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ABSTRACT. In Ponta Grossa Formation, devonian interval of Paraná Basin, Brazil, sampling restrictions are frequent, and 
lithological interpretations from gamma ray logs are common. However, no single log can discriminate lithology 
unambiguously. An alternative to reduce the uncertainty of these assessments is to perform multivariate analysis of well logs 
using data clustering methods. In this sense, this study aims to apply two different clustering algorithms, trained with gamma 
ray, sonic and resistivity logs. Five electrofacies were differentiated and validated by core data. It was found that one of the 
electrofacies identified by the model was not distinguished by macroscopic descriptions. However, the model developed is 
sufficiently accurate for lithological predictions. 
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RESUMO. Na Formação Ponta Grossa, intervalo devoniano da Bacia do Paraná, Brasil, restrições de amostragem são 
frequentes e interpretações litológicas dos registros de raios gama são comuns. No entanto, nenhum perfil geofísico único 
pode discriminar litologias sem ambiguidade. Uma alternativa para reduzir a incerteza dessas avaliações é executar uma 
análise multivariada combinando vários perfis geofísicos de poços por meio de métodos de agrupamento de dados. Nesse 
sentido, este estudo tem como objetivo aplicar dois algoritmos de agrupamento aos registros de raios gama, sônico e 
resistividade para fins de predição litológica. Cinco eletrofácies foram diferenciadas e validadas por dados de testemunhos. 
Verificou-se que uma classe identificada pelo modelo não foi identificada por descrições macroscópicas. Porém, o modelo 
é suficientemente preciso para predições litológicas. 
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INTRODUCTION 

Traditional studies on sedimentology and stratigraphy 
integrate several sources of information in the development 
of a depositional model, including surface information 
(outcrops and surface geophysical measurements) and 
subsurface information (cuttings, cores and wireline log 
data). 

The cuttings obtained during drilling are the most 
frequent samples in exploratory wells, but they are also the 
worst quality samples for lithological analysis. It is difficult to 
visualize sedimentary structures, as well as performing 
porosity and permeability measurements. In addition, some 
samples are lost because of their grain size (silts) or by 
dissolving in the drilling mud (salts). Moreover, the samples 
are often contaminated due to wall collapses (Serra & 
Abbott, 1982).  

The cores, on the other hand, are an excellent source 
of information since their depth can be located more 
accurately and are large enough for several analysis. 
However, due to cost and time constraints, it is not always 
possible to obtain core samples from the whole well and it is 
usual to acquire only a few meters of core in a limited interest 
zone. The remaining intervals are usually sampled by 
cuttings or sidewall cores. 

In the Ponta Grossa Formation, Devonian interval of 
Paraná Basin, Brazil, these constraints on sampled data 
were found. Despite having a proven thickness of up to 654 
m (Assine, 1996), most of the cores recovered are between 
5 and 20 meters thick. Thus, the identification of lithology at 
non-cored intervals has been performed from cuttings aided 
by the interpretation of the gamma ray log, which is also the 
most widely used log for well correlations and sequence 

stratigraphy approaches in this basin (Assine, 1996; 
Bergamaschi & Pereira, 2001; Ferreira et al., 2010). 

The identification of lithology from well logs is based 
on the principle that well log responses are related to 
changes in lithology along its path. However, no single log is 
able to discriminate lithology unambiguously. Bentonite 
clays, for example, show radioactivity as low as the 
sandstone (Dypvik & Eriksenf, 1983).  

Therefore, the main objective of this work is the use 
of information from multiple logs through clustering methods 
to reduce ambiguity and define lithology more precisely on 
non-cored intervals of the Ponta Grossa Formation.  
 
Geological settings  
The Paraná basin is a large intracratonic basin that extends 
over an area of about 1,400,000 km², distributed between 
Brazil, Paraguay, Uruguay and Argentina (Fig. 1). Two-thirds 
of its surface expression is represented by predominantly 
basaltic lava flows of Jurassic-Cretaceous age, which can 
reach a thickness of up to 1700 m and probably had a huge 
influence on oil generation in the basin (Thomaz Filho et al., 
2008). The remaining third of the basin consists of a belt of 
outcrops of older sedimentary rocks surrounding the lava 
flows (Zalan et al., 1990).  

The strata sampled in this study are from Silurian-
Devonian sequence of Paraná basin, named Paraná Group, 
that is composed, in ascending order, by the Furnas and the 
Ponta Grossa formations. 

The Ponta Grossa Formation, which is the focus of 
this study, is represented by three members ordered from 
the bottom to the top: Jaguariaíva (claystone-dominated), 
Tibagi (sandstone-dominated) and São Domingos 
(claystone-dominated) (Lange & Petri 1967). These rocks 
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has been widely studied for over a century, especially due 
the rich fossil community, and partly owing to its potential as 
a hydrocarbon source (Zalan et al., 1990).  

An important event was the discovery, in 1996, of the 
first commercial gas accumulation sourced from shales of 
the Ponta Grossa Formation (Barra Bonita gas field), 
associated with the Ponta Grossa-Itararé system (Campos 
et al., 1998).  

Other studies attempted to integrate the extensive 
knowledge acquired over the years with the study of the 
fossil, sedimentary and gamma ray records in the context of 
sequence stratigraphy or sedimentary and paleoenviron-
mental processes, with recently published contributions 
(Bergamaschi & Pereira, 2001; Ferreira et al., 2010; Carelli 

& Borghi, 2011; Grahn et al., 2013; Engelke et al., 2019; 
Sedorko et al., 2019).  
 
METHODOLOGY 
The data used in this study were obtained from well 2-TB-1-
PR, located on the eastern edge of the Paraná Basin, in the 
city of Tibagi, Paraná state, Brazil. This well was completely 
cored and recovered about 437 meters of well-preserved 
cores, as well as data from conventional wireline logs, 
including Gamma Ray (GR), Sonic (DT), Long Normal 
Resistivity (RLN) and Laterolog Resistivity (RLAT). 

The recovered core samples were gamma scanned 
with hand gamma spectrometer to obtain a log of core 
radioactivity (core gamma). In addition, the core provides a 

Figure 1 - Geographical location of Paraná basin and the well of study (2-TB-1-PR) in Tibagi-PR, Brazil. 
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lithological reference to calibrate the electrofacies (EF) 
model and evaluate the accuracy on lithology recognition. 

The following steps were applied to the data in order 
to standardize the vertical resolution and reduce noise 
before EF modeling:  

1. all logs were previously smoothed by a moving average 
filter, ensuring an approximately common vertical 
resolution for all analyzed logs. It avoids data 
incompatibility that generates error and bias (Doveton, 
1994); 

2. filling of null data points with the average value of the 
neighborhood points; 

3. core depth adjustment: this step involves the correlation 
between core gamma and GR log; 

4. selection of data in the interval from 46.2 meters to 441 
meters for data training. Since the data outside this range 
have poor quality or some log are missing.  

The model was built using the Geolog® Facimage 
software, which is a Geolog tool dedicated to EF modeling, 
allowing clustering analysis. 

Clustering analysis involves the use of clustering 
algorithms to partitioning a set of log data into electrofacies 
units, defined as a “set of log responses that characterizes a 
sediment and permits the sediment to be distinguished from 
other” (Serra & Abbott, 1982). They can be presented as 
inferred lithological profiles to provide assistance in 
performing sequence stratigraphy and correlations (Ye & 
Rabiller, 2005).  

In this study two unsupervised clustering algorithms were 
applied to predict lithology from well log data: Multi Resolution 
Graph-Based Clustering (MRGC) and Self-Organizing Maps 
(SOM). Information on the calculations performed by these 
methods can be found in Ye & Rabiller (2000) and Kohonen 
(2013), respectively. The models were trained with GR, DT 
and RLN logs from well 2-TB-1-PR. The clusters obtained 
were compared to the core lithology and merged into EF units 

to form a one-to-one correspondence. So, the best match 
between the core lithology and EF model was analyzed within 
graphs to visualize the distribution of the petrophysical 
characteristics. A flowchart with the process performed to 
construct the EF models is illustrated in Figure 2. 

 

 
Figure 2 - Method applied to elaborate an electrofacies model on 
Facimage module of Geolog software. 
 

RESULTS 

The MRGC modeling resulted in five optimized models with 
7, 9, 11, 13 and 18 optimal clusters. The same cluster 
partition configurations were used to set the SOM modeling 
one-dimensional grids (1x7, 1x9, 1x11, 1x13 and 1x18). The 
choice of one-dimensional grids was made after several 
experiments that demonstrated better results with this 
configuration. Moreover, the one-dimensional topological 
architecture of the SOM is consistent with the geologists’ 
lithofacies knowledge, in which the geologist’s expertise is 
embedded in the structure (Chang et al., 2002).  
 The clusters generated by the models were merged 
into five EF units. Four of them can be correlated to one 
lithology: EF 1 (for sandstones), EF 2 (for siltstones), EF 3 
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(for heterolithics - claystone intervals intercalated by thin 
layers of siltstone or sandstone) and EF 4 (for claystones). 
Additionally, the EF 5 unit was defined by very distinct 
characteristics from all lithologies found in the well, particularly 

its resistivity values (Fig. 4). This group was easily identified 
by all tested algorithms and corresponds to the range of high 
resistivity claystones from 373m to 399m (Fig. 3), which was 
not differentiated from the others by macroscopic description.  

Figure 5 - SOM_13 model and the merging to form the five final electrofacies. The criterion used to merge the clusters was Similarity and correspondence 
with the same core lithology. 

Figure 4 - High resistivity interval observed in Figure 3 highlighted in 
green on the GR vs RLN crossplot showing that the points on this 
claystone differ from the overall trend. 

Figure 3 - Depth interval from 371m to 399m (1) in well 2-TB-1-PR. Note 
the significant deflection to the right of RLN log and the lower transit time 
(DT) compared to the claystone interval just above (2), possibly due to a 
decrease in the porosity by compaction or cementation. 
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Table 1 - Accuracy of MRGC models. EF=Electrofacies; SS=Sandstone; 
ST=Siltistone; HT=Heterolithics; CL=Claystone and CTL= % of coverage 
on target lithology on core. 

Model Cluster 
names EF Recognition rates CTL SS ST HT CL 

MRGC 
7 

1 1 100% 0 0 0 42% 
3 2 23% 62% 13% 2% 67% 

4 and 5 3 1% 16% 58% 24% 87% 
6 and 7 4 0% 0% 2% 98% 78% 

2 5 0% 0% 0% 100% None 

MRGC 
9 

9 1 100% 0% 0% 0% 42% 
6 2 23% 62% 13% 2% 67% 

4 and 5 3 1% 16% 58% 24% 88% 
1,2 and 

3 4 0% 0% 2% 98% 78% 

7 and 8 5 0% 0% 0% 100% None 

MRGC 
11 

11 1 100% 0% 0% 0% 42% 
7 and 8 2 19% 62% 15% 5% 90% 
4,5 and 

6 3 0% 6% 67% 27% 82% 

1,2 and 
3 4 0% 0% 2% 98% 78% 

9 and 1 5 0% 0% 0% 100% None 

MRGC 
13 

13 1 100% 0% 0% 0% 42% 
9 and 1 2 19% 62% 15% 5% 90% 
6,7 and 

8 3 0% 6% 67% 27% 82% 

1,2,3,4 
and 5 4 0% 0% 2% 98% 78% 

11 and 
12 5 0% 0% 0% 100% None 

MRGC 
18 

16,17,1
8 1 100% 0% 0% 0% 52% 

12 and 
13 2 16% 64% 15% 5% 90% 

8,9,10 
and 11 3 0% 6% 67% 27% 82% 

1,2,3,4,
5,6,7 4 0% 0% 2% 98% 78% 

14 and 
15 5 0% 0% 0% 100% None 

It is important to explain that due to the sensitivity of 
the resistivity tool to the formation fluid, two or more EF 
may correspond to one geologic facies, as changes in the 
formation fluid salinity cause changes in resistivity 
measurements. However, even considering that there are 
no changes in the formation fluids, a diagenetic event, such 
as compaction or cementation, could decrease the rock 
porosity and, consequently, increase your resistivity. 

For each resulting EF, the recognition rates and 
coverage in the core lithology were evaluated. The former 
one shows the distribution of all samples classified in the 
EF unit by lithology at the same intervals and the latter one 
shows the percentage of lithology described in the well that 
was recognized by the EF unit. 

The evaluation aims to find the models that have the 
highest values in both indices, but in a balanced way. Since 
an EF with a high recognition rate that covers little of the 
target lithology is as bad as an EF that covers all examples 
of the target lithology throughout the well, but without 
distinguishing it from the others. 

From the analysis of all MRGC models (Table 1) it 
is clear that they all have excellent recognition rates for 
sandstones (100%) but with little coverage in core lithology 
(CTL), from 42% to 52%. In other words, this means that 
the EF 1, correlated to sandstones, is defined by a very 
small range of radioactivity (GR), delay time (DT) and long 
resistivity (RLN) log values that always correspond to 
sandstones, but that represents only 42% to 52% of all 
sandstones described in the core. 
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SOM models (Table 2) have the best balance between 
recognition rates and core coverage, particularly for 13 
clusters. Therefore, the SOM model with 13 clusters 
(SOM_13) was chosen to compose the final model. Similar 
clusters were merged (Fig. 5) and the final model was 
propagated in the well (Fig. 6). Additionally, an overview of 
the geophysical signature of each EF are shown with the 
help of a Box and Whisker Plot (Fig. 7). 

 
Table 2 - Accuracy of SOM models. EF=Electrofacies; SS=Sandstone; 
ST=Siltistone; HT=Heterolithics; CL=Claystone and CTL= % of coverage 
on target lithology on core. 

Model Cluster names  
EF 

Recognition rates CTL SS ST HT CL 

SOM 
7 

7 1 46% 0% 0% 54% 49% 
5 and 6 2 16% 63% 15% 6% 94% 
3 and 4 3 0% 4% 64% 32% 70% 
1 and 2 4 0% 0% 10% 90% 65% 

 5 Not clustered 

SOM 
9 

9 1 45% 0% 0% 55% 45% 
6,7 and 8 2 17% 60% 17% 6% 95% 
4 and 5 3 0% 4% 68% 28% 63% 

1,2 and 3 4 0% 0% 12% 88% 70% 
 5 Not clustered 

SOM 
11 

2 1 97% 0% 0% 3% 49% 
3,4 and 5 2 16% 63% 15% 6% 95% 
6 and 7 3 0% 5% 72% 23% 58% 

8,9,10 and 11 4 0% 0% 16% 84% 85% 
1 5 0% 0% 2% 98% none 

SOM 
13 

2 and 3 1 77% 21% 1% 2% 72% 
4,5 and 6 2 10% 66% 16% 7% 87% 
7,8 and 9 3 0% 3% 69% 28% 72% 

10,11,12 and 
13 4 0% 0% 9% 91% 79% 

1 5 0% 0% 0% 100% none 

SOM 
18 

2,3 and 4 1 80% 15% 0% 4% 71% 
5,6,7 and 8 2 11% 65% 17% 7% 84% 

9,10,11,12,13 3 0% 6% 65% 29% 74% 
14,15,16,17,18 4 0% 0% 8% 92% 77% 

1 5 0% 0% 0% 100% none 

Figure 6 - Electrofacies model propagated to well 2-TB-1-PR. Note the 
similarity between the EF model and the Core Lithology. 
(SS=Sandstone, ST=Siltstone, HT=Heterolithics, CL=Claystone). 
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CONCLUSIONS 

In this study, five models from Multi-Resolution Graph-based 
clustering analysis and five models from Self-organizing maps 
analysis were constructed. Gamma ray (GR), sonic (DT) and 
long resistivity (RLN) logs were the input data and core 
simplified lithology are associated data used to estimate the 
accuracy and validate the model. 

The method used in this study was applied to fill the 
current lack of an electrofacies model for the Ponta Grossa 
Formation. This model proved to have good accuracy and can 
be used for lithological prediction in adjacent wells at least for 
data in the same range of study. 

The main conclusions and usefulness of the results 
obtained in this study as: 
1. Integrating conventional log information with cluster 

analysis improves facies classification by grouping common 
signatures that refer to the same lithology. This helps to 
standardize the lithological profile of different wells in order 
to correlate these lithofacies in geological sections. 

2. The model allows refinement of lithological classification by 
providing additional details on petrophysical characteristics 
that are not recognizable in the macro descriptions by 
geologists, such as the high resistivity claystone range 
detected in this study. 

3. Considering a succession of sandstone, siltstone and 
claystone, the lithofacies based on conventional log data 
gives satisfactory results when compared to core observed 
lithofacies.  

4. Identification of unexpected values in data analysis before 
performing clustering prevents from contaminating the 
signature of the main electrofacies, reducing uncertainty in 
the prediction of lithologies. These values should be 
excluded from training data or clustered into electrofacies 
units that could be related to diagenetic or formation fluid 
changes. These hypotheses should be investigated with 
additional laboratory analysis. 

Figure 7 - Overview of the geophysical signature of Electrofacies. Two 
main points to note are: (i) the increasing tendency of radioactivity and 
transit time and the decreasing tendency of resistivity as the rocks 
become more shaliness (from EF 1 to EF 5); and (ii) the distinction of EF 
5 from the others mainly due to high resistivity. 
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5. Clustering methods provide a lot of information in a short 
time and at a low cost, just by using conventional log 
information that is widely acquired in oil and gas 
exploration projects. A simplified model based only on 
the largest petrophysical contrasts can be used as a 
guide for visualizing the subsurface stratigraphic 
framework. However, it can also be refined and 
calibrated with core data, increasing geological meaning 
to each electrofacies. 
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