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ABSTRACT. Pore pressure modeling has been fundamental on several applications and stages of hydrocarbon exploration, evaluation, 
development and production. Pore pressure estimation is generally obtained from seismic velocity data and pore pressure analysis on 
wells. There are many methods available for pore pressure analysis, although more recently the application of the geostatistical approach 
is increasing in popularity and proving to be an important method for pore pressure gradient prediction in challenging areas where pore 
pressure prediction is difficult using deterministic methods. In this case study on a new frontier area in the Brazilian Equatorial Margin, 
multivariate geostatistics allowed integration of data at different scales and spatial variations of seismic and well variables produce pore 
pressure gradient models. The final result is a geopressure model where one can easily extract well-conditioned pore pressure information 
at any location. 
. 
Keywords: geostatistical approach, different scales, pore pressure gradient models. 

 
RESUMO. A modelagem de pressão de poros tem sido fundamental em diversas aplicações e etapas da exploração, avaliação, 
desenvolvimento e produção de hidrocarbonetos. Em geral, a estimativa de pressão de poros é obtida a partir da integração de dados de 
velocidade sísmica e análise de pressão de poros em poços. Existem diversos métodos para análise de pressão de poros, entretanto, 
atualmente, a aplicação da abordagem geoestatística está crescendo em popularidade e provando ser um importante método para 
predição de gradiente de pressão de poros em áreas de fronteiras onde a previsão de pressão de poros usando métodos determinísticos 
não é bem sucedida. Neste estudo de caso, localizado em uma área de nova fronteira na Margem Equatorial Brasileira, a geoestatística 
multivariada permitiu a integração das variáveis sísmicas e de poço em diferentes escalas e variações espaciais e a obtenção de modelos 
de gradiente de pressão de poros. Os resultados geraram um modelo de geopressão no qual a extração de valores de pressão de poros 
bem condicionados é simples em qualquer parte da área. 
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INTRODUCTION 

Anomalous pore pressure zones can cause serious issues 
during the drilling of exploration wells and development fields 
and are especially challenging in a new frontier area. 
Predicting pore pressure is a key tool to assist drilling 
engineers regarding operational safety and dimensioning of 
drilling and completion engineering projects, and 
consequently, improving well performance, reducing 
operational cost, and rig time (Huffman et al., 2011) as well as 
reducing safety operational risks. Drilling events such as kicks, 
blowouts, well collapse, stuck pipes and elevated torques are 
the most common problems resulting from pore pressure 
anomalies due to misestimating the pore pressure and poorly 
predicting its behavior. In reservoir studies, the knowledge of 
the pore pressure distribution allows the optimization of oil 
fields with a better spatial arrangement of production and 
injector wells, allowing greater production efficiency and oil and 
gas recovery. Geopressure modeling has a paramount role 
during the preliminary phase of exploratory studies to evaluate 
risk factors, including formation fluid migration and seal 
effectiveness (Dutta, 2002).  

In this paper, a case study regarding pore pressure 
modeling being applied to the Brazilian Equatorial Margin is 
presented. The area is considered a challenging play for pore 
pressure prediction using commonly used methods due to the 
presence of a thick carbonate platform above the interval of 
interest. Usually, these pore pressure prediction methods use 
mainly data directly derived from evaluation logging tools, such 
as sonic, resistivity, porosity and density logs. These logs show 
the relationship between compaction, porosity, density, and 
the electrical and acoustic properties of sediments (Chopra & 
Huffman, 2006). Taking into account the thick carbonate 
package overlaid and knowing that carbonates suppress the 
sensitivity of the shale velocity to pore pressure (Huffman et 
al., 2011), a 3D pore pressure volume using multivariate 
geostatistics was adopted as a solution to predict the pore 
pressure in this area. Multivariate geostatistics techniques are 
promising tools to achieve high-quality pore pressure 
distribution and reservoir characterization maps integrating 

well and seismic data. Therefore, the method can predict more 
accurate pressure values and ensure significant risks and 
costs. 

In this study, we used hard data from five exploratory 
wells, identified as well A, B, C, D and E, which were used as 
a predictive variable in geostatistical interpolation, and velocity 
data derived from seventeen PSDM (Pre-Stack Depth 
Migration) seismic lines as the secondary geostatistical 
modelling variable. The hard data incorporates parameters as 
well as geological and geophysical logging data. 

THEORY 

Pressure Prediction 

Sedimentary basins are subject to anomalous pore pressure 
originated by subcompaction mechanisms, fluid expansion, 
hydrocarbon generation and tectonism (Osborne and 
Swarbrick, 1997). The normal pore pressure depends on the 
environment and is equal to the pressure exerted by the 
hydrostatic column of the formation fluid. The determination 
of the drilling fluid density is a key factor responsible for the 
pressure exerted from borehole space against the formation 
wall as a means for controlling and holding in place the 
formation fluids and ensuring the best well mechanical 
properties. 

The main steps and concepts involved in the estimation 
of formation pressure in sedimentary basins are briefly 
described below: 

(1) Calculating the Hydrostatic Pressure 

The pressure produced by a column of fluid as a 
function of density and vertical height. It is expressed as:  

                                   Ph = ρ.g.h                                (1) 

where: hP , hydrostatic pressure; ρ , fluid density; g, 

gravitational constant; and h, height of the fluid column. 
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(2) Calculating Overburden 

Overburden is given by the sum of all pressures exerted 
by all the overlapping layers, which is total vertical stress, 
assumed to be the given combined weight of the rock matrix 
and the fluids in the pore space overlying the interval of 
interest (Sayers et al., 2006). At a given depth it is calculated 
by the following integral: 

                           S  = ∫
z

z0
 ρb.g.dz                           (2) 

Where:  

S, overburden; bρ , formation density; g, gravitational 

constant; z, depth of investigation; and z0, initial depth. 

The overburden gradient is determined by the relation 
between overburden and depth as in the following 
expression:  

                                GOV = S /Z                              (3) 

Where: Gov, overburden gradient; S, overburden tension; and 

Z, depth in meters. 

(3) Calculating Pore Pressure 

The pore pressure gradient is defined by the relation 
between pore pressure and depth, given by the following 
expression: 

                      GP = PP  / (0.1704.Z)                       (4) 

Where: GP, pore pressure gradient in lb.gal-1; Pp, pore 
pressure in psi; and Z, vertical depth in meters. 

There are many techniques used for pore pressure 
predictions or estimates. Commonly used methods to 
estimate the pore pressures (e.g. Eaton’s method, Bowers’ 
method and Miller’s method) are based on shale properties 
and consider the compaction disequilibrium as the primary 
mechanism of overpressure generation (Zhang, 2011).  

In the area of this case study, as previously mentioned, 
the geological constraints and the relative scantiness of data 
(very common when one deals with an exploratory frontier 

area) do not allow for the proper evaluation and modeling of 
pore pressure by strictly deterministic or conventional 
methods. Of course these methods have their applicability as 
indicators in the modeling process and assist in the 
development of models based on multivariate geostatistics 
techniques, such as the LVM (Locally Varying Mean) kriging 
as here applied to the prediction of pore pressure. 

METHODOLOGY 

As previously mentioned, this study adopts a pore pressure 
modeling strategy based on multivariate geostatistics where 
the primary variable is composed of hard data obtained 
directly in the well and the secondary variable is given by the 
seismic velocity data that support the three-dimensional 
space population of the area of interest. The integration of 
these data results in a more coherent and robust pore 
pressure models.  

The LVM technique can be applied when the secondary 
variable (e.g. seismic velocity) is comprehensive in volume or 
area and is well sampled in the entire region of interest. LVM 
is a variation of the simple kriging technique (which “requires 
that the mean of the variable over the field being estimated 
be constant and know” as in Journel, 1989), where the mean 
of the variable is known and only locally valid, as it varies from 
place to place over the area of study.  

In this study the pressure model was built according to 
the following steps: 

● Well logging data as a primary variable – The first 
step was the data collecting and determination of the 1D pore 
pressure gradient for the five wells. The recorded pore 
pressure data from wells was used as predicted variables. 
This dataset is a compilation of prior direct (hard data) 
information from: formation tests, pore pressure estimations 
from drilling parameters and leak-off tests (LOT); 

●  Seismic data as a second variable - The second step 
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comprises the interpretation of seismic data and the definition 
of a range of interest required to evaluate the abnormal 
pressure zone, and is executed by the interpreter. For better 
results and usability, a 3D pore pressure model is necessary, 
so the third step is generating a three-dimensional velocity 
cube from 2D seismic lines. This velocity cube was estimated 
with the geostatistical method of simple kriging, which 
involves a stationary function with known mean as previously 
stated. The estimator is a linear function of the data with 
weights calculated according to the specifications of 
unbiasedness and minimum variance. In selecting the 
weights of the linear estimator, kriging accounts for the 
relative distance of measurements from each other and from 
the location where an estimate is sought. The area of 
influence of each measurement is essentially considered 
(Kitanidis, 1999); 

● The fourth and last step comprises the estimation of 
a geostatistical 3D pore pressure model from the 3D velocity 
cube obtained before. The generation of multivariate 
geostatistical models consists of four main steps: 

1 - Data preparation is a step which should be planned and 
executed by the interpreter because is mandatory that the 
used seismic attribute has a consistent correlation with the 
subject geological property in the modeled interval;  

2 - Exploratory Analysis: The primary (pore pressure 
measured in wells) and secondary data (seismic velocity) 
were analyzed by frequency histograms and cross-plots to 
evaluate the correlation between them and the data 
distribution; 

3 - Study of the spatial continuity through structural functions 
in several directions; 

4 - Pore pressure estimation: applying the kriging algorithms 
to generate an image with minimum variance.  

In this study the LVM kriging was applied because the 
variables do have a local variable mean as distinctive 

behavior. As pointed out before, this is an important tool for 
quantifying the uncertainties of a given oil reservoir as a result 
of a numerical model that allows representing the reservoir 
attribute as a continuous function in this particular portion of 
the 3D space. The local estimate in LVM is attained by 
mapping the residuals calculated by solving the linear kriging 
system in each grid location and adding the mean given by 
the secondary variable. 

For example, considering primary information sampled 

in n number of uα locals:    

                       { }α α =( ), 1,...,z u n                          (5) 

In LVM, secondary information is present in each u 
local where it is necessary to have an estimate. Then, the 
stationary average of the simple kriging system in u position 
can be replaced by non-stationary local averages given by 
the secondary variable m*: 

( )
* * *

1

( ) ( ) ( ) ( )
n u

lvmZ u m u Z u m uα α α
α

λ
=

− = ⋅ −  ∑       (6) 

The estimated value of the Z variable in u position 
follows the stages below: 

(1) the average of the primary variable is determined as a 
function of the secondary variable y:  

                 * ( ) ( ( ))m u f y u=                             (7) 

(2) the kriging weights are determined by solving the system: 

                       
( )

1

( ) ( ),

1,..., ( )

n u

R RC u u C u u

n u

β α β α
β

λ

α
=

⋅ − = −

=

∑                  (8) 

where, CR(h) is the covariance function of the random 

residual variable;  

(1) the experimental residues are determined: 

                     *( ) ( ) ( )r u z u m uα α α= −                   (9) 

(2) the variogram of the residues is calculated; 

(3) the variogram of the residues is modeled; 
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(4) the residues are estimated using kriging; 

(5) the result is obtained by adding the average of the 
secondary variable to the residue estimates.  

 
RESULTS AND ANALYSIS 
 
1D pore pressure models were defined from drilling 
parameters, drilling mud weight, leak-off test (LOT) and 
formation tests (RFT), provided by ANP, the Brazilian 
Petroleum Agency. The results of the 1D pore pressure 
gradient, in each well, are shown graphically in Figures 1, 2, 
3, 4 and 5.  

All wells were drilled in the shallow water portion of the 
basin where a thick carbonate platform overlays the interest 
interval here studied. Pore pressure anomalies have been 
identified in three wells (A, C and D) out of the five analyzed 
wells. Regions with possible abnormal pressure are 
highlighted in pale green shades, called APZ (Abnormal 
Pressure Zones). Those are the prime interval of interest for 
this study. 

The figures are separated into two panels. On the left, the 
variables most closely linked to the petrophysical properties of 
the formation rocks: from left to right, the first track is 
interpreted lithology, the second track records measured 
compressional sonic velocity (Vp), the third track is measured 
density and fourth is calculated acoustic impedance. On the 
right panel, a depth versus pressure plot, several important 
curves are depicted: the pore pressure gradient recorded on 
the well drilling report, the pore pressure gradient equivalent to 
the mud weight, the overburden gradient and the normal pore 
pressure gradient, as well as formation test data and leak-off 
tests when available. 

 
Figure 1 - Original curves and pressure lines of well A. 

 
 

 
Figure 2 - Original curves and pressure lines of well B. 

 
 

 
Figure 3 - Original curves and pressure lines of well C. 
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Figure 4 - Original curves and pressure lines of well D. 

 
 

 
Figure 5 - Original curves and pressure lines of well E. 

 
 

As depicted in Figures 1 and 3, in the wells A and C, 
respectively, the equivalent mud weight reaches a 
maximum of 17 lb.gal-1 (ppg) in well A and 19 lb.gal-1 (ppg) 
in well C. Similarly, the well D in Figure 4 shows the same 
behavior and makes with well A and C a distinct group with 
registered APZ. The two remaining wells, B and E (Figs. 2 
and 5, respectively) do not develop a conspicuous APZ 
(well B) or does not have any indication of abnormal 
pressures (well E).  

 

 

 

Pressure analysis from 2D seismic data 
Due to the sparse well distribution, integrating multiple variables 
to control the modeling process becomes essentially critical 
(Han et al., 2018) because a simple interpolation solution cannot 
provide a usable model at the needed scale. Thus, to increase 
the accuracy of the stochastic model on places without well 
information, the interval velocity data extracted from the seismic 
data was integrated as an additional conditioning data (a second 
variable). Stochastic methods, such as kriging allow us to 
incorporate a broad range of information from various sources. 
These methods are important not only for its range of plausible 
outcomes but for its ability to integrate additional “soft” data (e.g., 
seismic). It improves the reliability of the realizations not close to 
the control points and only secondary parameters are available 
(Chambers et al., 2000). 

The velocity data analysis in 2D sections demonstrate a 
smooth behavior and is partially follows the well velocity records. 
The reason for the difference between velocity data may be 
related to the types of frequency used in well data acquisition 
(high frequencies) and ground seismic (low frequencies). 
However, such differences do not affect the fact that variations 
in seismic velocity are intrinsically related to variations in pore 
pressure and that their spatial distribution certainly contributes to 
improving the model strictly based on the sparse hard data 
available in the wells.  

Currently, 3D seismic data are used to increase the model 
spatial distribution and resolution, being useful to improve 
reservoir characterization (Xu et al., 1992). Due to this, an 
interval velocity cube from 2D seismic data was created by 
simple kriging interpolation (Fig. 6), as previously described. 
This densely sampled cube allows us to populate the pore 
pressure 3D model and to generate useful information on an 
appropriate working scale. 
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Figure 6 - Velocity Cube generated from 2D seismic data with 
well positions. 

 

Histogram analysis of velocity data from seismic cubes 
and velocity data from wells shows a similarity in distribution 
type, defined as close to a Gaussian distribution, with global 
averages of 3676,7 m.s-1 and 4401,64 m.s-1, respectively, as 
can be seen in Figure 7. 

 

 
Figure 7 - Histogram of interval velocity from the estimated 

seismic cube and velocities from wells. Sonic velocity data were 
not edited and some spurious values (above ~7,000 m/s) should 

be disregarded. 
 

Multivariate Geostatistical approach 

A major advantage of using kriging instead of other 
interpolation algorithms is the capacity to use more than one 
variable simultaneously to predict the value at an unsampled 
location (Yarus & Chambers, 2006). This procedure is called 

multivariate geostatistics and allows data integration by 
merging different scales of acquisition to produce high-quality 
pore pressure models based on seismic and well data.  

The kriging procedure requires that the spatial 
correlation and variability function of the variable are known 
for different distances and azimuths. This condition is met 
using an experimental variogram directly derived from the 
raw data and numerically fitted to a model that describes the 
spatial variance of the variable in any location of the studied 
field. The experimental variogram of the 3D seismic velocity 
cube for azimuthal directions 0° and 90° (Fig. 8) fit to a 
Gaussian variogram model in both NS and EW directions 
with a range of 1,000 m and 700 m, a nugget effect of 10,000 
and 100 and sill with 150,000 and 80,000, respectively. The 
velocity exhibits a distinct zone anisotropic behavior with 
different sills indicating greater continuity at 90° nearly 
parallel to the EW fault trend in the area. 

 
Figure 8 - Horizontal semivariograms at the main and secondary 

directions. The dash-dotted lines correspond to the fitted 
variogram model and the continuous lines represent the 

experimental variogram (obtained from data). 
 

The modelled velocity variogram was used to generate 
the pore pressure cube by LVM interpolation as depicted in 
Figure 9.  

The figures above 10 lb.gal-1 (ppg) indicate the high-
pressure anomalies as portrayed by the warm colors on the 
platform region are in close match to the recorded data in the 

Figure 6 - Velocity Cube generated from 2D seismic data 
with well positions. 

Figure 7 - Histogram of interval velocity from the estimated 
seismic cube and velocities from wells. Sonic velocity data 
were not edited and some spurious values (above ~7,000 
m/s) should be disregarded. 

Figure 8 - Horizontal semivariograms at the main and 
secondary directions. The dash-dotted lines correspond to the 
fitted variogram model and the continuous lines represent the 
experimental variogram (obtained from data). 
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wells used in this study, where there are known intervals with 
pore pressure anomalies. This modeled interval is enclosed 
in a thick Upper Cretaceous clay section and the complex 
tectonic environment (distensive/compressive system) of this 
equatorial margin exploration area, as observed in the SW-
NE section in the Figure 9, can be the triggering mechanism 
for these pore pressure anomalies.  
 

 

Figure 9 - Pore pressure estimated using LVM techniques. 

 
As a validation tool, the distribution analysis in Figure 

10 shows the correspondence between hard data from wells 
(in red), and modeled pore pressure based on the upscaled 
seismic (in green) and from LVM interpolation (in blue).  

As shown in Table 1, there is a relatively close match 
between hard data and the calculated pore pressure 
distribution thus endorsing the application of the technique 
used in this study. 

 
Figure 10 - Frequency histogram of pore pressure distribution 
from the 3D model (blue); seismic (green) and wells (red). 

 
Table 1 – Pore pressure mean and standard deviation (in psi) 
in the wells, upscaled seismic model and LVM 3D model. 

  Well Seismic LVM 

Mean 6,283.65 6,643.07 6,670.86 

SD 3,047.03 2,695.90 3,245.62 

 

 
CONCLUSIONS 
The use of multivariate geostatistics techniques to model 
pore pressure in exploration settings is a promising practice 
because it can deliver fast, robust and easily implemented 
solutions to derive high-quality maps and volumes with good 
accuracy far better than others based only on data acquired 
in wells. This is especially true in exploration frontier 
scenarios where hard data from wells are scarce.  

The exploratory data analysis indicates a good 
correlation between the predictive (hard data) and secondary 
(seismic velocity) variables and gives grounds for the LVM 
estimation. The resulting pressure cube covers the entire 
interest interval and shows a distinctive high-pressure cluster 
in the shallow platform region. The high-pressure sections 
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are associated with clay intervals as shown in the wells used 
for this study. 

The clear anisotropic velocity behavior and its 
correlation with the pore pressure distribution along the main 
EW fault direction corroborate that this anomalous pressure 
field is related to the complex tectonic setting in this portion 
of the continental margin. 

The results here shown incorporate important 
information and a simple workflow that can be easily 
incorporated to minimize operational risks and enhance well 
location and drilling projects in these hazardous but 
promising areas. 
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