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OBSERVING THE EXISTENCE OF LOW-FREQUENCY VARIABILITY IN 

MONTHLY RAINFALL DATA AT SOUTHEASTERN BRAZIL USING R PACKAGE 
TOOLS – NEURAL NETWORKS AND WAVELET 

 

Cleber Souza Correa¹ and Haroldo Campos Velho² 

ABSTRACT. This study aimed to analyze 70 years historical series in the Brazilian Southeastern region, using 
monthly rainfall data. Statistical modeling techniques such as cross-wavelet spectra and artificial neural networks 
(ANN), from the R statistical package, were used to perform the analyses. Two different types of neural networks 
were employed: the multi-layer perceptron (MLP) and extreme learning machine (ELM). From the cited time 
series, the analysis shows the existence of a decadal and multi-decadal signal with cycles of 5, 11, and 22 years 
in the monthly rainfall in Brazilian Southeastern region, observing the existence of low-frequency variability. This 
shows a significant degree of modulation and association for the precipitation with solar activity. The neural 
networks were also used as forecasting tools, with a better performance for MLP-NN – smaller root mean square 
error. However, the MLP-NN presented a greater confidence interval than ELM-NN. 

Keywords: monthly rainfall, sunspots, multi-decadal cycles. 

RESUMO. Este estudo teve como objetivo analisar séries históricas de 70 anos no sudeste do Brasil, utilizando 
dados mensais de precipitação. Técnicas de análise estatística usando o pacote estatístico R, como espectros 
de wavelet cruzado e modelagem de redes neurais artificiais (RNA), foram usadas para realizar as análises. 
Duas implementações de redes neurais foram empregadas: multi-layer perceptron (MLP) e extreme learning 
machine (ELM). Os resultados obtidos nas análises realizadas permitem inferir que as séries temporais 
observadas mostram a existência de um sinal decenal e multi-decenal com ciclos de 5, 11 e 22 anos na 
precipitação mensal no sudeste do Brasil, observando a existência de variabilidade de baixa frequência nos 
dados analisados. Isso mostra um grau significativo de modulação e associação da precipitação com a atividade 
solar. A análise de séries temporais longas permitem a observação de variabilidades de baixa frequência, 
evidenciando sua grande importância e relevância. Uma significativa parcela da variância total de ciclos 
atmosféricos decenais é modulado pela atividade solar. As redes neurais também foram usadas como 
ferramentas de previsão, com melhor desempenho para a rede MLP – como mostrado pelo erro médio 
quadrático.  A rede MLP apresentou maior amplitude no intervalor de confiança do que a rede ELM. 
 
Palavras-chave: precipitação mensal; manchas solares; ciclos multi-decenais. 
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INTRODUCTION 

The Sun is the major factor to establish all the 
dynamics of the atmosphere (Lundin et al., 2007; 
Love et al., 2011 and Wang et al., 2018). The 
inclination of the Earth's axis causes differential 
solar radiation incidence on the surface, producing 
different climatic seasons on the South and North 
hemispheres. Upper atmosphere dynamical sys-
tems directly respond to the forcing associated with 
the solar wind. Turbulent transport processes with 
different temporal and spatial scales are also 
induced for this dynamical forcing. Looking at the 
dynamics of this high atmosphere induces semi-
stationary dynamic processes that can influence 
the high stratosphere and the tropical troposphere. 
The Earth-Sun system can be theorized as time-
space multi-scale model, in which the Earth is 
directly affected by the Sun. The Earth system has 
a certain memory from the Sun processes, and that 
end up synchronizing large meteorological systems 
of the Earth with the solar activity. 

In this context the dynamic processes lead to 
acting for the general circulation of the 
atmosphere, Hadley and Walker circulations, 
working in middle latitudes of 15 degrees of 
latitude in both hemispheres order. Planet Earth 
has large surface areas covered by oceans, which 
directly absorb solar radiation. The interaction of 
oceanic flows and atmospheric dynamics 
associated with processes resulting from solar 
activity creates a complex dynamic structure with 
different temporal and spatial structures in the 
Earth's atmospheric and oceanic dynamics, 
determines and modulates the climate on our 
planet. Lassen & Friis-Christensen (1995) showed 
that the duration of the solar cycle in the last five 
centuries was associated with the Earth's climate, 
with a well-defined activity with an eleven-year 
cycle in the sunspots number. Indeed, the cycle 
has approximately 11 years, ranging from 8 to 17 
years within 80 years. 

Cliver (2015) discusses the cycles of solar 
activity and the 22-year magnetic cycle in the Sun. 
During the magnetic cycle, the Sun has two 
characteristic migrations in the behavior of 
sunspots, the movement towards the solar equator, 
and toward the poles. The motion of spots towards 
the equator is defined as aspects associated with 
Schwabe's 11-year cycles (Schwabe, 1843; 
Wilson, 1998) and the second is associated with 
the 22-year magnetic cycles, otherwise known as 
Hale's solar cycle (22 years) (Hale & Nicholsen, 
1925; Babcock, 1961; Echer et al., 2003).  

In Corrêa et al. (2019), using wavelet and 
cross-wavelet analysis, multidecadal cycles were 
observed between the monthly number of spots 
and the South Oscillation (IOS) and Pacific 
Decadal Oscillation (DOP) indexes. Showing 
cycles of 2.66, 5.33, 10.66, and 21.33 years. It was 
also compared to the average monthly rainfall in 
the meteorological stations of the airports of Belém, 
Fortaleza, São Luiz, and Natal, showing that in the 
north/northeast of Brazil the multidecadal cycles of 
precipitation accompanied the variability of the 
sunspots, with an intense signal of 11 years and 
less intense of 22 years. Corrêa et al. (2020) using 
the 1951-2017 historical series of the Atlantic 
Meridional Mode (AMM) index and the monthly 
number of sunspots, it was possible to observe a 
high correlation between them. The use of wavelet 
and cross-wavelet analysis showed the presence 
of multidecadal cycles pronounced in eleven years, 
as well as cycles of 2.66 and 5.33. AMM index 
showed, in the part of the Sea Surface 
Temperature (SST), the presence of a weak signal 
of 21.33 years. Influence and association of 
sunspot variability on surface temperature in the 
Northern and Northeastern regions of Brazil. The 
time series of monthly rainfall shows a very 
complex behavior, but the methodology using 



 CORREA CS & CAMPOS VELHO HF   3 

Brazilian Journal of Geophysics,38(2),2020 

Cross-wavelet allowed us to observe the 
correlation in the Brazilian tropical region between 
the long historical series of monthly rainfall and the 
sunspot series. Allowing associated multidecadal 
cycles with rainfall observed. An environmental 
variable such as rainfall has a behavior that can 
be dismembered at different spatial scales such 
as mesoscale or macro scale, as well as at a 
regional synoptic level. As its statistical properties 
behave Rainfall stochastic, temporal variability 
and spatially organizes itself at the mesoscale 
level in clusters or random or fractal behavior.  Kim 
et al. (2013) show that the stochastic rainfall 
generators are classified into the three following 
categories: (1) the multi-scaling models, which are 
based on the observation that rainfall patterns 
have ‘‘self-similarity’’ at a given range of time-
scales, (2) the nonparametric resampling models, 
which forms the new rainfall time series by 
borrowing the fragments from the instrumental 
data with similar statistical properties, (3) the 
Poisson cluster rainfall models, which is being 
considered in this study. The Poisson cluster 
rainfall models (Rodriguez-Iturbe et al., 1987, 
1988), a type of stochastic rainfall models, repre-
sent rainfall as a sequence of storms composed of 
rain cell clusters (Kavvas & Delleur, 1975).  

 As for frequency and spatial variability, 
Mazzarella (1999) shows that an appreciation of 
the fractal dimension dependence and the specific 
scaling region on intensity threshold is the key to 
understanding that the rainfall is a multifractal 
process in which its spatial distribution is 
organized into clusters of high rainfall localized 
cells embedded within clusters of lower intensity 
small mesoscale areas. These areas are within 
clusters of still lower intensity large mesoscale 
areas, which are contained within some synoptic-
scale lowest intensity rainfall fields.  

Brunsell (2010) shows that since the physical 
processes encompassing rainfall range from micro-
scales (e.g. turbulence, cloud formation processes) 
to interannual climatic variability (e.g. Pacific 
Decadal Oscillation, El Niño Southern Oscillation, 
the Atlantic Ocean multidecadal and interdecadal 
processes), characterizing the scaling properties of 
rainfall is essential for understanding precipitation. 
This has led researchers to adopt many of the 
techniques used in chaos theory and non-linear 
dynamics (Dhanya & Nagesh Kumar, 2010; 
Jothiprakash & Fathima, 2013; Yildirim & Altinsoy, 
2017)  and  multifractals (Breslin & Belward, 1999;  
Veneziano et al., 2006; Maskey et al., 2019).  

Currently, longer historical series are available 
of meteorological parameters and in this case, we 
are interested to analyze the southeastern Brazilian 
Rainfall. As Brazil is a continental country what 
would be the behavior of rainfall in southeastern 
Brazil. It would accompany solar activities about the 
number of sunspots such as the work of Corrêa et 
al. (2019) to the north and northeast of Brazil. A time 
series of total monthly precipitation may present 
extreme values and irregularities associated with the 
structure composed of different spatial and temporal 
scales that make up the total monthly observed 
value. Thus, we seek to use a framework of tools 
such as Wavelet analysis and neural networks to 
analyze historical series and to evaluate the ability 
to make predictions with different neural network 
models, with complex historical rainfall series, as 
well as their association and influence of solar 
activity with the historical series of sunspots. The 
paper is organized as described in Figure 1. 

METHODOLOGY 

The computational tools for data analysis are 
presented in this section.
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Figure 1 – The graphical diagram that explains the methodology used and the observed results. 

Wavelet analysis 

The WaveletComp versions 1.0 and 1.1 is routine 
from the R-package for data analysis based on 
univariate and bivariate time series wavelets 
(Roesch & Schmidbauer, 2014, 2016). The 
WaveletComp applies with the frequency 
analysis of uni- and bivariate time series using 
Morlet wavelet (Morlet et al., 1982a, 1982b; 
Goupillaud et al., 1984), and the biwavelet 
package (Grinsted et al., 2004). Morlet wavelet is 
the version implemented in WaveletComp. The 
cross-wavelet function allows filtering different 
frequency between two time series, allowing the 
passage of frequency signals that are similar in 
both time series. The Morlet wavelet transform of 
a time series (xt) is defined as the convolution of 
the series with a set of "wavelet daughters" 
generated by the "mother wavelet" by time 

translation by τ and defining the scale by s. 
Morlet wavelet, in the WaveletComp routine, is 
expressed as: 

 
(1) 

The "angular frequency" ω (or rate of rotation in 
radians per unit time) is defined as ω = 6, which is 
the preferred value in the literature since the Morlet 
wavelet is solved approximately in an analytical 
way; and with an oscillation equals 2π (radians); 
therefore, the period (or the inverse frequency) 
measured in units of time is equal to 2π/6. 

The Morlet wavelet transform of a time series 
(xt) is computed by "wavelet daughters" generated 
from the "mother wavelet" by time translation τ 
and the scale s – see equation below: 

 (2) 
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The position of the daughter wavelet in the time 
domain is determined by the location of the time 
parameter τ being displaced by ∆t a time 
increment. The square of the amplitude has an 
interpretation as time-frequency (or time-period) 
wavelet energy density, and is called the wavelet 
power spectrum (Carmona et al.,1998): 

 (3) 

In the case of white noise, its expectation at 
each time and scale corresponds to the series 
variance (with proportionality factor 1/s in this 
rectified version of wavelet power). WaveletComp 
rectifies the wavelet power spectrum (cross-
wavelet) according to Veleda et al. (2012).  

Smoothing for the time period and/or direction is 
necessary to perform the calculation with the 
Coherence wavelets methodology with their 
multiples (Liu, 1994). The set choice of scales s 
determines the series wavelet coverage in the fre-
quency domain. The rainfall/sunspot data was read 
by software R using the library (WaveletComp) with 
files in the format comma-separated values (csv). 

Neural Networks 

The NNFOR routine from version 0.9.6 (2019) in R-
package was employed to generate forecasting 
time series operators by neural networks (NN), 
following Crone & Kourentzes (2010) and 
Kourentzes et al. (2014). The NNFOR package has 
an implementation for Multi-layer Perceptron (MLP) 
and Extreme Learning Machine (ELM). The 
package NN default parameters were applied. It is 
important to remember that the usual purpose to 
train the multilayer perceptron is to get good 
generalization in unseen data, for example in time 
series forecasting applications. 

Maximum generalization performance will occur 
before the general training network error reaches a 
minimum value. A network is considered to be 
trained when a minimum difference between the 
network output and a reference set is reached. 
However, a cluttered data set can result in a 
network's worst predictive ability. One way to avoid 
such fail, for producing a good generalization 
performance, is to split the training data into 
multiple sets:  –  a training set, a validation set, and 
a test set. The training set is used to compute 
weight connection for the network. The validation 
set can be used to assess the generalizability of the 
network, while training is taking place. Training is 
interrupted when generalization performance is 
reached. This technique is known as early stopping 
and is particularly useful when training multilayer 
Perceptrons with real and noisy data. Finally, the 
test suite is used to evaluate the overall 
performance of the trained network (Schmidhuber, 
2015). In this respect, three data networking 
training sessions were analyzed.  The first one 
considering the full series, from January 1951 to 
June 2018. The second is taken from January 1951 
to June 1990. Finally, the third period is from 
January 1990 to June 2010, all with a 36-month 
forecast window. 

The accuracy function of the R package 
Forecast was used to estimate the errors in the 
rainfall series forecasting estimates with the three 
trained neural networks, the proposed meth-
odology was used by Hyndman & Koehler (2006) 
and Hyndman & Athanasopoulos (2014). The 
measures calculated are: Root Mean Squared 
Error (RMSE) Eq. (4) is a quadratic scoring rule 
which measures the average magnitude of the 
error. The square difference between forecast and 
corresponding observed values is calculated and 
then averaged over the sample. Since we are 
dealing with square difference, the RMSE gives a 
relatively high weight to large errors. The Mean 
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Absolute Error (MAE) Eq. (5) is a linear score, 
which means that all individual differences are 
weighted equally on the average, measuring the 
average magnitude of errors in a set of forecasts, 
and it is used to measure accuracy for continuous 
variables. Where 𝑦𝑦𝚤𝚤�  are the predicted values, 𝑦𝑦𝑖𝑖 are 
the observed values and n the number of 
observations. The equations for RMSE and MAE 
are shown below: 

 

 
(4) 

 

 
(5) 

Multi-layer Perceptron (MLP) 

There is an R-routine to configure an MLP neural 
network for time series forecasting. MLP 
architecture can be seen as a general practical tool 
for non-linear input-output mapping. Specifically, let 
k be the number of network inputs and m the number 
of outputs. The network input-output relationship 
defines a mapping from a k k-dimensional input 
Euclidean space to an output m-dimensional 
Euclidean space, which is infinitely continuously 
differentiable (Gardner & Dorling, 1998). 

The most commonly used form of Neural 
Networks for forecasting is the feedforward 
Multilayer Perceptron. The one-step-ahead forecast 
𝑌𝑌�𝑛𝑛+1 is computed using inputs that are lagged 
observations of the time series or other explanatory 
variables. I denote the number of inputs Pi of the 
Neural Network. Their functional form is: 

 
 (6) 

where w = (β,y) are the network weights with β = 
[β1, . . . , βH], y = [y11, . . . , yHK] for the output and 
the hidden layers respectively. Pk this term refers to 
the neuron’s inputs. The β0 and y0n are the biases 
of each neuron, which for each neuron act similarly 
to the intercept in a regression, H is the number of 
hidden nodes in the network, and g(•) is a non-
linear transfer function, which the default is using 
hyperbolic tangent, Kourentzes et al. (2014). 

Figure 2a shows the MLP neural network 
structure used with 21 inputs, one hidden layer with 
5 neurons. The package applied a procedure to 
determine the number of inputs to feed the NN: the 
process included to add more and more previous 
precipitation values, recorded from different times, 
to predict the future precipitation. 

Extreme Learning Machine (ELM) 

ELM is a learning algorithm for single hidden layer 
feedforward neural networks, is very efficient and 
effective, such development is described in the 
work of Huang et al. (2006) and Ord et al. (2017). 
To minimize the network cost function, ELM 
theories claim that the hidden nodes’ learning 
parameters can be assigned randomly without 
considering the input data. Then, becomes a linear 
system, and the output of its weights can be 
analytically determined by finding the least-squares 
solution, in which we will have an inverse matrix 
being the generalized inverse of a Moore-Penrose 
matrix. So, calculation of the output weights is done 
by a mathematical transformation, which avoids 
any lengthy training phase where the parameters 
of the network are adjusted iteratively with some 
appropriate learning parameters (such as learning 
rate and iterations). The historical rainfall data 
series were read by software R using the library 
(Forecast and NNFOR routine) with files in the 
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Figure 2 – Two neural network models used in this work (a) Multi-layer Perceptron, and (b) Extreme 
Learning Machine. 

 
format comma-separated values files (csv), as well 
as programs were written and saved in individual 
files for each observation location. Figure 2b shows 
the ELM neural network with 21 inputs, one hidden 
layer with 100 hiddens neurons – the same 
mentioned strategy to select the number of input 
values is also adopted here. 

Solar and atmospheric data, with regions 
under analysis 

Numerous scientific articles are associating solar 
activity with atmospheric and oceanic dynamic 
systems (Tobias & Weiss, 2000; Kodera & Kuroda, 
2002; Coughlin &Tung, 2004; Meehl et al., 2009; 
Roy & Haigh, 2010; Mazzarella et al., 2010; Abalos 
et al., 2014; Linz et al., 2019). 

In the work of Kodera & Kuroda (2002) showed 
that the dynamic impact of the 11-year solar cycle 
is associated in the stratopause region, where 
ultraviolet solar heating is greatest. The most 
important variation in solar forcing is longer than 

the day cycle is the annual cycle. Thus, the climatic 
characteristics of the zonal wind variation 
associated with the annual cycle were initially 
studied to characterize the basic characteristics of 
the dynamic response of the atmosphere to 
changes in solar radiative forcing, which is 
important to characterize low-frequency cycles in 
multidecadal processes. The results of the analysis 
suggest that in an average climatological state, 
stratopause circulation evolves from a radiation 
controlled state to a dynamically controlled state 
during winter in both hemispheres. The transition 
period is characterized by a change to the west 
side of the jet streams at altitude. The effect of the 
solar cycle appears as a change in the balance 
between radiatively and dynamically controlled 
states. The radiation-controlled state lasts longer 
during the solar maximum phase, and the 
stratopause subtropical jet reaches a higher 
velocity. The great dynamic response to relatively 
weak radiative forcing can be understood by the 



8  OBSERVING THE E. OF L-F. V. IN M. RAINFALL DATA AT S. BRAZIL USING R PT – NN AND W 

Brazilian Journal of Geophysics,38(2),2020 

bimodal nature of the winter atmosphere due to the 
interaction with the southern propagating planetary 
waves and the zonal mean winds. It is suggested 
that the solar influence produced in the upper 
stratosphere and stratopause region be transmitted 
to the lower stratosphere by (1) modulating the 
internal mode of variation in the night polar jet, this 
process is significant in the mid and high latitudes 
and (2) a change in Brewer-Dobson circulation 
(Abalos et al., 2014; Linz et al., 2019) is prominent 
in the equatorial region. 

However, the influence of solar activity is very 
large not only on the surface but on stratospheric 
levels and the high stratosphere and 
thermosphere. In which the atmosphere is 
influenced by the interaction of the solar wind in the 
tropical region. The equatorial-stratospheric wind 
oscillates between easterly and westerly directions 
and with a period around 22 to 32 months called 
Quasi Biennal Oscillation (QBO). In the work of 
Mazzarella et al. (2011) showed that QBO may 
have the dominant period of 28 months has been 
reaffirmed but with a discernible amplitude and a 
phase, respectively, inversely varying with height. 
Such a cycle suggests an estimate for the coming 
easterly equatorial wind occurrence at 15 hPa level 
at the end of 2009. The 28-month harmonic is 
found to take about a year to descend from 15 to 
70 hPa with a progressive lag of about 1 month/km. 
At the top of the stratosphere, easterlies dominate, 
while at the bottom, westerlies are more likely to be 
found. Correlation with sunspot numbers and 
seasonal rainfall was discussed. 

Roy & Haigh (2010) identified signs of the solar 
cycle in 155 years of global sea level pressure 
(SLP) and sea surface temperature (SST) using a 
multiple linear regression approach. Found in the 
North Pacific a statistically significant difference the 
weakening of Aleutian's low-pressure system and 

a shift to the north of the Hawaiian’s high-pressure 
system in response to higher solar activity, 
confirming the results of previous authors using 
different techniques. They also find a weak but 
wide reduction in pressure on the equatorial 
Pacific. In the SST, they identified a weak El Niño 
as a standard in the tropics for the 155 years. It 
showed that the last years analyzed were 
influenced by the data composition technique of the 
sunspot peak years cycle because these years 
have often coincided with the negative phase of the 
El Niño-Southern Oscillation (ENSO) cycle. 

Solar activity acts on the earth system by 
modulating various physical scales and different 
time scales involved. Therefore the monitoring of 
meteorological variables with the monthly rainfall 
may show a certain degree of association with solar 
cycles, in a low-frequency analysis. 

Sunspot and Rainfall time-series data 

The monthly time series analyzed were obtained 
from the Sunspot of the World Data Center SILSO, 
Royal Observatory of Belgium, Brussels (see the 
link: http://www.sidc.be/silso/datafiles), which was 
transferred the data file (SN_m_tot_V2.csv) with 
information, years from 1951 up to 2018 with 68 
annual series. Monthly rainfall data were obtained 
from the Aeronautics Command of the Airspace 
Control Department (DECEA, Brazil) 
Climatological Database, the DECEA climate 
database is available in the link: 
http://clima.icea.gov.br/clima/. Monthly rainfall data 
were from the following locations: Congonhas 
airport, Guarulhos airport, and Campinas airport, 
São Paulo state, Brazil. In the Rio de Janeiro state 
– Brazil, the Santa Cruz airbase and Santos 
Dumont airport were considered. The time series 
used followed the sunspot period from January 
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1951 up to June 2018. Monthly precipitation data in 
the historical series showed very complex 
characteristics, with huge spatial variety, and non-
stationary or semi-stationary behavior. 

RESULTS 

Solar Activity and Rainfall 

Figure 3 shows the cross-wavelet spectrum that in 
all figures a significant 11-year signal associated 
with the solar cycle. It also has cycled in 32 and 60 
months, cycles of 3 and 5 years. Solar activity 
within the solar time series has a peak between the 
1960s and 1970s and the end of the 2010- 2020 
time series is a solar minimum. The cross-wavelet 
spectra show a decrease at the end of the series 
following the solar minimum, in the figures (a) 
Congonhas airport and (d) Santa Cruz airbase. 

Figure 4 shows the mean bi-variable cross-
wave time spectrum between monthly rainfall and 
sunspots, showing significant signs at 11 years, 
with cycles at 60 months. In the figures (d) Santa 
Cruz airbase and (e) Santos Dumont shows a weak 
signal in 22 years but significant. 

Observed monthly rainfall data in southeastern 
Brazil show that rainfall follows 11-year 
multidecadal solar cycles and can also follow 5-
year and/or 22-year cycles, which are observed in 
the mean bi-variable cross-wave time spectrum 
(Fig. 3). The work by Kodera & Kuroda (2002) 
shows that the dynamic impact of the 11-year solar 
cycle is associated in the stratopause region, 
where ultraviolet solar heating is greatest. The 
most important variation in solar forcing is the 
annual cycle. Thus, the climatic characteristics of 
the zonal wind variation associated with the annual 
cycle are observed as basic characteristics of the 
atmospheric dynamic response to solar radiative 
forcing changes, which is important to characterize 

low-frequency cycles in multidecadal processes, as 
observed in the wavelet analysis. Which can be 
interpreted in the monthly rainfall series analyses in 
southeastern Brazil. The results suggest that the 
radiation-controlled state lasts longer during the 
maximum solar phase, and the stratopause 
subtropical jet reaches a higher velocity. This would 
directly affect the meteorological dynamics in the 
southern hemisphere and its effects felt in South 
America. More specifically in southeastern Brazil. 
Figure 3 also appears a 12-month signal in all 
monthly rainfall series. 

Neural Prediction 

MLP-NN application 

The historical series of monthly total rainfall shows 
great variability among the analyzed series 
although these are from a relatively close region 
located in southeastern Brazil. The maximum total 
values of the monthly rainfall present different 
intensities, in each analyzed series, result in the 
complexity involved in the different possible 
meteorological mechanisms and spatial 
differences that cause the maximum values of 
rainfall. Figures 5 and 6 show the maximum 
monthly rainfall at (b) Guarulhos airport of 1773.4 
millimeters (mm) in February 1963 and (e) Santos 
Dumont airport of 688 mm in November 1959. The 
neural networks have difficulty predicting these 
extreme values in the monthly rainfall series, with 
low recurrence. However, these peaks occur in the 
early 1960s and also follow the maximum value of 
the 70-year sunspot series, which occurred from 
1957 to 1960, the highest absolute recent solar 
activity in the sunspot series, in this period. Solar 
activity has fallen to lower peaks until June 2018. 
Other monthly rainfall peaks also occurred with 
solar activity peaks. Such a situation shows a  
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Figure 3 – The bi-variable energy spectrum with crossed wavelet being Monthly Rainfall and Sunspot, (a) Congonhas 
Airport, (b) Guarulhos Airport, (c) Campinas Airport, (d) Santa Cruz Airbase, and (e) Santos Dumont Airport. 

 
 

 
Figure 4 – The bi-variable cross-wave mean time spectrum being Monthly Rainfall and Sunspot, (a) Congonhas Airport, 
(b) Guarulhos Airport, (c) Campinas Airport, (d) Santa Cruz Airbase, and (e) Santos Dumont Airport. 
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Figure 5 – Total series of monthly rainfall (1951-2018) with respective forecasts of 36 months at the end of the 
observed series, the forecast is in blue, using the MLP neural network model: (a) Congonhas Airport, (b) Guarulhos 
Airport, (c) Campinas Airport, (d) Santa Cruz Airbase, and (e) Santos Dumont Airport and (f) Sunspot series.. 

 

 
Figure 6 – Total series of monthly rainfall (1951-2018) with respective forecasts of 36 months at the end of the observed 
series, the forecast is in blue, using the ELM neural network model: (a) Congonhas Airport, (b) Guarulhos Airport, (c) 
Campinas Airport, (d) Santa Cruz Airbase, and (e) Santos Dumont Airport and (f) Sunspot series. 
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definite significant degree of association between 
solar activity and atmospheric processes. This 
could be used as a predictor of extreme monthly 
rainfall values in southeastern Brazil. However, the 
use of the neural network implies an input that was 
used in this work in the time series of the order of 
21 elements to train the network, as these may not 
use the extreme values of the neural network may 
have limitations in predicting these extremes value. 
As the neural networks were trained in a period in 
which it can be understood by minimal solar 
activity, the behavior of the network was adequate 
because the monthly rainfall had variability close to 
an average behavior. 

Figures 5 and 6 with the total series of Monthly 
rainfall can be seen that the historical series 
analyzed bring in their observations a set of 
characteristics that may indicate local physical 
characteristics and may also in certain values in 
some respect be compounded, spatially associated 
with the transport performed because the rainfall is 
within processes that may have a broader scope. 
Therefore the total result of rainfall is a value 
composed of local and also propagation 
processes. It can be understood by creating non-
stationary or semi-stationary patterns. This 
behavior can characterize a type of memory of 
these processes that are recorded in the temporal 
series and can give a picture of the physical 
processes observed in the maximum or minimum 
of the analyzed data. 

For this reason, it shows great complexity, 
because although the localities are relatively close, 
the observed values may present distinct values in 
the intensity for certain simultaneous months in the 
temporal series. In this respect, the graphs showed 
a consistent predictive behavior by the estimates 
made by the two neural network models used, MLP 
and ELM. Table 1 presents the values of errors 

estimated by the use of different methodologies in 
neural networks. For short series analysis, the MLP 
network model presented better results with 
smaller errors. 

ELM-NN application 

The ELM network model was sensitive to how long 
the time series is. Shorter time series present 
worse results in comparison to the longer time 
series. Therefore, a longer time series improve the 
adjustments, implying in a smaller error with the 
longer analyzed time series. 

For this reason, it shows great complexity, 
because although the localities are relatively close, 
the observed values may present distinct values in 
the intensity for certain simultaneous months in the 
temporal series. In this respect, the graphs showed 
a consistent predictive behavior by the estimates 
made by the two neural network models used, MLP 
and ELM. The computed prediction by neural 
networks is performed by the R-routine called 
“forecast”, where the forecasting value and the 
confidence interval are calculated. 

Figures 7 and 8 show the analysis of the shorter 
series from 1951 to 1990, using the different neural 
network architectures the MLP neural network 
model did not show to be sensitive to the time 
series size, the weak gray lines show the 
confidence interval associated to the forecast value 
(blue line), hereafter this will be the adopted colour 
convenction in the present study. The MLP model 
has greater deviations from the forecast variance in 
relation to the ELM. Figures 9 and 10 somewhat 
followed the results observed in the 70-year-old 
neural network analysis, the MLP and ELM neural 
network models were similar to the total series 
analysis.
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Table 1 - Estimated errors of the different neural networks used MLP and ELM by the accuracy function 
of the Forecast package R with the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE).  

MLP - 1990 Congonhas Guarulhos Campinas Santa Cruz S. Dumont 

RMSE 42.17 76.67 35.42 40.21 45.51 

MAE 29.47 53.67 26.27 27.88 31.96 

ELM - 1990      

RMSE 85.52 172.66 68.40 81.65 84.03 

MAE 58.37 96.80 51.96 57.58 56.85 

MLP - 2010      

RMSE 47.33 77.43 46.00 48.86 50.97 

MAE 34.34 52.52 34.47 34.58 36.20 

ELM - 2010      

RMSE 79.49 152.27 68.43 77.43 75.67 

MAE 55.27 85.70 51.41 55.28 52.72 

MLP - Total      

RMSE 50.34 75.76 46.65 64.78 51.27 

MAE 36.96 51.46 34.58 43.44 37.27 

ELM - Total      

RMSE 76.13 140.67 67.09 85.87 73.61 

MAE 53.29 80.64 51.16 57.17 51.42 

The results presented by the two different neural 
networks, had good results even using simpler 
models, Figure 11 (a) at Congonhas airport, 
showed good results with a relatively simple MLP 
and ELM model. The models of more complex 
neural networks can be tested obtaining more 
adequate results with greater computational 
processing. The worst result could be observed at 
Guarulhos airport (Fig. 11 (b)) because the RNN 
models were not able to represent the maximums, 
as the temporal series of this location showed 
greater non-linearities, as it has the highest values 
of monthly rainfall. 

Table 1 presents the values of errors estimated 
by the use of different methodologies in neural 
networks. For short series analysis, the MLP 
network model presented better results with smaller 
errors. However, the ELM network model showed 

that it was sensitive to the increase of the time series 
improving the adjustments and having a smaller 
error with the increase of the analyzed time series. 

Table 1 showed a better result with less error in 
the MLP neural network estimates in concerning 
ELM, in all analyzes performed. 

CONCLUSIONS 

The results obtained from the time-series analyzes 
show the existence of a decadal and multi-decadal 
signal with cycles of 5, 11, and 22 years in the 
monthly rainfall for the Southeastern region in the 
Brazil. A low-frequency variability signal is 
observed. Therefore, there is a degree of 
association and modulation with solar activity. In 
other words, the precipitation signal variability has 
a memory synchronized with solar variability.
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Figure 7 – Total series of monthly rainfall (1951-1990) with respective forecasts of 36 months at the end of the 
observed series, the forecast is in blue, using the MLP neural network model: (a) Congonhas Airport, (b) Guarulhos 
Airport, (c) Campinas Airport, (d) Santa Cruz Airbase, and (e) Santos Dumont Airport. 

 

 
Figure 8 – Total series of monthly rainfall (1951-1990) with respective forecasts of 36 months at the end of the 
observed series, the forecast is in blue, using the ELM neural network model: (a) Congonhas Airport, (b) Guarulhos 
Airport, (c) Campinas Airport, (d) Santa Cruz Airbase, and (e) Santos Dumont Airport. 
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Figure 9 – Total series of monthly rainfall (1951-2010) with respective forecasts of 36 months at the end of the 
observed series, the forecast is in blue, using the ELM neural network model: (a) Congonhas Airport, (b) Guarulhos 
Airport, (c) Campinas Airport, (d) Santa Cruz Airbase, and (e) Santos Dumont Airport.. 

 

 
Figure 10 – Total series of monthly rainfall (1951-2010) with respective forecasts of 36 months at the end of the 
observed series, the forecast is in blue, using the MLP neural network model: (a) Congonhas Airport, (b) 
Guarulhos Airport, (c) Campinas Airport, (d) Santa Cruz Airbase, and (e) Santos Dumont Airport. 
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Figure 11 – Neural network predictions MLP model (blue line), RNN ELM model (red line) and observation of 
monthly precipitation (green line) between July 2018 to May 2020, (a) Congonhas Airport, (b) Guarulhos Airport, 
(c) Campinas Airport, (d) Santa Cruz Airbase, and (e) Santos Dumont Airport. 

Neural networks were designed for emulating 
the rainfall behaviour, and they were also 
employed as a forecasting tool. The MLP-NN 
presented a better performance than ELM-NN. 
However, as mentioned in the section “ELM-NN 
application”, the MLP-NN obtained a greater 
magnitude for confidence interval than ELM-NN. 

The historical maximums of monthly rainfall in 
the analyzed series occurred after the maximums 
of solar activity, showing coherence. Kodera & 
Kuroda (2002) showed that the association of the 
11-year solar cycle dynamics is associated in the 
stratopause region, where ultraviolet solar heating 
is greater. The most important variation in solar 
forcing is its temporal influence is greater than the 
annual cycle. Thus, the climatic characteristics of 
the variation in the circulation model are associated 
with the annual cycle and are linked to the dynamic 
response of the atmosphere to changes in solar 
radiative forcing, which is important to characterize 

low-frequency cycles in multidecadal processes. 
Such complex characteristics possibly create 
configurations that are influenced by solar 
variability produce certain circulations in the upper 
stratosphere and region of the stratopause, and 
these are transmitted and can influence the lower 
stratosphere. This may ratify the behavior of the 
atmospheric dynamics, this process being 
significant at medium and high latitudes and its 
importance in the role of the Brewer-Dobson 
circulation (Gerber, 2012; Butchart, 2014), which is 
prominent in the equatorial region. 

Other works will be carried out to apply a similar 
methodology to other Brazilian regions with longer 
time series. Maybe, time-series with longer 
observation time periods will allow associating the 
second maximum of solar activity and the 
maximum values of monthly rainfall. The neural 
network modeling allowed us to generate useful 
estimates for the monthly rainfall. 

(a) (b)

(d) (e)

(c)
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