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EXTENDING THE USAGE OF GRAPHICS PROCESSING UNITS ON THE CLOUD 

FOR COST SAVINGS ON SEISMIC DATA REGULARIZATION 

 

Nicholas Torres Okita¹, Tiago A. Coimbra¹, José Ribeiro¹ and Martin Tygel¹ 

ABSTRACT. The usage of graphics processing units is already known as an alternative to traditional multi-core 
CPU processing, offering faster performance in the order of dozens of times in parallel tasks. Another new 
computing paradigm is cloud computing usage as a replacement to traditional in-house clusters, enabling 
seemingly unlimited computation power, no maintenance costs, and cutting-edge technology, dynamically on 
user demand. Previously those two tools were used to accelerate the estimation of Common Reflection Surface 
(CRS) traveltime parameters, both in zero-offset and finite-offset domain, delivering very satisfactory results with 
large time savings from GPU devices alongside cost savings on the cloud. This work extends those results by 
using GPUs on the cloud to accelerate the Offset Continuation Trajectory (OCT) traveltime parameter 
estimation. The results have shown that the time and cost savings from GPU devices’ usage are even larger 
than those seen in the CRS results, being up to fifty times faster and sixty times cheaper. This analysis reaffirms 
that it is possible to save both time and money when using GPU devices on the cloud and concludes that the 
larger the data sets are and the more computationally intensive the traveltime operators are, we can see larger 
improvements. 
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RESUMO. O uso de aceleradores gráficos para processamento já e uma alternativa conhecida ao uso de 
CPUs multi-cores, oferecendo um desempenho na ordem de dezenas de vezes mais rápido em tarefas 
paralelas. Outro novo paradigma de computação e o uso da nuvem computacional como substituta para os 
tradicionais clusters internos, possibilitando o uso de um poder computacional aparentemente infinito sem custo 
de manutenção e com tecnologia de ponta, dinamicamente sob demanda de usuário. Anteriormente essas 
duas ferramentas foram utilizadas para acelerar a estimação de parâmetros do tempo de trânsito de Common 
Reflection Surface (CRS), tanto em zero-offset quanto em offsets finitos, obtendo resultados satisfatórios com 
amplas economias tanto de tempo quanto de dinheiro na nuvem. Este trabalho estende os resultados obtidos 
anteriormente, desta vez utilizando GPUs na nuvem para acelerar a estimação de parâmetros do tempo de 
trânsito em Offset Continuation Trajectory (OCT). Os resultados obtidos mostraram que as economias de 
tempo e dinheiro foram ainda maiores do que aquelas obtidas no CRS, sendo até cinquenta vezes mais rápido 
e sessenta vezes mais barato. Esta análise reafirma que é possível economizar tanto tempo quanto dinheiro 
usando GPUs na nuvem, e conclui que quanto maior for o dado e quanto mais computacionalmente intenso for 
o operador, maiores serão os ganhos de desempenho observados e economias. 

Palavras-chave: computação em nuvem; GPU; processamento sísmico. 
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INTRODUCTION 

Seismic processing programs are compute-
intensive software, relying on powerful machines 
to process large amounts of data. These powerful 
machines were built as in-house clusters for a 
long time, recently offering both multi-core 
processors and graphics processing unit (GPU) 
accelerators. However, building a cluster 
demands a big upfront money investment and a 
long waiting time until the on-site infrastructure is 
done, which can take months or even years. Due 
to how fast technology evolves, it can lead to an 
outdated specification when it starts to run. 
Furthermore, there are high maintenance costs, 
such as electric energy bills and technical support. 
However, we have recently seen an alternative to 
building these large, expensive machines: cloud 
computing. 

Companies such as Amazon and Microsoft 
offer part of their data-centers to users as virtual 
machines (VM). These resources are delivered 
through the internet and priced differently based 
on the hardware for an advertised price per hour 
(usually charged per second of use). This model 
has a huge advantage over traditional in-house 
clusters, not only because the user can choose 
the best hardware for his program instead of 
relying on a do-it-all solution but also since there 
are no upfront payments and the hardware is 
ready in a matter of minutes instead of months. 
On the flip side, a bad VM selection can lead to 
undesirable performance and high prices; 
therefore, the good VM selection is a very 
important step (see, Okita et al., 2018). 

Graphics processing unit accelerators are 
highly parallel devices with hundreds to thousands 

of computing threads, which can be used to 
reduce the execution time of parallel programs 
while keeping the power usage lower than their 
CPU counterparts (relative to the same 
performance). Some public cloud providers have 
GPU accelerated instances available; hence it is 
possible to reduce processing time. Since the user 
pays for what is being used while being used on 
the cloud, the faster the execution, the lower the 
billings. This work objective involves using GPU 
accelerated instances to reduce the execution 
time and processing cost of a seismic processing 
algorithm in the Amazon Web Services Elastic 
Computing Cloud (AWS EC2). 

For more details about cloud computing, 
Armbrust et al. (2010) explains its concept and its 
pricing schemes in more detail. Furthermore, it 
points some challenges in the model, such as 
bottlenecks introduced by data transferring and 
storage. Emeras et al. (2016) compares the 
operational costs of using AWS EC2 against a 
traditional in-house cluster. The authors first 
estimate the total cost of ownership of their own 
university’s cluster. Then, they perform a linear 
regression on AWS EC2 prices (based on 
GFLOPs, memory, storage, and number of GPUs) 
to estimate a price per hour of their cluster nodes 
as if they were instances on AWS. They conclude 
that the price per hour of building the cluster is 
lower than running the same hardware on the 
cloud. On a similar aspect, Deelman et al. (2008) 
analyzes the cost to run a real-life astronomy 
application on the Amazon cloud infrastructure. 
The authors propose a series of scenarios of 
usage, e.g., sporadic computations on the cloud, 
analyzing the costs of each scenario given their 
software (including data transfers, storage, and 
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actual computation costs). The authors conclude 
that when properly allocating the resources 
required, it is possible to reduce how much is 
spent using the service. Therefore, using the 
cloud is not as simple as getting equivalent 
hardware to what is available locally in a cluster. 

This work is the expansion of a previous work 
published in a conference (Okita et al., 2019) that 
had the objective of using GPUs to reduce both 
the time and execution price of seismic processing 
algorithms in the Amazon Web Services Elastic 
Computing Cloud (AWS EC2). This work aims to 
test how GPU accelerated instances perform in a 
different traveltime other than the ones shown in 
the original paper and explore the performance 
increase when using multiple CPU instances and 
multiple GPUs. 

FORMULATION OF THE PROBLEM 

In 2D seismic data, we want to estimate 
traveltime’s kinematic parameters, normal-moveout 
(NMO) velocities, slopes, and curvatures of 
reflections in both the post-stack and prestack 
domain. For simplicity, we assume one-component 
data and events of interest are non-converted 
primary reflections. The data samples in the data 
set can be expressed as u(m,h,t), in which u 
represents the observed amplitude, m is the 
midpoint location, h is the half-offset distance, and t 
is the time sample, all these being continuous 
variables. With that defined, we estimate the 
parameters in all data samples to identify points of 
interest, such as reflections and diffractions without 
a priori identification. This estimation problem can 
be of great interest in processing tasks, such as 
data regularization. Specifically, in this work, the 

Offset-continuation trajectory traveltime operator 
proposed by Coimbra et al., 2016 is used for both 
zero-offset stacking and finite-offset data 
regularization. 

Coherency 

Reflections and other seismic events have the 
key property of presenting themselves as 
coherent signals along a traveltime surface within 
the seismic data. Since the coherence measure 
has a quantitative characteristic, it can be used 
as an objective function; in this case, the 
estimation problem becomes an optimization 
problem. We want to find the parameters that 
maximize the objective function. Alongside that, 
using coherence allows us to apply a stacking 
procedure, increasing the amplitude wherever 
there are points of interest with high coherence 
and low amplitude in points without coherence. 

For this work we use the semblance 
coherence measure (see, Neidell and Taner, 
1971). First, we suppose a given reference data 
point location (m0,h0,t0) that belonging to a 
traveltime surface t = t(m,h) defined for midpoint 
and half-offset pairs (m,h) in the neighborhood of 
(m0,h0). In the same neighborhood, we now 
consider a given traveltime surface T = 
T(m,h;p1,··· ,pn) in which pi are given kinematic 
parameters. Finally, the semblance between 
the two traveltime functions is given by 

𝑆𝑆(𝑝𝑝1, … ,𝑝𝑝𝑛𝑛) =
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 (1) 

where N = (2 𝐼𝐼+1)(2 𝐽𝐽+1), ui,j,k = u(mi,hj,Tk) 
represents the amplitudes computed at the 

data points (mi,hj,Tk(mi,hj;p1,··· ,pn)). Notations 
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are as follows: 

𝑚𝑚𝑖𝑖 = 𝑚𝑚𝑜𝑜 + 𝑖𝑖∆𝑚𝑚, ℎ𝑗𝑗 = ℎ𝑜𝑜 + 𝑖𝑖∆ℎ, 

𝑇𝑇𝑘𝑘(𝑚𝑚𝑖𝑖,ℎ𝑗𝑗;𝑝𝑝1 … , 𝑝𝑝𝑛𝑛)

= 𝑇𝑇(𝑚𝑚𝑖𝑖 ,ℎ𝑗𝑗;𝑝𝑝1 … , 𝑝𝑝𝑛𝑛) + 𝑘𝑘∆𝑡𝑡 

(2) 

where ∆m, ∆h, and ∆t denote midpoint, half-

offset, and uniform time sampling, respectively. 

Note that at these locations, actual data points 

may not exist. In this case, these are replaced 

by interpolated values from neighboring points. 

Differential Evolution meta-heuristic 

A traditional approach to estimate the 
parameters that maximize the objective 
function is brute force through the 
parameters. The domain is discretized, and 
every combination of parameters is 
attempted. Instead of this, a heuristic can be 
used to produce similar quality results with 
fewer iterations, such as the works of Barros 
et al. (2015) and Walda and Gajewski (2017); 
in this work, we use the Differential Evolution 
(DE) meta-heuristic (see, Storn and Price, 
1997). This heuristic relies on the dynamics 
of a population. Starting with NP individuals, 
each a vector of parameters, distributed 
randomly in the objective function domain, 
these individuals interact with each other 
through processes called mutation and cross 
over and generate a new individual. This new 
individual is then compared to the original  

 
one, then the one that is closer to the 
maximum value is kept in the population, 
while the other is discarded. This process 
applied to every population member is called 
a generation. The algorithm executes for a 
predefined number of generations, picking 
the individual’s parameters with the best 
objective function value. 

RESULTS 

The results are divided into a few 
subsections, with the first two corresponding 
to the ZO-OCT stacking and FO-OCT 
regularization. At the same time, a third one 
corresponds to a scalability analysis. The 
Amazon Web Services Elastic Compute 
Cloud instances are shown in Table 1 are 
used as hardware options. Their prices are 
from the On-Demand instances in North 
Virginia (us-east-1) region during June and 
July 2019. The qualitative comparison from 
the parameter estimation is between only one 
CPU configuration (CPU1) and one GPU 
configuration (GPU1). The reason being that 
the discrepancies between different CPU 
configurations or GPU configurations are 
negligible. That means the parameters 
obtained from GPU1 are the same as those 
obtained from GPU2 and GPU3; similarly, the 
parameters obtained from CPU1 are the 
same as those obtained from CPU2 and 
CPU3. 
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Figure 1 – Flowchart of the Differential Evolution implementation in GPU, illustrating the parallelism in the steps of the 

Differential Evolution algorithm. 
 

It is worth mentioning that the CPU 
implementation is done with C++ and compiled 
using gcc with the -O3 flag, enabling most 
compiler optimizations. On the other hand, we 
use CUDA compiled with nvcc for the GPU 
implementation, which provides the best 
performance for the GPUs we use in our 
experiments. Furthermore, for execution, we use 
our inhouse framework called SPITS (see, 
Benedicto et al., 2017) to parallelize the 
algorithm, allowing for maximum usage of all 
cores and GPU accelerators, even on different 
machines. Finally, the results are obtained from a 
single execution. 

Table 1 – Machine configurations. 

Configuration Processing Unit RAM 
(GB) 

Price 
(USD/h) 

CPU1 
(c5.18xlarge) 

72 Xeon Platinum 
8124 3GHz vCores 144 3.060 

CPU2 
(m5.24xlarge) 

96 Xeon Platinum 
8175 2.5GHz vCores 384 4.608 

CPU3 
(c5.24xlarge) 

96 Xeon Platinum 
8124 3GHz vCores 192 4.080 

GPU1 
(p3.2xlarge) 

1 Nvidia Tesla 
V100 16GB 61 3.060 

GPU2 
(g3s.xlarge) 

1 Nvidia Tesla 
M60 8GB 30.5 0.750 

GPU3 
(p2.xlarge) 

1 Nvidia Tesla 
K80 12GB 61 0.900 

Zero-Offset OCT 

The execution times for the ZO-OCT traveltime in 
both data sets and their respective prices are 
shown in Tables 2 and 3. For qualitative analysis, 
Figure 3 depicts the stacked section for the 
synthetic (St) data set that was output by CPU1 
and GPU1 configurations. The parameters are 
shown in Figure 4. Similarly, Figure 5 depicts the 
stacked section for the real (Re) data set, while 
its parameters are shown in Figure 6.  

Table 2 – Execution time and prices for ZO-OCT in the St 

Data set. 

Configuration Execution Time (minutes) Price (USD) 

CPU1 2.69 0.137 
CPU2 2.35 0.181 
CPU3 2.02 0.138 
GPU1 0.20 0.010 
GPU2 0.34 0.004 
GPU3 0.41 0.006 

Comparing the CPU configurations in the 
synthetic workload (St) in Table 2, they all have 
similar execution times with similar prices. On the 
other hand, we see differences between the GPU 
configurations regarding the execution time (with
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GPU3 taking over twice as long as GPU1 to 
process the task) and prices (with GPU2 
completing the task spending less money). It is 
noticeable that the biggest difference in 
performance appears when we compare CPU 
and GPU configurations, with GPU1 being over 

ten times faster than any CPU configuration and 
GPU2 being over thirty times cheaper than the 
CPU powered instances. However, since this is a 
small synthetic workload, the time difference 
appears as only some seconds while the savings 
are in the order of cents of a dollar. 

 

 
Figure 2 – Flowchart of the Differential Evolution implementation in CPU, showing the algorithm 

parallelism with each CPU thread processing a CDP (in the post-stack domain) or a set of traces (in 

the prestack domain). 
 

When we compare the results obtained in 
Figures 3 and 4, it is noticeable that the only 
difference comes from rounding errors. 
Therefore, the time and price improvements 
come at no quality cost.  

Table 3 – Execution time and prices for ZO-OCT in the Re 

Data set. 

Configuration Execution Time 
(minutes) 

Price  
(USD) 

CPU1 269.07 13.722 
CPU2 223.11 17.135 
CPU3 192.32 13.078 
GPU1 6.00 0.306 
GPU2 21.63 0.270 
GPU3 20.34 0.305 

The real workload results, execution times, 
and prices are shown in Table 3. This time 
around, it is possible to see improvements when 

using larger CPU instances, such as CPU3, 
compared to smaller ones, such as CPU1, with 
the execution finishing in less than an hour for 
roughly the same price. On the other hand, even 
though CPU2 concludes the task faster than 
CPU1, it still is slower than CPU3 and more 
expensive than both. When comparing GPU 
instances, it is noticeable that GPU1 is 
significantly faster than the other options, albeit 
at a higher price. 

This comparison becomes more interesting as 
we compare CPU and GPU instances. The 
fastest GPU instance, GPU1, is over thirty times 
faster than any CPU option, offering over forty 
times cost savings, reflecting in time differences 
in the magnitude of hours and price comparison 
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of over ten dollars compared to dozens of cents. 
On the other hand, even the cheapest and 
slowest GPU instance, GPU2, is still around ten 
times faster than any CPU option and around fifty 
times cheaper than any CPU option. 

Yet again, this performance improvement 
comes at no quality deterioration. It is notable in 
Figure 5 that both implementations produced the 
same results, except for rounding errors. 
Furthermore, there are no discernible differences 
when comparing the GPU output from the CPU 
output shown in Figure 6; therefore, the 
parameter output also suffered no loss of quality 
with the massive performance improvement. This 
comes as no surprise, because the 
implementation does not change the heuristic 
itself, but its parallelism; the small differences 
that appear are expected to happen since the 
heuristic used to optimize the parameters relies 
on random mechanisms. 

Finite-Offset OCT 

Both performance and price improvements from 
the GPU usage become much more evident 
when applying regularization using the OCT 
traveltime. Similarly to the previous zero-offset 
stacking case, we see massive time and price 
reductions along with near-identical regularized 
data set and parameters; these improvements 
can be seen in Tables 4 and 5, which shows both 
the execution times and prices obtained from the 
regularization in data set St and Re, respectively. 
To analyze the quality impact we show both 
regularized data sets in Figures 7 and 9, for St 
and Re, respectively; while their parameters are 
shown in Figures 8 and 10. To simplify the 
analysis we only show the result in the offset 

positioned at 200m for the St data set and 150m 
for the Re data set. 

Table 4 – Execution time and prices for FO-OCT in the St 

data set. 

Configuration Execution Time 
(minutes) 

Price  
(USD) 

CPU1 45.10 2.300 
CPU2 37.90 2.911 
CPU3 33.91 2.306 
GPU1 2.95 0.150 
GPU2 7.86 0.098 
GPU3 9.03 0.135 

 

 
Figure 3 – Comparison between CPU1 (top) and GPU1 

(bottom) stacked result for ZO-OCT in data set St. 
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(a) Velocity parameter in m/s 

 
(b) Angle parameter in s/m 

Figure 4 – Comparison between CPU1 (left) and GPU1 

(right) estimated parameter result for ZO-OCT in data set St. 

Since the data set regularization involves 
processing the whole data set even in the synthetic 
workload, we can see a significant difference when 
comparing CPU instances to GPU instances. The 
CPU instance with the best performance is CPU3, 
being only 0.006 USD more expensive than its 
slower counterpart CPU1, while CPU2 shows 
middle ground performance between those two, 
however at a higher price. Among the GPU 
devices, we see the same behavior shown in the 
synthetic zero-offset section; GPU1 being the 
fastest while being more expensive than GPU2, 
both better choices than GPU3 that is both slower 
and more expensive than GPU2. Comparing CPU 
and GPU results we see that we have 
improvements in dozens of minutes with over 
tenfold cost savings. 

The offset produced by both implementations 
only differs in rounding errors. The same applies to 
the parameters. Therefore, we can conclude that, 
as expected, we can get that massive performance 
boost without sacrificing the parameters’ quality. 

 

Figure 5 – Comparison between CPU1 (top) and GPU1 

(bottom) stacked result for ZO-OCT in data set Re. 

Similar to what was seen in the zero-offset 
stacking section, when we execute the more 
extensive real data set, the performance 
difference becomes even more massive. Since 
we are dealing with a more extensive data set 
and a more computationally intensive operator, 
we now see that while every GPU can produce 
the output in less than one hour, every CPU 
instance took at least eight hours to process, 
CPU1 taking about eleven. The price takes a 
significant cut alongside the execution time 
reduction, as it becomes noticeable that GPU1 is 
now over fifty times cheaper than any CPU 
option and is also the most affordable option to 
regularize this data set.  
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(a) Velocity parameter in m/s

(b) Angle parameter in s/m

Figure 6 – Comparison between CPU1 (left) and GPU1 

(right) estimated parameter result for ZO-OCT in data 

set Re. 

Finally, as expected, there is no quality 
degradation neither in the parameters shown in 
Figure 10, nor in the regularized offset section 
shown in Figure 9. We imply that the GPU 
implementation did not affect the metaheuristic 
quality and massive performance improvement 
alongside cost savings. 

Table 5 – Execution time and prices for FO-OCT in the Re 

data set. 

Configuration Execution Time 
(minutes) 

Price 
(USD) 

CPU1 669.84 34.162 
CPU2 552.16 42.406 
CPU3 484.15 32.922 
GPU1 13.26 0.676 
GPU2 56.75 0.709 
GPU3 54.85 0.823 

Figure 7 – Comparison between CPU1 (top) and GPU1 

(bottom) stacked result for FO-OCT in data set St. 

Scalability 

This subsection brings a final discussion about 
scalability, in which we experiment on what kind 
of performance we can achieve when using 
multiple CPU instances against numerous GPUs. 
Table 6 shows the hardware configurations used 
for these experiments with their respective prices 
per hour, again disregarding storage prices. 

The first experiment again estimates the ZO-
OCT stacking operator parameters, with both 
data sets St and Re. Also, the execution times 
and prices for each configuration when running 
data set St are shown in Table 7, while those 
measurements when running data set Re are 
shown in Table 8; for comparison reasons, the 
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CPU3 and GPU1 results from the previous 
section are also in the table. The parameters and 
stacked sections are not displayed due to no 
differences in the previous section. 

(a) Velocity parameter in m/s

(b) Angle parameter in s/m

Figure 8 – Comparison between CPU1 (left) and GPU1 

(right) estimated parameter result for FO-OCT in data 

set St. 

Table 6 – Hardware configuration for scalability tests. 

Configuration Processing Unit RAM
(GB) 

Price 
(USD/h) 

MULCPU1 
(2×c5.24xlarge) 

192 Xeon 
Platinum 

8124 3GHz 
vCores 

384 9.060 

MULGPU1 
(p3.8xlarge) 

4 Nvidia Tesla 
V100 16GB 244 12.240 

MULGPU2 
(p3.16xlarge) 

8 Nvidia Tesla 
V100 16GB 488 24.480 

Figure 9 – Comparison between CPU1 (top) and GPU1 

(bottom) stacked result for FO-OCT in data set Re. 

(a) Velocity parameter in m/s

(b) Angle parameter in s/m

Figure 10 – Comparison between CPU1 (left) and GPU1 

(right) estimated parameter result for FO-OCT in data set Re. 
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Table 7 – Execution time and prices for ZO-OCT in data set St. 

Configuration Execution Time 
(minutes) 

Price 
(USD) 

CPU3 2.02 0.138 
MULCPU1 1.75 0.238 

GPU1 0.20 0.010 
MULGPU1 0.17 0.035 
MULGPU2 0.30 0.124 

Comparing the scalability of CPU instances in 
Table 7, it is noticeable that there is almost no 
performance impact when using multiple CPUs 
instances compared to a single one; the same 
behavior can be seen in GPU instances. On the 
other hand, the price increases to the same 
proportion as we add more GPUs or CPU 
instances. This problem is that the data set is too 
small; therefore, adding more instances to work 
on the estimation would not improve 
performance, as the bottleneck is not in the 
estimation process anymore. 

Table 8 – Execution time and prices for ZO-OCT in data set Re. 

Configuration Execution Time 
(minutes) 

Price 
(USD) 

CPU3 192.32 13.078 
MULCPU1 102.16 13.894 

GPU1 6.00 0.306 
MULGPU1 1.05 0.215 
MULGPU2 0.80 0.325 

Differently from the St data set, the significantly 
larger Re data set produces noticeable 
performance improvements, as seen in Table 8. 
As expected, when using double the number of 
CPU instances, we see that the execution time 
drops in about fifty percent. Following the same 
pattern, we see nearly eight performance 
improvement improvements when using eight 
GPUs and, surprisingly, about five performance 
improvement times using four GPUs. 

The explanation for the superlinear performance 
scalability when using configuration MULGPU1 
compared to GPU1 relies on more details from the 
Amazon Web Services cloud infrastructure. Briefly, it 
is explained by using different availability zones 
when creating the instances, with GPU1 and 
MULGPU2 running on zone us-east-1b, while 
MULGPU1 ran on zone us-east-1f. Even though 
there should be no differences when using instances 
from different availability zones within the same 
region, this does not happen, with some instances in 
some zones outperforming the same hardware 
configuration in other zones. The performance 
variation between different availability zones and in 
different moments in time is an already known 
challenge when using cloud computing (see, Schad 
et al., 2010). However, such variations do not impact 
the overall conclusion, even though they were 
obtained from a single execution, as we observe 
orders of magnitude of differences. 

With these linear performance increases, the 
MULCPU and MULGPU configurations’ execution 
price also remains about the same as the CPU and 
GPU ones; since the price per hour is also directly 
proportional to the number of instances being 
deployed (or the number of GPUs in an instance). 
Notably, there is also a price increase when using 
multiple instances caused by waiting for the new 
instance to boot and load the data before the 
estimation process. The only exception to that small 
increase in price is MULGPU2. Due to its 
superlinear performance improvement, it ends up 
costing even less than GPU1. 

The second experiment performed is the OCT 
regularization in both data sets St and Re, with their 
results shown in Tables 9 and 10, respectively. 
Again the parameters and regularized sections are 
not displayed since there is no difference to those 
obtained in the previous section. 
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Table 9 – Execution time and prices for FO-OCT in data set St. 

Configuration Execution Time 
(minutes) 

Price 
(USD) 

CPU3 33.91 2.306 
MULCPU1 17.15 2.332 

GPU1 2.95 0.150 
MULGPU1 0.80 0.164 
MULGPU2 0.67 0.271 

The regularization performed in data set St 
has its execution times and prices shown in 
Table 9. As expected, MULCPU1 cuts the 
execution time to around 50% of the original 
CPU3 time, with a very similar price; this 
happens due to the price per hour being twice as 
expensive as the CPU3 configurations while the 
execution time is only half the original. Similar 
behavior happens in the GPU configurations, in 
which we can see MULGPU1 performing four 
times faster than GPU1, without drastically 
increasing the price. In MULGPU2, on the other 
hand, we see that the performance increase was 
below the expected; along with it comes a larger 
increase in price, since it is eight times more 
expensive per hour than GPU1, while its 
performance is only around 4.5 times faster. 

Table 10 – Execution time and prices for FO-OCT. 

Configuration Execution Time 
(minutes) 

Price 
(USD) 

CPU3 484.15 32.922 
MULCPU1 248.29 33.768 

GPU1 13.26 0.676 
MULGPU1 2.45 0.500 
MULGPU2 1.75 0.715 

Finally, with a larger data set such as the Re 
data set, we can see the performance 
improvements as we increase the number of 
machines. Notably, the MULCPU1 configuration 
is still around twice as fast as the CPU3 
configuration, both at very similar prices. 
Regarding the GPU configurations, MULGPU1 

presents a superlinear performance (being over 
four times faster than the GPU1 configuration 
with four times the number of GPUs; the reason 
was briefly aforementioned) MULGPU2 is about 
eight times faster than the GPU1 configuration. 
Regarding pricing, MULGPU2 has a very similar 
price to GPU1, while MULGPU1, with its 
superlinear performance increase, offers the 
cheapest option among all configurations. 

After analyzing how each configuration 
performs, we can conclude that adding more CPU 
instances or GPU instances to perform the 
processing task does not affect their pricing, given 
that the task can scale linearly. Therefore, GPU 
powered instances still are far superior to their 
CPU counterparts both in execution time and in 
price, with over one hundred times faster 
execution times with dozens of times lower prices. 
Notably, as we increase the number of instances 
being used, we also see small increases in prices. 
There is a constant price regarding booting the 
instance and loading the data before the actual 
processing. Furthermore, one must be careful with 
scaling limits since smaller data sets (e.g., the St 
data set) or simpler traveltimes operators (e.g., 
zero-offset stacking) can benefit little or even lose 
performance when adding more instances, 
leading to higher charges than necessary. 

Memory usage 

A final important point to highlight is memory 
usage, as large datasets are expected to require 
more memory. Also, it is noteworthy that GPU 
devices have considerably less memory than 
CPU systems, which can be seen in Tables 1 
and 6, where the GPU memory is capped at 
16GB, while the system memory can be in the 
order of hundreds of gigabytes. Therefore, the



OKITA NT, COIMBRA TA, RIBEIRO J & TYGEL M   13 

Brazilian Journal of Geophysics,38(4),2020 

challenge of high memory requirements become 
more significant with such devices. It is possible 
to use a unified memory approach to allow a 
single device to access the whole memory 
system plus all the other GPUs’ memory, dealing 
with the aforementioned challenge. The 
advantage of using such a scheme is a robust 
page faulting and migration mechanism, 
implemented on recent GPU architectures 
(starting with Nvidia Pascal), where data is 
migrated on-demand to where it is accessed. 
Hence, enabling the usage of more memory than 
what is usually available to on devices, improving 
code transparency, and freeing the developer 
from manual memory management (see, Harris, 
2013). However, those benefits come at a 
possible cost of transfer time overhead due to the 
data movement from device to system memory, 
which can negatively affect execution time. 
However, if the memory required fits in the GPU 
memory, there is no impact on performance. 

CONCLUSION 

In this work, we accelerated both the ZO-OCT 
stacking and FO-OCT regularization with GPU 
devices, exploring how the performance 
improves. Furthermore, by using the cloud, we 
were able to analyze how the price can be 
affected as well, since, in the pay-as-you-go 
model, the user only pays for how long the 
instance is being used, then lower execution 
times can lead to lower prices. 

The GPU implementation provided the same 
quality results with times up to ten times lower 
than the CPU implementation, along with cost 
savings in the order of thirty times. Furthermore, 
even the smallest GPU configurations were able 

to beat all high-end CPU configurations, resulting 
in less time and a fraction of the price. A final point 
of analysis was the scalability potential, which was 
performed by running the same program and data 
sets with multiple CPU instances and multiple 
GPU devices. While we saw a performance 
increase in more massive data sets, the price 
remained very similar to executing the problem 
with only a single CPU instance or a single GPU 
instance. In smaller data sets, we did not see any 
performance increase or even saw performance 
degradation; this leads to higher charges 
proportional to the number of new instances 
created (or GPU devices used). Finally, we 
observe that there are limits to how much the 
program can scale depending on the input; 
therefore, an analysis of the optimal number of 
instances may be required. 

In conclusion, the OCT traveltime benefits 
mainly from GPU devices, drastically 
decreasing the time spent processing and 
delivering low prices on the cloud. Not only that 
but in large workloads, the programs can scale 
well (with either multiple CPUs or GPUs), 
delivering significantly faster execution prices 
at a very similar price. 
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