable (Z1),
in the uα1 positions, then the equation of the simple cokriging
system (CKS) for estimating the primary variable in any location
is given by:

Z∗
CKS(u)−m1 =

n1(u)

∑
α1=1

λ α 1 · [Z1(uα1)−m1]+
n2(u)

∑
α2=1

λ α 2 · [Z2(uα2)−m2] (6)

The weights of simple cokriging are calculated by the
system of equations:


n1(u)
∑

β1=1
λβ1 ·

[
C11(uα1 −uβ1)

]
+

n2(u)
∑

β2=1
λβ2 ·

[
C12(uα1 −uβ2)

]
=C11(uα1 −u)

n1(u)
∑

β1=1
λβ1 ·

[
C21(uα2 −uβ1)

]
+

n2(u)
∑

β2=1
λβ2 ·

[
C22(uα2 −uβ2)

]
=C21(uα2 −u)

(7)

In matrix form:
∣∣∣∣∣∣∣∣∣

C11(uα1 −uβ1
) C12(uα1 −uβ2

)

C21(uα2 −uβ1) C22(uα2 −uβ2
)

∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣

λ
β1

λ
β2

∣∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣∣

C11(uα1 −u)

C21(uα2 −u)

∣∣∣∣∣∣∣∣∣ (8)

A practical problem in the use of cokriging is the need
to model the covariance matrix for each variable and the
cross-covariance between variables. Another problem is how
exhaustively sampled the secondary variable is, with much
more data than the primary variable, including in places where
primary data is available. This makes the cokriging system matrix
unstable for greater covariances between secondary values,
due to the proximity between them, and lesser covariances
between primary data, that are farther apart. The solution for
the instability problems caused by highly redundant secondary
information consists in retaining in each place of the estimate only
secondary data. Thus, the primary variable estimate is given by
the collocated cokriging equation, given as:

Z∗
CKCS(u)−m1 =

n1(u)

∑
α1=1

λα1 · [Z1(uα1)−m1]+

+λα2 · [Z2(u)−m2]

(9)

Weights are obtained through the following system of
equations:

C11(uα1 −u) =
n1(u)

∑
β1=1

λβ1 · [C11(uα1 −uβ1)]+

+λβ2 · [C12(uα1 −u)]

C21(0) =
n1(u)

∑
β1=1

λβ1 · [C21(u −uβ1)]+

+λβ2 · [C22(0)] .

(10)

In matrix form:∣∣∣∣∣∣∣∣∣
C11(uα1 −uβ1

) C12(uα1 −u)

C21(u−uβ1) C22(0)

∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣

λ
β1

λ
β2

∣∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣∣

C11(uα1 −u)

C21(0)

∣∣∣∣∣∣∣∣∣ (11)

The variance of simple collocated kriging being given by:

σ
2
CKCS(u) =C11(0)−

n1

∑
α1=1

λα1 ·C11(uα1 −u)−λα2 ·C21(0) (12)

The CKCS estimating process is very similar to full
cokriging system, using only secondary samples located in the
point of the estimation. Therefore, the CKCS system needs a
covariance between secondary data in estimation points, which
decreases the inference and modelling efforts, simplified through
Markov models (Goovaerts, 1997).

In Markov models, spatial continuity between primary and
secondary variables is approximated by the linear relation of its
covariances, given by:

C12(h) =
C12(0)
C11(0)

C11(h) (13)
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In terms of correlation coefficients, it is as follows:

ρ12(h) = ρ12(0) ·ρ11(h) (14)

The primary variable estimate is given by the linear
regression:

Z1(u) = ρ12(0) ·Z2(u)+R(u) (15)

When the variographic models relate to the primary
variable, the MM1 model is obtained. When they are a function
of the secondary variable, the Markov MM2 model is obtained.
For example, the MM2 model is applied in the oil exploration
scenario in which primary data is scarce, located in few fields,
and secondary data is densely sampled, for instance a seismic
cube.

RESULTS AND DISCUSSIONS

Exploratory analysis

The first step for exploratory analysis was the elaboration
of 1D models of pore pressure gradients for each of the
studied wells. For that purpose, pore pressure information from
the wells under examination has been compiled. Currently, a
well-known approach consists in estimating pore pressure from
well logs. However, the thick carbonate platform rocks overlaying

the anomalously pressurized siliciclastic interval makes quite
challenging the pore pressure estimation based mainly on well
logging data. For that reason, only the pore pressure information
recorded at the wells during drilling was taken into account.

As a second step, the top of the abnormal pressure zone
(APZ) and the stratigraphic interval of interest were defined. The
study emphasized pore pressure anomalies and zones prone to
operational risks.

The interval of interest, interpreted as an abnormal pressure
zone (APZ), is shown in Figure 3. In this figure, it is possible to
observe the abnormal pore pressure behavior in three wells in the
area. The abnormal pressure zone is highlighted in green and was
interpreted as a predominantly clayey interval, situated below the
carbonate platform and reaching about 12,000 psi, 17 lb/gal on
well A, 19 lb/gal on well C and 16 lb/gal on well D of equivalent
mud weight.

The interval velocity data extracted from the 2D seismic
sections was used as a second variable to increase the accuracy
of the stochastic model in places lacking well information.
The comparison between the interval velocity from well data
(projected on seismic sections) and the interval velocity from
seismic data can be seen in Figure 4. The curves below show a
satisfactory correlation between these parameters in the interval
of interest, starting around 3,300 meters (MD) for A and 3,900
meters (MD) for D. The information above these tops, which

Figure 3 – Pore pressure gradient analysis from wells D, C and A, provided by ANP.
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Figure 4 – Velocity analysis from wells and 2D seismic lines.

corresponds to a carbonate zone, was not considered in this
study.

Considering that there is a relation between the predicted
variable (e.g. pore pressure and interval velocity from wells)
and a secondary variable (e.g. interval velocity from seismic), it
is possible to use multivariate geostatistical tools by including
this secondary information into the interpolation. Currently, 3D
seismic data are used to increase map resolution, being used
to improve the reservoir characterization (Xu et al., 1992). Due
to this, a 3D interval velocity cube was estimated from the 2D
seismic sections, by means of simple kriging. The advantage of
the densely sampled velocity cube is the possibility of extracting
pore pressure information at any place on the cube. After that, the
histogram analysis of velocity data from seismic and velocity data
from wells shows a similar distribution, interpreted as close to a
Gaussian one, as can be seen in Figures 5 and 6.

The scatter plot Vp versus pore pressure as recorded in the
wells A, C, D and E (Fig. 6) shows two different trends in the
same stratigraphic interval: one associated with low velocities
varying from 2,000 m/s to 4,000 m/s and higher pore pressures
from ~4,3x103 psi to ~13x103 psi in the wells A, C and D, and
other one associated with higher velocities (around 4,000 m/s)
and lower pore pressures (typically below 4,000 psi), the normal
pore pressures expected for this area as recorded in well E.
It is expected that, according to depth, elastic wave velocities
in rocks increase and transit time decreases due to porosity

reduction. In other words, both vary predictably according to
depth. However, if there are significant changes in the behavior of
these variables, such as a decrease in velocity, it possibly marks a
geopressured zone occurrence, once by Sayers et al. (2006). Due
to an increase in pore pressure, the amount of compaction can
be reduced, allowing the use of elastic wave velocities to predict
pore pressure.

Variogram analysis

The theoretical variogram of the 3D velocity cube has been best
modeled at azimuthal directions 0° and 90°. This variogram
surface shows a clear gaussian type in both directions, reach of
1,000 m and 700 m, nugget effect of 10,000 and 100 and sill with
150,000 and 80,000, respectively at azimuthal directions 0° and
90° (Fig. 7).

This variogram shows that the spatial variation is zonal,
the main and secondary directions do not reach the same level.
The direction with greater continuity is azimuthal 90°, which
corresponds to the direction of faults, probably indicating an
influence of the faults in the special variability of the pore pressure
data.

Multivariate Interpolation with LVM and Collocated
Cokriging

The resulting pore pressure map used pore pressure information
from the wells as a predicted variable and a pore pressure
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Figure 5 – Histogram of the data set of interval velocity from estimated seismic cube and velocities from wells. Sonic velocity
data were not edited and some spurious values (above ~7,000 m/s) should be disregarded.

Figure 6 – Scatter plot of Vp X pore pressure into the siliciclastic interval (interest interval) from wells data.

cube estimated from the interval velocity cube from seismic data
as secondary information. For the calculation of the final pore
pressure map and data integration for cokriging, the variogram
parameters were used.

Multivariate geostatistical interpolation techniques allowed
data integration in spite of the different scales and produced a
high-quality pore pressure map, predicting values at unsampled
places. There are uncertainties associated with the interpolated

values, but these techniques provide the possibility of extracting
pore pressure information at any location in the area, even in
places that lack samples.

The results of two multivariate geostatistical tools have been
compared in this study: LVM (non-stationary) and collocated
cokriging. The LVM technique was able to generate a detailed
estimation of the final geopressure cube, with 3,600 km² (Figure
8).
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Figure 7 – Horizontal semivariograms at the main and secondary directions.

Figure 8 – Pore pressure estimated using LVM techniques. Figure 9 – Pore pressure estimated using collocated cokriging.

Comparing and validating the final model, as shown in
Figure 9, it is possible observe the estimated pore pressure
behavior by using collocated cokriging.

For spatial distribution analysis and a better view of pore
pressure occurrence, 2D sections within the interval of interest
were made. Figure 10 shows two W-E sections, in which the
abnormal pressure zones estimated using LVM and collocated
cokriging are presented.

The interpolation made through the LVM (non-stationary)
approach shows a more detailed estimative of the geopressured
cube, while cokriging results leads to a smoother model due to

the applied weights on the primary and secondary variables. For
this reason, collocated cokriging conceals relevant information
that is otherwise relevant with other estimation techniques. On
the other hand, LVM estimative are an important tool in cases
where little information is available and detailed information of
any variable is necessary, honoring the values of the primary
variable. For the same interval, LVM shows a higher pressure
in the platform region, as expected from well data analysis.
Compared to traditional kriging methodologies, which consider a
unique variable, these tools present considerable advantages and
more accurate estimations due to the use of secondary variables,
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Figure 10 – Pore pressure analysis along the section generated using: (1) LVM estimation and (2) collocated estimation.

especially when only sparse observations are available as is
common ground in exploration settings with just a few drilled
wells.

CONCLUSIONS

A case study is presented of this being applied on the equatorial
margin of Brazil. For the geostatistical analysis the software
Petrel (2020) was used and proved satisfactory for all estimates
performed in this study.

Multivariate geostatistical techniques are promising tools
for obtaining high-quality maps of pore pressure distribution
and are fast and robust. The estimations can only be calculated

through well information but merging them with seismic data
provide a more accurate geopressured fields model, increasing
their resolution.

Due to the satisfactory correlation between the predictive
and secondary variables, it was possible to make the LVM
and collocated estimation. Comparing the resulting maps,
it becomes clear that the LVM estimate showed the best
interpolation, presenting more detailed and realistic maps with
better resolution. On the other hand, collocated cokriging showed
smoother map with lesser resolution. In both cases, the resulting
map showed high pore pressure in the interval of interest. This
interval is embedded in a Upper Cretaceous thick clay section
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in an exploration area on the equatorial margin of Brazil. On
the platform region, there are known intervals with anomalous
pore pressure fields. The complex tectonic environment of this
equatorial margin can be the triggering mechanism for these pore
pressure anomalies. The wells used in this work are positioned
close to a complex structural distensive/compressive system thus
this mechanism was interpreted as the main cause for the high
pore pressure anomalies in the area.
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