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USING THE WRF MODEL TO REFINE NCEP CFSV2 REANALYSIS 

ATMOSPHERIC PROFILE: A SOUTHERN BRAZIL TEST CASE 
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Nájila Souza da Rocha¹ and Rita de Cássia Marques Alves¹ 

ABSTRACT. The vertical distribution of atmospheric parameters is pivotal to understand atmospheric dynamic 
processes. This study analyzes the use of the Weather Research and Forecasting (WRF) model to generate 
atmospheric profiles as an alternative for a local radiosonde. We performed simulations in the WRF model for two 
dates with distinct weather conditions (01/09/2018 – cloudy and 03/14/2018 – clear-sky). The simulated data were 
compared with radiosondes launched in the study area, both (i) along the entire profile and (ii) with focus on the 
Planetary Boundary Layer (PBL) – for the variables water vapor mixing ratio (q), potential temperature (θ) and 
wind speed (Speed). The results showed a high correlation between the simulated and observed profiles, with 
most R values higher than 0.9. Bias and RMSE, respectively, ranged between -1.29 – 0.66 g/kg and 0.48 – 2.01 
g/kg for q; -0.52 – 0.25 K and 0.44 – 3.00 K for θ; and -0.20 – 1.31 m/s and 1.61 – 2.77 m/s for Speed. The 
difference between the profiles from different WRF nested grids was minimal, suggesting that a resolution of 
approximately 12 km is enough to a good trade-off between detailing and computational cost. WRF model seems 
suitable to simulate fine atmospheric profiles. 
 
Keywords: vertical profiles; numerical weather prediction; meteorology; remote sensing; planetary boundary layer. 

RESUMO. A distribuição vertical dos parâmetros atmosféricos é fundamental para entender os processos 
dinâmicos da atmosfera. Este estudo analisa o uso do modelo Weather Research and Forecasting (WRF) na 
geração de perfis atmosféricos, como uma alternativa à radiossondagens locais. Foram realizadas simulações 
com o WRF para duas datas em condições de tempo distintas (09/01/2018 – alta nebulosidade e 14/03/2018 – 
céu claro). Os dados simulados foram comparados com radiossondagens lançadas na área de estudo, (i) ao 
longo de todo o perfil e (ii) com foco na camada limite planetária (PBL) – para as variáveis razão de mistura do 
vapor de água (q), temperatura potencial (θ) e velocidade do vento (Speed). Os resultados mostraram uma alta 
correlação entre os perfis simulados e observados, com a maioria dos valores de R superiores a 0,9. Viés e 
RMSE, respectivamente, variaram entre -1,29 – 0,66 g/kg e 0,48 – 2,01 g/kg para q; -0,52 – 0,25 K e 0,44 – 3,00 
K para θ; e -0,20 – 1,31 m/s e 1,61 – 2,77 m/s para Speed. Mínimas diferenças entre os perfis das diferentes 
grades aninhadas sugerem que uma resolução horizontal de aproximadamente 12 km é um bom balanço entre 
detalhamento e custo computacional. O WRF mostrou potencial na simulação de perfis atmosféricos refinados. 

Palavras-chave: perfis verticais; previsão numérica do tempo; meteorologia; sensoriamento remoto; camada 
limite planetária.  
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INTRODUCTION 

Modeling climate and weather on regional and 
global scales requires accurate monitoring of 
atmospheric parameters such as air temperature, 
wind speed, and water vapor content in the air 
(Sobrino et al., 2015). Water vapor plays a critical 
role in governing the terrestrial atmospheric 
processes (Sherwood et al., 2010; Jiang et al., 
2019; Chang et al., 2020). It can be considered the 
most important greenhouse gas, influencing the 
planetary radiative budget and therefore the 
climate balance (Held & Soden, 2000; Filioglou et 
al., 2017; Chang et al., 2020; De Rosa et al., 2020). 
Atmospheric temperature also plays an important 
role in Earth’s climate and in deciding the 
thermodynamic state of the atmosphere (Thorne et 
al., 2005; De Rosa et al., 2020; Rao et al., 2020). 
Thus, the analysis of variations and trends in such 
atmospheric parameters has received growing 
interest in recent years due to global climate 
changes (IPCC, 2014; Sobrino et al., 2015; Jiang 
et al., 2019; De Rosa et al., 2020). 

Notably, the continuous and accurate 
monitoring of the vertical structure of atmospheric 
parameters on global and regional scales is a key 
issue for assessing climate change (Sobrino et al., 
2015; Chang et al., 2020; Rao et al., 2020). 
Besides all of the above weather and climate 
related issues, the accurate description of the 
vertical water vapor and temperature variability is 
also required to Numerical Weather Prediction 
(NWP) and to improve the mesoscale models for 
any meteorological research (Turner et al., 2000; 
Chang et al., 2020; Zhao et al., 2020). 

Historically, monitoring the atmosphere has 
been characterized by sparse in situ measure-
ments (Sobrino et al., 2015). The characterization 
of the vertical structure of the atmosphere, based 

on the launching of radiosondes, is no different. 
Radiosondes are meteorological balloons that can 
measure atmospheric physical parameters such as 
profiles of air temperature, pressure, and humidity 
(Rahimzadegan & Mobasheri, 2011; Hassanli & 
Rahimzadegan, 2019). A radiosonde profile can 
characterize atmospheric situations at specific 
latitudes and longitudes with a high precision (Yang 
et al., 2020). Nevertheless, it is only available at 
specific sites (e.g., airports) and times, usually 
twice a day (00:00 and 12:00 UTC) (Wang et al., 
2002; Hassanli & Rahimzadegan, 2019). 
Moreover, radiosondes are quite expensive and 
have poor coverage over oceans and in the 
southern hemisphere (Li et al., 2003; Xu et al., 
2015; Chang et al., 2020; De Rosa et al., 2020). 
Particularly, radiosonde observational networks in 
South America are geographically sparse and 
mostly located in or near urban settlements. 
Hence, it recorded data set is used mainly as 
“ground truth” in atmospheric research.  

Reanalysis data is a growingly popular 
alternative to overcome most of these limitations 
(Kalnay et al., 1996; NCEP et al., 2000; Kanamitsu 
et al., 2002; Dee et al., 2011; Rienecker et al., 
2011; Saha et al., 2010, 2014; Kobayashi et al., 
2015; Hersbach et al., 2020). Using numerical 
atmospheric model outputs and data assimilation 
techniques and observations from multiple data 
sources (e.g., radiosondes, satellite data, aircraft 
and ground observations) for multiple variables 
(e.g., temperature, humidity, solar radiation, 
geopotential height, etc.) are combined to repre-
sent the state of atmosphere at different temporal 
and spatial scales (Mooney et al., 2011; Alghamdi, 
2020; Yang et al., 2020). The resulting data set is 
gridded and referred to as retrospective analysis – 
reanalysis data. These data have global coverage 
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and an extended homogeneous time series with no 
temporal and spatial gaps (Alghamdi, 2020). They 
are provided at low spatial resolution of several 
degrees every, generally, one, three or six hours 
(Wang & Zeng, 2012; Yang et al., 2020). 

The increase in spatial resolution of 
atmospheric profile data makes them useful not 
only for global studies, but also for studies at 
regional scales. An important application of these 
vertical profiles is related to the atmospheric 
correction of thermal infrared (TIR) remote sensing 
data, aiming at the retrieve of land surface 
parameters, such as temperature (LST) and 
emissivity (LSE) (Barsi et al., 2003; Jiménez-
Muñoz et al., 2010; Coll et al., 2012; Pérez-Planells 
et al., 2015; Rosas et al., 2017; Meng & Cheng, 
2018; Duan et al., 2019; Yang et al., 2020). These 
are key parameters closely connected to the 
Earth’s surface energy balance (Tardy et al., 2016). 
They are of great significance to the studies of 
climate, hydrology, geology, ecology, agronomy, 
and natural disasters (Vicente & Souza Filho, 2010; 
Anderson et al., 2012; Huo et al., 2015; Gallego-
Elvira et al., 2016; Sobrino et al., 2016; Cheng & 
Kustas, 2019; Nill et al., 2019; Roy et al., 2020). 

Although meteorological reanalysis data sets 
are widely used in scientific studies, it accuracy is 
generally lower for regions with inadequate spatial 
coverage of permanent observatories, such as the 
oceans and many countries in the Southern 
Hemisphere (Tonooka, 2001; Chen et al., 2014; 
Chen & Liu, 2016; Alghamdi, 2020). Because they 
are spaced at grid points, they may also have the 
accuracy of meteorological phenomena on a sub-
grid scale affected. The same may occur for 
phenomena of variable time scale, since the time 
intervals are typically 6 h (Tonooka, 2001). 
Previous studies have showed that reanalysis data 
are not consistently reliable or equally effective due 

to differences in assimilation schemes and the 
observational data used (Chen et al., 2014; Bao & 
Zhang, 2019; Alghamdi, 2020). 

Reanalysis data efficiency is local, time and 
weather dependent, and small differences between 
reanalysis and observations may lead to 
substantially different results (Mooney et al., 2011; 
Alghamdi, 2020). Studies evaluating the 
performance of reanalysis data do not have a wide 
application due to diverse regional climate 
conditions (Bao & Zhang, 2013, 2019; Alghamdi, 
2020). Dong et al. (2017) and Bao & Zhang (2019) 
intercompared and evaluated reanalysis products 
for horizontal wind, temperature, and water vapor 
mixing ratio (and relative humidity) over the Tibetan 
Plateau. Graham et al. (2019) evaluated atmo-
spheric reanalysis profiles over the Arctic, and Jones 
et al. (2016) in Antarctica. Chen et al. (2014) 
assessed four reanalysis products representing the 
warm-season diurnal cycle over East Asia and 
reported that the products performed differently at 
the sub-regional scale than at a large scale. 
Differences in local atmospheric processes and 
topography are among the most significant factors 
affecting the efficiency of reanalysis (Schafer et al., 
2003; Alghamdi, 2020). 

New weather prediction models enjoy better 
computing performance and parameterization of 
physical processes to improve the reanalysis 
forecast accuracy (Evans et al., 2012; Hassanli & 
Rahimzadegan, 2019; Prasad et al., 2020). As 
mentioned above, coarse resolution of global-scale 
data may not be suitable for local use. Thus, 
mesoscale atmospheric models are used in local 
areas with global models data as the boundary and 
initial conditions (Wee et al., 2012; Hassanli & 
Rahimzadegan, 2019). The Weather Research and 
Forecasting (WRF) model (Skamarock et al., 2008) 
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is among the most frequently used mesoscale 
models (Knievel et al., 2007; Powers et al., 2017; 
Hassanli & Rahimzadegan, 2019). As its name indi-
cates, the WRF is designed for both research and 
NWP. Community-based, free and open source, the 
WRF model provides specialized resources for a 
variety of applications in terrestrial systems 
(Skamarock et al., 2008; Powers et al., 2017). 

Prasad et al. (2020) simulated multiple cases 
(including vapor and temperature profiles) over 
northeastern Australia using the WRF model, 
initialized by and nudged to reanalysis data and 
tested with various schemes. Resulting in overall 
skillfully WRF simulations. Lin et al. (2018) analyzed 
the impact of WRF model grid resolution on water 
vapor simulations. Whereas Ruiz et al. (2010) and 
Santos & Nascimento (2016) assessed WRF 
parameterization schemes, against vertical profiles 
and surface variables, over South America. 

In this context, this paper aims to analyze the 
feasibility of using the mesoscale WRF model 
(Skamarock et al., 2008), to generate vertical atmos-
pheric profiles, increasing the spatial and temporal 
resolutions of the global reanalysis, thus being an 
alternative to the need for a radiosonde. We 
performed atmospheric simulations using, as initial 
and boundary conditions, the National Centers for 
Environmental Prediction (NCEP) Climate Forecast 
System Version 2 (CFSv2) (Saha et al., 2014) rea-
nalysis data. The resulting atmospheric profiles were 
evaluated using in situ radiosonde observations. 

MATERIALS AND METHODS 

Study Area 

The study was conducted in an area comprising a 
transgressive dune field, located in the North Coast 

of Rio Grande do Sul State, Brazil (Tomazelli et al., 
2008), between the cities of Tramandaí and Cidreira 
(Fig. 1). The dune field covers an area of 
approximately 30 km² and is composed of 99.53% 
quartz (Käfer et al., 2019, 2020) – mineral that 
presents characteristic spectral features 
(Reststrahlen band) in the TIR region (Salisbury & 
D’Aria, 1992). We are particularly interested on 
future applications of refined atmospheric profiles for 
atmospheric correction of TIR remote sensing data 
purposes. Thus, this dune field was selected as 
study area, once it can be assumed as a pseudo-
invariant site and homogeneous in terms of 
emissivity (Hulley et al., 2009; Hulley & Hook, 2009). 
Therefore, this area can be used for validations in 
approaches that are based on the TIR remote 
sensing (Hulley et al., 2009; Li et al., 2013) in future 
and associated studies. 

WRF Model Configuration 

The Weather Research and Forecasting (WRF) 
model is a numerical weather prediction and 
atmospheric simulation system developed for 
both research and operational applications 
(Skamarock et al., 2008). In this study, the WRF 
version 3.9.1.1 with the Advanced Research 
WRF (ARW) dynamic solver was used. 
Reanalysis data from the NCEP Climate 
Forecast System Version 2 (CFSv2) (Saha et 
al., 2014) were utilized as initial and boundary 
conditions to initialize the simulations, with the 
6-hourly product (00:00, 06:00, 12:00 and 
18:00 UTC). These data are arranged in grids 
with spatial (horizontal) resolution of 0.5º x 0.5º 
and in 37 vertical (pressure) levels (1000 to 1 
mbar). The reanalysis CFSv2 data is  
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Figure 1 – Location of the study area on the North Coast of Rio Grande do Sul State, Brazil. 

 
 
preprocessed with the WRF Preprocessing 
System (WPS). It ingests, reformats, and 
interpolates the reanalysis data to the selected 
domains and put these inputs on the model’s 
vertical levels (Powers et al., 2017).  

To perform the simulations the model was 
set for two domains, i.e. two nested grids, with 
horizontal resolutions of 12 km (G12) and 3 km 
(G03) – in 1-way nesting mode. This nesting 
mode refers to how the coarse grid and the fine 
grid interact. The fine grid boundary conditions 
are interpolated from the coarse grid forecast. 
In a 1-way mode, this is the only information 
exchange between the domains (Skamarock et 
al., 2008). Figure 2 shows the nested grids used 
in the simulations, in which G12 and G03 are 

indicated by light and dark gray shading, 
respectively. The asterisk indicates the point 
from where the outputs used in the study were 
extracted. This point corresponds to the grid 
point closest to the launch coordinate of the 
radiosondes in the study area (Section 
Radiosonde launch experiment). 

Moreover, with regard to physical parameter-
izations, the schemes used in the study followed 
those adopted in Santos & Nascimento (2016), 
and are summarized in the Table 1.  

The simulations were performed for two 

different dates: January 9, 2018 (Day 1) and 

March 14, 2018 (Day 2), with different weather 

conditions. On the first day, the sky was 
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completely covered, while in the second, there 

was predominance of sun with clear conditions. 

For both dates the simulations were started at 

00:00 UTC and ended at 00:00 UTC on the 

following days. 

 

 

Figure 1 – Model domains utilized in the ARW-WRF 

simulations. G12 is characterized by light gray shading, 

while G03 by dark gray shading. The asterisk indicates 

the point from where the results were extracted. 

 

Thereafter, the outputs of the ARW-WRF 

simulations were extracted from the point in 

Figure 2, containing the distribution of meteor-

ological variables in 33 vertical levels for both 

grids in both days. An output file was generated 

each 1-hour simulation for the G12, and each 30-

minute simulation for the G03 – for both dates. 
 
 

Table 1 – Physical parameterization schemes used in the 

study. 

Physical Parametrization Schemes 

Parameterization Scheme Reference 

Cloud 

Microphysics 
Lin et al. 

Lin et al. 

(1983) 

Planetary 

Boundary  

Layer 

Yonsei 

University 

(YSU) 

Hong et al. 

(2006) 

Cumulus 

Betts–

Miller–

Janjic 

(BMJ) 

Janjić (1994) 

Shortwave 

Radiation 
Dudhia 

Dudhia 

(1989) 

Longwave 

Radiation 
RRTM 

Mlawer et al. 

(1997) 

Land-Surface 

Model 

Unified 

NOAH 

Tewari et al. 

(2004) 

Surface  

Layer 

Similarity 

MM5 

 

Dyer & Hicks 

(1970), 

Paulson 

(1970),  

Webb 

(1970), 

Zhang & 

Anthes 

(1982), 

Beljaars 

(1994) 
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Evaluation of the simulations 

Radiosonde launch experiment 

To evaluate the performance of the atmospheric 
simulations, the data simulated by the WRF model 
were compared with field data from radiosondes 
launched in the study area. These radiosonde 
observations were treated as ground truth data and 
were obtained on Day 1 and Day 2. In this 
experiment, the vertical structure of the atmosphere 
was characterized by Vaisala RS41 radiosondes 
(Jauhiainen et al., 2014). It consists of small sensors 
(temperature, humidity, and pressure) integrated in 
a light structure (Fig. 3a), which are launched and 
lifted into the atmosphere by meteorological helium 
balloons (Fig. 3b). The meteorological variables (i.e., 
temperature, humidity, and pressure) are then 
measured every second, transmitted to the surface 
by radio signals with the aid of a ground station to 
receive the signal (Fig. 3c), and then stored at 
regular intervals of 30 seconds. The other variables 
are calculated from these, and the wind speed and 
direction are estimated from the GPS information. 

For the Day 1, the radiosonde was launched at 
12:15:24 UTC with cloudy conditions, and it reached 
a final altitude of 24.81 km at 13:38:54 UTC. For the 
Day 2, it was launched at 13:38:20 UTC with clear-
sky conditions, and it reached a final altitude of 
24.64 km at 14:59:20 UTC. The launches occurred 
from the point of coordinates 30°04'04.1"S; 
50°09'53.1"W (Fig. 1). Due to the need for 
infrastructure, this point was located in an adjacent 
position, as close as possible to the dune field. 

Evaluation and statistical methods 

In order to compare the data simulated by the ARW-
WRF and those observed with the radiosondes, the 
model output data were interpolated from the 

simulated vertical levels to radiosondes coincident 
levels. This interpolation was performed through a 
weighted linear interpolation (Santos & Nascimento, 
2016), Eq. (1): 

 𝐷𝐷(ℎ) = �𝑑𝑑[ℎ1] × �1 − (ℎ−ℎ1)
(ℎ2−ℎ1)��+ �𝑑𝑑[ℎ2] ×

�1− (ℎ2−ℎ)
(ℎ2−ℎ1)��       (1) 

where 𝐷𝐷(ℎ) is the interpolated value at the 
observed level ℎ, and [ℎ] is the simulated value at 
the two neighboring model levels ℎ1 and ℎ2 
(Santos & Nascimento, 2016). 

The interpolation was performed for each of the 
domains (G12 and G03) and for both days. The 
simulated vertical profiles were acquired at the 
times closest to the times when the radiosondes 
reached the pressure level of approximately 500 
hPa, i.e., 12:33:54 UTC for Day 1, and 13:54:50 
UTC for Day 2. Therefore, the interpolation was 
processed for the simulated profiles from 13:00 
UTC and 12:30 UTC for grades G12 and G03, 
respectively, on Day 1. For Day 2, the interpolated 
WRF profiles were the 14:00 UTC for both grids. 

The atmospheric profiles were compared by 
computing the standard statistical metrics: 
correlation coefficient (R), bias and the Root-
Mean Squared Error (RMSE). Bias measures the 
model's tendency to overestimate or under-
estimate a variable and is defined by Eq. (2): 

bias =
1
𝑛𝑛
�𝑦𝑦𝑖𝑖 − 𝑜𝑜𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (2) 

where 𝑦𝑦𝑖𝑖 is the values simulated by the WRF (G12 
and G03)  while 𝑜𝑜𝑖𝑖 is the value observed through 
radiosonde. 𝑛𝑛 is the number of 
simulations/observations, which in this study 
refers to the number of vertical levels in the 
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Figure 3 – Radiosonde system during the launch experiment: Vaisala RS41 radiosonde 

(a); meteorological helium balloon (b); ground station (c). 
 
 
profile. If bias is positive, the simulated values tend 
to be an overestimation of the observations, while 
if it is negative, the simulated values tend to be an 
underestimation of the observed ones. The bias 
does not provide information about the typical 
magnitude of the errors of individual simulations, 
but only an average trend. Hence, it is not a 
measure of precision (Wilks, 2006). 

The RMSE is the square root of the mean of the 
individual quadratic differences between simula-
tions and observations: 

RMSE = �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑜𝑜𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (3) 

it is considered a typical parameter for 
forecast/simulation errors, but is sensitive to 
outliers, once the errors are squared in this 
equation before they are summed. 

The Pearson correlation coefficient (R) is a 
measure in a single value of the association 
between two variables. The R is defined as 
follows: 

R =  
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)(𝑜𝑜𝑖𝑖 − �̅�𝑜)𝑛𝑛
𝑖𝑖=0

�∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=0 �∑ (𝑜𝑜𝑖𝑖 − �̅�𝑜)2𝑛𝑛

𝑖𝑖=0
 (4) 

where 𝑦𝑦� and �̅�𝑜 are the arithmetic means of the 
simulated and observed values, respectively. R is 
sensitive to outliers and not sensitive to bias 
(Wilks, 2006). 

This statistical analysis was performed for the 
profiles of the selected meteorological variables 
water vapor mixing  ratio (q), potential 
temperature (θ) and wind speed (Speed) (Wilks, 
2006; Santos & Nascimento, 2016). 

The assessment was performed throughout the 
entire atmospheric profile and also an analysis 
focusing only on the Planetary Boundary Layer 
(PBL). The PBL is the portion of the troposphere 
closest to the ground level (Stull, 2017) and where 
the highest concentrations of water vapor in the 
atmosphere are located. This analysis is valuable 
because the water vapor is the principal factor for 
atmospheric effects in optical satellite images 
(Sobrino et al., 1991; Jiménez-Muñoz et al., 
2010). In this study, the PBL height was estimated 
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using the Gradient Method (Sullivan et al., 1998) 
and the evaluation of q and θ  vertical profiles. In 
the Gradient Method, the PBL height is defined as 
the vertical position of the largest increase in θ, 
i.e., the vertical location of the θ maximum 
gradient (Eq. (5), where 𝑧𝑧𝑖𝑖𝑖𝑖 is the PBL height). 

𝑧𝑧𝑖𝑖𝑖𝑖 =  𝑧𝑧 ,

where  
𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝜕𝜕𝑧𝑧
  is maximum 

(5) 

Lastly, to manipulate the results, WRF 
simulations were post-processed with the WRF-
ARW post-processing system (ARWpost), the data 
were extracted with the Grid Analysis and Display 
System (GrADS), and the statistical analysis was 
performed with R and Python languages. 

RESULTS AND DISCUSSION 

The results are presented through diagrams, 
comparing the vertical profiles according to the 
height, and tables with the computed standard 
statistical metrics. Their presentation will be 
divided between the analysis along the entire 
atmospheric profile and the analysis focusing on 
the PBL.  

Analysis along the entire atmospheric profile 

The data simulated by the WRF model were 
interpolated, resulting in atmospheric profiles with 
124 and 121 vertical levels for Day 1 and Day 2, 
respectively. The visual comparison of the profiles 
of wind speed, potential temperature and mixing 
ratio plotted as a function of height is shown in 
Figures 4 (Day 1) and 5 (Day 2). 

Analyzing the profiles, it is observed that 
although there are some variations, the data 

simulated by the WRF follow the behavior of what 
was observed in situ. However, a more detailed 
and quantitative comparison is made by plotting the 
errors vertically and calculating the static metrics 
for the entire profile. Thereby, the errors for each 
vertical level, and the correlation coefficient (R), 
bias and RMSE were computed between simulated 
and observed data – the results are shown in 
Figures 6 (Day 1) and 7 (Day 2). 

The simulations presented a high correlation 
with the field observed data. With R values higher 
than 0.9, for both the parent grid (G12) and the 
finer grid (G03). The exception is in the wind 
speed profiles of Day 1, where the value of the 
correlation coefficient drops to 0.81 for both grids. 
Nevertheless, these values still indicate a strong 
correlation between observed and simulated data. 
The tendency of the model to overestimate the 
values of wind speed in the atmosphere condition 
of Day 1 is also noted, whereas for θ and q the 
tendency is that the simulated values are lower 
than those observed. 

On the other hand, for the weather conditions 
of Day 2 this average trend is inverted, being to 
underestimate the wind speed and overestimate θ 
and q, for the two domains. It is interesting to 
observe the existence of an inverse relationship 
between wind speed and humidity concentration 
and temperature, with respect to the tendency of 
the model to overestimate or underestimate these 
variables. Relative to the RMSE, the values found 
of wind speed were lower for Day 1, while for θ 
and q, Day 2 presented lower RMSE values. 

The analysis of the vertical distribution of errors 
shows that for the day with clear-sky conditions 
the difference between the two WRF simulated 
grids are irrelevant. While on a cloudy day, the 
differences between the errors of the two grids are 
more noticeable. Mainly for q at the levels closest
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Figure 4 – Vertical profiles of wind speed (a), potential temperature (b), and water vapor mixing ratio (c) as a 
function of height: field observed/radiosonde and WRF simulated with horizontal resolutions of 12 km (G12) 
and 3 km (G03). For January 9, 2018 (Day 1). 

 

 
Figure 5 – Vertical profiles of wind speed (a), potential temperature (b), and water vapor mixing ratio (c) as a 
function of height: field observed/radiosonde and WRF simulated with horizontal resolutions of 12 km (G12) and 3 
km (G03). For March 14, 2018 (Day 2). of 12 km (G12) and 3 km (G03). For January 9, 2018 (Day 1). 



DIAZ LR, ROLIM SBA, SANTOS DC, KÄFER PS, ROCHA NS & ALVES RCM   11 

Brazilian Journal of Geophysics,38(4),2020 

 
Figure 6 – Errors at each vertical level between local radiosonde and WRF (G12 and G03): wind speed (a), 
potential temperature (b), and water vapor mixing ratio (c). For Day 1 (cloudy). 

 

 
Figure 7 – Errors at each vertical level between local radiosonde and WRF (G12 and G03): wind speed (a), 
potential temperature (b), and water vapor mixing ratio (c). For Day 2 (predominance of sun and clear-sky). 
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to the surface. Despite this, even in the case of 
Day 1, the overall differences between G12 and 
G03 are not considered as significant. In addition, 
for the two days, errors in Speed are distributed 
along the profile. While in θ, errors are relatively 
more concentrated at higher altitudes. In contrast, 
q biggest ones are concentrated in the first levels 
of the atmosphere. Clearly when the presence of 
water vapor in the atmosphere is lower, the q 
errors also tend to be. This contributes to the low 
overall values of biases and RMSE along the 
entire q profile. The region where the biggest q 
errors are located comprises the PBL. That is why 
it is essential to analyze the statistical metrics 
considering exclusively this layer.  

Analysis focusing on the PBL 

The PBL height estimate for Day 1 was close to 
1.9 km (for both observed and simulated profiles), 
thus including 12 vertical levels. While for Day 2 
the estimated heights were approximately 4.8 km, 
counting on 27 vertical levels. Figures 8 and 9 
show the same vertical profiles of the previous 
session, except that only the first kilometers of the 
atmosphere are represented here, aiming to focus 
on the PBL. 

Likewise, Table 2 presents the recalculated 
statistical metrics encompassing only the initial 
levels of the atmosphere – up to the estimated 
height of the top of the PBL. 

When the analysis becomes only for the PBL, 
most of the high correlations remain. However, 
for Day 1 the R values for the wind speed were 
changed to 0.73 in G12 and 0.74 in G03. This 
reduction in the correlation is in agreement with 
the great presence and influence of the 
turbulence in the boundary layer, with the friction 

tension decreasing with the height (Foken, 2008; 
Stull, 2017). Nonetheless, it is for the water vapor 
mixing ratio of Day 2 that the largest variations 
occur between the data observed and those 
simulated by the WRF. Within the PBL, the 
correlation coefficient assumes a value of 0.68 in 
both grids. These results are consistent with the 
greater sensitivity of the vertical flow of humidity 
to the planetary boundary layer, surface layer 
and microphysical parametrization schemes (Hu 
et al., 2010; Ruiz et al., 2010; Santos & 
Nascimento, 2016). 

In addition, for the cloudy day, the average 
tendency of the model was to overestimate the 
wind speed values and to underestimate the 
potential temperature and the mixing ratio in the 
two grids. As for the condition of predominance of 
sun and little cloud cover, the simulation tended to 
overestimate the wind speed and q, and to 
underestimate the observed values of θ, also for 
the two nested grids. 

The resulting RMSE values were slightly lower 
for the simulations of Day 1, and generally lower 
when compared to those resulting from the whole 
profile analysis, for wind speed. For the potential 
temperature within the PBL, the RMSE was lower 
on Day 2 in G12 and, in G03, on Day 1. These 
RMSE values were lower than those calculated 
along the entire profile. While for the water vapor 
mixing ratio, the RMSE values increase when the 
calculation includes only the boundary layer 
levels, being within the PBL lower on Day 1. 
Ratifying what was discussed in Figures 6 and 7, 
the biggest errors between the simulated and 
observed values are located in the highest 
altitudes of the profile for θ, and in the first 
kilometers for q.
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Figure 8 – Vertical profiles of wind speed (a), potential temperature (b) and water vapor mixing ratio (c) 
as a function of height – for the first levels of the atmosphere: field observed/radiosonde and WRF 
simulated with horizontal resolutions of 12 km (G12) and 3 km (G03). For January 9, 2018 (Day 1). 

 

 
Figure 9 – Vertical profiles of wind speed (a), potential temperature (b) and water vapor mixing ratio (c) as 
a function of height – for the first levels of the atmosphere: field observed/radiosonde and WRF simulated 
with horizontal resolutions of 12 km (G12) and 3 km (G03). For March 14, 2018 (Day 2). 
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Table 2 - Statistical metrics comparing the observed 

(through radiosondes) profiles with those simulated by the 

WRF (G12 and G03) – for the Planetary Boundary Layer 

(PBL). 

Day 1 – Cloudy – PBL 

 
WRF G12 - Observed WRF G03 - Observed 

Speed θ q Speed θ q 

R 0.73 0.99 0.99 0.74 0.99 0.97 

Bias 1.24 -0.06 -0.90 1.31 -0.08 -1.29 

RMSE 1.61 0.71 0.96 1.64 0.44 1.50 

Day 2 – Clear-sky – PBL 

 
WRF G12 - Observed WRF G03 - Observed 

Speed θ q Speed θ q 

R 0.96 0.99 0.68 0.96 0.99 0.68 

Bias 0.38 -0.28 0.66 0.36 -0.29 0.63 

RMSE 1.85 0.55 2.01 1.79 0.57 2.00 

Furthermore, an important point to be 
reiterated is that in the simulations carried out for 
Day 1, there is a greater differentiation of the 
results of the two nested grids between them, 
when compared to Day 2. Particularly, q bias and 
RMSE values are higher in the finer resolution 
grid. Nevertheless, especially when considering 
the entire atmospheric profiles and the weather 
conditions of Day 2, the differences between 
nested grid results are minimal. The processes 
that influence the humidity content in the 
atmosphere are relative to the synoptic scale 
(e.g., low level jets (Vera et al., 2006; Do 

Nascimento et al., 2016)) and are not as sensitive 
to small differences in horizontal resolution 
(Santos & Nascimento, 2016; Lin et al., 2018), on 
the other hand local factors do. Local circulation, 
land use, surface models, and PBL 
parameterization have a major influence on the 
simulation of water vapor content and vertical 
transport in the atmosphere (Ruiz et al., 2010; Hari 
Prasad et al., 2017). Therefore, horizontal 
resolution is a way of determine the local 
characteristics of the study area. In a coarse 
resolution simulation, the grid point chosen to 
extract the vertical atmospheric profile can be in a 
distant location, with different local characteristics. 
Thus the availability of local humidity can be 
completely different and this influence will be more 
evident in the first levels of the atmosphere (within 
the PBL). So the importance of using a mesoscale 
model to include a more detailed local description 
and circulation. The minimal differences between 
the simulated profiles extracted from the nested 
grids G12 and G03 demonstrates a lower 
influence of the horizontal resolution in the 
simulation of the vertical profile of the atmosphere.  
It can suggest that a resolution of approximately 
12 km represents a good compromise between a 
more spatially detailed simulation and 
computational cost for a domain covering this 
study area (Lin et al., 2018). 

CONCLUSION 

In this paper we investigated the potential of the 
WRF model in the generation of vertical 
atmospheric profiles as an alternative to the need 
for a local radiosonde. Atmospheric simulations 
were performed with the ARW-WRF model using 
CFSv2 reanalysis data as initial and boundary 
conditions. In order to evaluate the performance 
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of these simulations, the results were compared with 
field data obtained by launching radiosondes in the 
study area for different weather conditions.  

The results indicated that there is an overall 
positive indication of this potential, once high 
correlations were seen between simulated and 
observed data, with correlation coefficients mostly 
higher than 0.9. With exceptions for wind speed in 
the weather conditions of Day 1. And the water 
vapor mixing ratio, when analyzed exclusively within 
the boundary layer on Day 2 – reaching an R of 0.68. 
However, even in these cases of lower correlation, it 
can be considered moderate and occur in already 
expected and coherent situations. 

Relatively low values of bias and RMSE were 
found for the meteorological variables analyzed. For 
the bias, the lowest value occurred at the potential 
temperature (-0.06 K) for Day 1 at G12 grid, for PBL 
analysis. Whereas, the highest value was the positive 
bias of 1.31 m/s for G03, under the same conditions. 
Regarding the RMSE, the lowest value was observed 
in θ: 0.44 K, in G03 and Day 1, in the boundary layer. 
On the other hand, the highest value of RMSE was 
3.00 K and it was given in the analysis along the 
whole profile in G03, for Day 2 and also in θ. 

The results also showed a minimum difference 
between the profiles of the two different grids. This 
is an indication of the lower influence of the 
horizontal resolution on the simulated vertical 
atmospheric profiles in this case. Suggesting that a 
resolution of approximately 12 km it is enough to 
represents a good balance between a local detailed 
simulation and computational cost.  

Since radiosondes are rarely available for 
specific sites and time, this study has shown that 
using the WRF model in the generation of 
atmospheric profiles is a good alternative for 
radiosondes absence. Despite prior model testing 
can be used to determine optimum model 

configurations; the best configuration is a function of 
location and meteorological conditions. Our results 
point to the WRF model as a useful tool in the 
simulation of the vertical profile, but local studies are 
always necessary. 

Future work will focus on testing different physical 
parameterization schemes. In particular, those 
related to PBL and surface layer parametrization, 
trying to adjust the issues related to the humidity 
vertical flow and the water vapor mixing ratio. 
Additionally, another paper is in process, in which 
we apply and evaluate the results in the atmospheric 
correction of images. Finally, another requiring 
attention is to invest in the increase of the vertical 
resolution in the simulations, due to the finding of the 
lower impact of the horizontal resolution on the 
performance of the model. 
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