
1CEPETRO/UNICAMP, R. Cora Coralina, 350 - Cidade Universitária, Campinas - SP, Brazil, 13083-896 – E-mails: nicholas.okita@gmail.com,
tgo.coimbra@gmail.com, joseribeiro@ggaunicamp.com, mtygel@gmail.com

EXTENDING THE USAGE OF GRAPHICS PROCESSING UNITS ON THE CLOUD

FOR COST SAVINGS ON SEISMIC DATA REGULARIZATION

Nicholas Torres Okita¹, Tiago A. Coimbra¹, José Ribeiro¹ and Martin Tygel¹

ABSTRACT. The usage of graphics processing units is already known as an alternative to traditional multi-core
CPU processing, offering faster performance in the order of dozens of times in parallel tasks. Another new
computing paradigm is cloud computing usage as a replacement to traditional in-house clusters, enabling
seemingly unlimited computation power, no maintenance costs, and cutting-edge technology, dynamically on
user demand. Previously those two tools were used to accelerate the estimation of Common Reflection Surface
(CRS) traveltime parameters, both in zero-offset and finite-offset domain, delivering very satisfactory results with
large time savings from GPU devices alongside cost savings on the cloud. This work extends those results by
using GPUs on the cloud to accelerate the Offset Continuation Trajectory (OCT) traveltime parameter
estimation. The results have shown that the time and cost savings from GPU devices’ usage are even larger
than those seen in the CRS results, being up to fifty times faster and sixty times cheaper. This analysis reaffirms
that it is possible to save both time and money when using GPU devices on the cloud and concludes that the
larger the data sets are and the more computationally intensive the traveltime operators are, we can see larger
improvements.

Keywords: cloud computing; GPU; seismic processing.

RESUMO. O uso de aceleradores gráficos para processamento já e uma alternativa conhecida ao uso de
CPUs multi-cores, oferecendo um desempenho na ordem de dezenas de vezes mais rápido em tarefas
paralelas. Outro novo paradigma de computação e o uso da nuvem computacional como substituta para os
tradicionais clusters internos, possibilitando o uso de um poder computacional aparentemente infinito sem custo
de manutenção e com tecnologia de ponta, dinamicamente sob demanda de usuário. Anteriormente essas
duas ferramentas foram utilizadas para acelerar a estimação de parâmetros do tempo de trânsito de Common
Reflection Surface (CRS), tanto em zero-offset quanto em offsets finitos, obtendo resultados satisfatórios com
amplas economias tanto de tempo quanto de dinheiro na nuvem. Este trabalho estende os resultados obtidos
anteriormente, desta vez utilizando GPUs na nuvem para acelerar a estimação de parâmetros do tempo de
trânsito em Offset Continuation Trajectory (OCT). Os resultados obtidos mostraram que as economias de
tempo e dinheiro foram ainda maiores do que aquelas obtidas no CRS, sendo até cinquenta vezes mais rápido
e sessenta vezes mais barato. Esta análise reafirma que é possível economizar tanto tempo quanto dinheiro
usando GPUs na nuvem, e conclui que quanto maior for o dado e quanto mais computacionalmente intenso for
o operador, maiores serão os ganhos de desempenho observados e economias.

Palavras-chave: computação em nuvem; GPU; processamento sísmico.

Brazilian Journal of Geophysics (2020) 38(2): 1–14
© 2020 Sociedade Brasileira de Geofísica
ISSN 0102-261X
www.rbgf.org.br
DOI: 10.22564/rbgf.v38i2.2048

Corresponding author: Nicholas Torres Okita

2 USING GPUS ON THE CLOUD FOR DATA REGULARIZATION

Brazilian Journal of Geophysics, 38(2),2020

INTRODUCTION

Seismic processing programs are compute-
intensive software, relying on powerful machines
to process large amounts of data. These powerful
machines were built as in-house clusters for a
long time, recently offering both multi-core
processors and graphics processing unit (GPU)
accelerators. However, building a cluster
demands a big upfront money investment and a
long waiting time until the on-site infrastructure is
done, which can take months or even years. Due
to how fast technology evolves, it can lead to an
outdated specification when it starts to run.
Furthermore, there are high maintenance costs,
such as electric energy bills and technical support.
However, we have recently seen an alternative to
building these large, expensive machines: cloud
computing.

Companies such as Amazon and Microsoft
offer part of their data-centers to users as virtual
machines (VM). These resources are delivered
through the internet and priced differently based
on the hardware for an advertised price per hour
(usually charged per second of use). This model
has a huge advantage over traditional in-house
clusters, not only because the user can choose
the best hardware for his program instead of
relying on a do-it-all solution but also since there
are no upfront payments and the hardware is
ready in a matter of minutes instead of months.
On the flip side, a bad VM selection can lead to
undesirable performance and high prices;
therefore, the good VM selection is a very
important step (see, Okita et al., 2018).

Graphics processing unit accelerators are
highly parallel devices with hundreds to thousands

of computing threads, which can be used to
reduce the execution time of parallel programs
while keeping the power usage lower than their
CPU counterparts (relative to the same
performance). Some public cloud providers have
GPU accelerated instances available; hence it is
possible to reduce processing time. Since the user
pays for what is being used while being used on
the cloud, the faster the execution, the lower the
billings. This work objective involves using GPU
accelerated instances to reduce the execution
time and processing cost of a seismic processing
algorithm in the Amazon Web Services Elastic
Computing Cloud (AWS EC2).

For more details about cloud computing,
Armbrust et al. (2010) explains its concept and its
pricing schemes in more detail. Furthermore, it
points some challenges in the model, such as
bottlenecks introduced by data transferring and
storage. Emeras et al. (2016) compares the
operational costs of using AWS EC2 against a
traditional in-house cluster. The authors first
estimate the total cost of ownership of their own
university’s cluster. Then, they perform a linear
regression on AWS EC2 prices (based on
GFLOPs, memory, storage, and number of GPUs)
to estimate a price per hour of their cluster nodes
as if they were instances on AWS. They conclude
that the price per hour of building the cluster is
lower than running the same hardware on the
cloud. On a similar aspect, Deelman et al. (2008)
analyzes the cost to run a real-life astronomy
application on the Amazon cloud infrastructure.
The authors propose a series of scenarios of
usage, e.g., sporadic computations on the cloud,
analyzing the costs of each scenario given their
software (including data transfers, storage, and

 OKITA NT, COIMBRA TA, RIBEIRO J & TYGEL M 3

Brazilian Journal of Geophysics,38(4),2020

actual computation costs). The authors conclude
that when properly allocating the resources
required, it is possible to reduce how much is
spent using the service. Therefore, using the
cloud is not as simple as getting equivalent
hardware to what is available locally in a cluster.

This work is the expansion of a previous work
published in a conference (Okita et al., 2019) that
had the objective of using GPUs to reduce both
the time and execution price of seismic processing
algorithms in the Amazon Web Services Elastic
Computing Cloud (AWS EC2). This work aims to
test how GPU accelerated instances perform in a
different traveltime other than the ones shown in
the original paper and explore the performance
increase when using multiple CPU instances and
multiple GPUs.

FORMULATION OF THE PROBLEM

In 2D seismic data, we want to estimate
traveltime’s kinematic parameters, normal-moveout
(NMO) velocities, slopes, and curvatures of
reflections in both the post-stack and prestack
domain. For simplicity, we assume one-component
data and events of interest are non-converted
primary reflections. The data samples in the data
set can be expressed as u(m,h,t), in which u
represents the observed amplitude, m is the
midpoint location, h is the half-offset distance, and t
is the time sample, all these being continuous
variables. With that defined, we estimate the
parameters in all data samples to identify points of
interest, such as reflections and diffractions without
a priori identification. This estimation problem can
be of great interest in processing tasks, such as
data regularization. Specifically, in this work, the

Offset-continuation trajectory traveltime operator
proposed by Coimbra et al., 2016 is used for both
zero-offset stacking and finite-offset data
regularization.

Coherency

Reflections and other seismic events have the
key property of presenting themselves as
coherent signals along a traveltime surface within
the seismic data. Since the coherence measure
has a quantitative characteristic, it can be used
as an objective function; in this case, the
estimation problem becomes an optimization
problem. We want to find the parameters that
maximize the objective function. Alongside that,
using coherence allows us to apply a stacking
procedure, increasing the amplitude wherever
there are points of interest with high coherence
and low amplitude in points without coherence.

For this work we use the semblance
coherence measure (see, Neidell and Taner,
1971). First, we suppose a given reference data
point location (m0,h0,t0) that belonging to a
traveltime surface t = t(m,h) defined for midpoint
and half-offset pairs (m,h) in the neighborhood of
(m0,h0). In the same neighborhood, we now
consider a given traveltime surface T =
T(m,h;p1,··· ,pn) in which pi are given kinematic
parameters. Finally, the semblance between
the two traveltime functions is given by

𝑆𝑆(𝑝𝑝1, … ,𝑝𝑝𝑛𝑛) =
∑ �∑ ∑ 𝑢𝑢𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑗𝑗=𝐽𝐽
𝑗𝑗=−𝐽𝐽

𝑖𝑖=𝐼𝐼
𝑖𝑖=−𝐼𝐼 �𝑘𝑘=𝑊𝑊

𝑘𝑘=−𝑊𝑊
2

𝑁𝑁∑ �∑ ∑ 𝑢𝑢𝑖𝑖,𝑗𝑗,𝑘𝑘
2𝑗𝑗=𝐽𝐽

𝑗𝑗=−𝐽𝐽
𝑖𝑖=𝐼𝐼
𝑖𝑖=−𝐼𝐼 �𝑘𝑘=𝑊𝑊

𝑘𝑘=−𝑊𝑊

 (1)

where N = (2 𝐼𝐼+1)(2 𝐽𝐽+1), ui,j,k = u(mi,hj,Tk)
represents the amplitudes computed at the

data points (mi,hj,Tk(mi,hj;p1,··· ,pn)). Notations

4 USING GPUS ON THE CLOUD FOR DATA REGULARIZATION

Brazilian Journal of Geophysics, 38(2),2020

are as follows:

𝑚𝑚𝑖𝑖 = 𝑚𝑚𝑜𝑜 + 𝑖𝑖∆𝑚𝑚, ℎ𝑗𝑗 = ℎ𝑜𝑜 + 𝑖𝑖∆ℎ,

𝑇𝑇𝑘𝑘(𝑚𝑚𝑖𝑖,ℎ𝑗𝑗;𝑝𝑝1 … , 𝑝𝑝𝑛𝑛)

= 𝑇𝑇(𝑚𝑚𝑖𝑖 ,ℎ𝑗𝑗;𝑝𝑝1 … , 𝑝𝑝𝑛𝑛) + 𝑘𝑘∆𝑡𝑡

(2)

where ∆m, ∆h, and ∆t denote midpoint, half-

offset, and uniform time sampling, respectively.

Note that at these locations, actual data points

may not exist. In this case, these are replaced

by interpolated values from neighboring points.

Differential Evolution meta-heuristic

A traditional approach to estimate the
parameters that maximize the objective
function is brute force through the
parameters. The domain is discretized, and
every combination of parameters is
attempted. Instead of this, a heuristic can be
used to produce similar quality results with
fewer iterations, such as the works of Barros
et al. (2015) and Walda and Gajewski (2017);
in this work, we use the Differential Evolution
(DE) meta-heuristic (see, Storn and Price,
1997). This heuristic relies on the dynamics
of a population. Starting with NP individuals,
each a vector of parameters, distributed
randomly in the objective function domain,
these individuals interact with each other
through processes called mutation and cross
over and generate a new individual. This new
individual is then compared to the original

one, then the one that is closer to the
maximum value is kept in the population,
while the other is discarded. This process
applied to every population member is called
a generation. The algorithm executes for a
predefined number of generations, picking
the individual’s parameters with the best
objective function value.

RESULTS

The results are divided into a few
subsections, with the first two corresponding
to the ZO-OCT stacking and FO-OCT
regularization. At the same time, a third one
corresponds to a scalability analysis. The
Amazon Web Services Elastic Compute
Cloud instances are shown in Table 1 are
used as hardware options. Their prices are
from the On-Demand instances in North
Virginia (us-east-1) region during June and
July 2019. The qualitative comparison from
the parameter estimation is between only one
CPU configuration (CPU1) and one GPU
configuration (GPU1). The reason being that
the discrepancies between different CPU
configurations or GPU configurations are
negligible. That means the parameters
obtained from GPU1 are the same as those
obtained from GPU2 and GPU3; similarly, the
parameters obtained from CPU1 are the
same as those obtained from CPU2 and
CPU3.

 OKITA NT, COIMBRA TA, RIBEIRO J & TYGEL M 5

Brazilian Journal of Geophysics,38(4),2020

Figure 1 – Flowchart of the Differential Evolution implementation in GPU, illustrating the parallelism in the steps of the

Differential Evolution algorithm.

It is worth mentioning that the CPU
implementation is done with C++ and compiled
using gcc with the -O3 flag, enabling most
compiler optimizations. On the other hand, we
use CUDA compiled with nvcc for the GPU
implementation, which provides the best
performance for the GPUs we use in our
experiments. Furthermore, for execution, we use
our inhouse framework called SPITS (see,
Benedicto et al., 2017) to parallelize the
algorithm, allowing for maximum usage of all
cores and GPU accelerators, even on different
machines. Finally, the results are obtained from a
single execution.

Table 1 – Machine configurations.

Configuration Processing Unit RAM
(GB)

Price
(USD/h)

CPU1
(c5.18xlarge)

72 Xeon Platinum
8124 3GHz vCores 144 3.060

CPU2
(m5.24xlarge)

96 Xeon Platinum
8175 2.5GHz vCores 384 4.608

CPU3
(c5.24xlarge)

96 Xeon Platinum
8124 3GHz vCores 192 4.080

GPU1
(p3.2xlarge)

1 Nvidia Tesla
V100 16GB 61 3.060

GPU2
(g3s.xlarge)

1 Nvidia Tesla
M60 8GB 30.5 0.750

GPU3
(p2.xlarge)

1 Nvidia Tesla
K80 12GB 61 0.900

Zero-Offset OCT

The execution times for the ZO-OCT traveltime in
both data sets and their respective prices are
shown in Tables 2 and 3. For qualitative analysis,
Figure 3 depicts the stacked section for the
synthetic (St) data set that was output by CPU1
and GPU1 configurations. The parameters are
shown in Figure 4. Similarly, Figure 5 depicts the
stacked section for the real (Re) data set, while
its parameters are shown in Figure 6.

Table 2 – Execution time and prices for ZO-OCT in the St

Data set.

Configuration Execution Time (minutes) Price (USD)

CPU1 2.69 0.137
CPU2 2.35 0.181
CPU3 2.02 0.138
GPU1 0.20 0.010
GPU2 0.34 0.004
GPU3 0.41 0.006

Comparing the CPU configurations in the
synthetic workload (St) in Table 2, they all have
similar execution times with similar prices. On the
other hand, we see differences between the GPU
configurations regarding the execution time (with

6 USING GPUS ON THE CLOUD FOR DATA REGULARIZATION

Brazilian Journal of Geophysics, 38(2),2020

GPU3 taking over twice as long as GPU1 to
process the task) and prices (with GPU2
completing the task spending less money). It is
noticeable that the biggest difference in
performance appears when we compare CPU
and GPU configurations, with GPU1 being over

ten times faster than any CPU configuration and
GPU2 being over thirty times cheaper than the
CPU powered instances. However, since this is a
small synthetic workload, the time difference
appears as only some seconds while the savings
are in the order of cents of a dollar.

Figure 2 – Flowchart of the Differential Evolution implementation in CPU, showing the algorithm

parallelism with each CPU thread processing a CDP (in the post-stack domain) or a set of traces (in

the prestack domain).

When we compare the results obtained in
Figures 3 and 4, it is noticeable that the only
difference comes from rounding errors.
Therefore, the time and price improvements
come at no quality cost.

Table 3 – Execution time and prices for ZO-OCT in the Re

Data set.

Configuration Execution Time
(minutes)

Price
(USD)

CPU1 269.07 13.722
CPU2 223.11 17.135
CPU3 192.32 13.078
GPU1 6.00 0.306
GPU2 21.63 0.270
GPU3 20.34 0.305

The real workload results, execution times,
and prices are shown in Table 3. This time
around, it is possible to see improvements when

using larger CPU instances, such as CPU3,
compared to smaller ones, such as CPU1, with
the execution finishing in less than an hour for
roughly the same price. On the other hand, even
though CPU2 concludes the task faster than
CPU1, it still is slower than CPU3 and more
expensive than both. When comparing GPU
instances, it is noticeable that GPU1 is
significantly faster than the other options, albeit
at a higher price.

This comparison becomes more interesting as
we compare CPU and GPU instances. The
fastest GPU instance, GPU1, is over thirty times
faster than any CPU option, offering over forty
times cost savings, reflecting in time differences
in the magnitude of hours and price comparison

 OKITA NT, COIMBRA TA, RIBEIRO J & TYGEL M 7

Brazilian Journal of Geophysics,38(4),2020

of over ten dollars compared to dozens of cents.
On the other hand, even the cheapest and
slowest GPU instance, GPU2, is still around ten
times faster than any CPU option and around fifty
times cheaper than any CPU option.

Yet again, this performance improvement
comes at no quality deterioration. It is notable in
Figure 5 that both implementations produced the
same results, except for rounding errors.
Furthermore, there are no discernible differences
when comparing the GPU output from the CPU
output shown in Figure 6; therefore, the
parameter output also suffered no loss of quality
with the massive performance improvement. This
comes as no surprise, because the
implementation does not change the heuristic
itself, but its parallelism; the small differences
that appear are expected to happen since the
heuristic used to optimize the parameters relies
on random mechanisms.

Finite-Offset OCT

Both performance and price improvements from
the GPU usage become much more evident
when applying regularization using the OCT
traveltime. Similarly to the previous zero-offset
stacking case, we see massive time and price
reductions along with near-identical regularized
data set and parameters; these improvements
can be seen in Tables 4 and 5, which shows both
the execution times and prices obtained from the
regularization in data set St and Re, respectively.
To analyze the quality impact we show both
regularized data sets in Figures 7 and 9, for St
and Re, respectively; while their parameters are
shown in Figures 8 and 10. To simplify the
analysis we only show the result in the offset

positioned at 200m for the St data set and 150m
for the Re data set.

Table 4 – Execution time and prices for FO-OCT in the St

data set.

Configuration Execution Time
(minutes)

Price
(USD)

CPU1 45.10 2.300
CPU2 37.90 2.911
CPU3 33.91 2.306
GPU1 2.95 0.150
GPU2 7.86 0.098
GPU3 9.03 0.135

Figure 3 – Comparison between CPU1 (top) and GPU1

(bottom) stacked result for ZO-OCT in data set St.

8 USING GPUS ON THE CLOUD FOR DATA REGULARIZATION

Brazilian Journal of Geophysics, 38(2),2020

(a) Velocity parameter in m/s

(b) Angle parameter in s/m

Figure 4 – Comparison between CPU1 (left) and GPU1

(right) estimated parameter result for ZO-OCT in data set St.

Since the data set regularization involves
processing the whole data set even in the synthetic
workload, we can see a significant difference when
comparing CPU instances to GPU instances. The
CPU instance with the best performance is CPU3,
being only 0.006 USD more expensive than its
slower counterpart CPU1, while CPU2 shows
middle ground performance between those two,
however at a higher price. Among the GPU
devices, we see the same behavior shown in the
synthetic zero-offset section; GPU1 being the
fastest while being more expensive than GPU2,
both better choices than GPU3 that is both slower
and more expensive than GPU2. Comparing CPU
and GPU results we see that we have
improvements in dozens of minutes with over
tenfold cost savings.

The offset produced by both implementations
only differs in rounding errors. The same applies to
the parameters. Therefore, we can conclude that,
as expected, we can get that massive performance
boost without sacrificing the parameters’ quality.

Figure 5 – Comparison between CPU1 (top) and GPU1

(bottom) stacked result for ZO-OCT in data set Re.

Similar to what was seen in the zero-offset
stacking section, when we execute the more
extensive real data set, the performance
difference becomes even more massive. Since
we are dealing with a more extensive data set
and a more computationally intensive operator,
we now see that while every GPU can produce
the output in less than one hour, every CPU
instance took at least eight hours to process,
CPU1 taking about eleven. The price takes a
significant cut alongside the execution time
reduction, as it becomes noticeable that GPU1 is
now over fifty times cheaper than any CPU
option and is also the most affordable option to
regularize this data set.

OKITA NT, COIMBRA TA, RIBEIRO J & TYGEL M 9

Brazilian Journal of Geophysics,38(4),2020

(a) Velocity parameter in m/s

(b) Angle parameter in s/m

Figure 6 – Comparison between CPU1 (left) and GPU1

(right) estimated parameter result for ZO-OCT in data

set Re.

Finally, as expected, there is no quality
degradation neither in the parameters shown in
Figure 10, nor in the regularized offset section
shown in Figure 9. We imply that the GPU
implementation did not affect the metaheuristic
quality and massive performance improvement
alongside cost savings.

Table 5 – Execution time and prices for FO-OCT in the Re

data set.

Configuration Execution Time
(minutes)

Price
(USD)

CPU1 669.84 34.162
CPU2 552.16 42.406
CPU3 484.15 32.922
GPU1 13.26 0.676
GPU2 56.75 0.709
GPU3 54.85 0.823

Figure 7 – Comparison between CPU1 (top) and GPU1

(bottom) stacked result for FO-OCT in data set St.

Scalability

This subsection brings a final discussion about
scalability, in which we experiment on what kind
of performance we can achieve when using
multiple CPU instances against numerous GPUs.
Table 6 shows the hardware configurations used
for these experiments with their respective prices
per hour, again disregarding storage prices.

The first experiment again estimates the ZO-
OCT stacking operator parameters, with both
data sets St and Re. Also, the execution times
and prices for each configuration when running
data set St are shown in Table 7, while those
measurements when running data set Re are
shown in Table 8; for comparison reasons, the

10 USING GPUS ON THE CLOUD FOR DATA REGULARIZATION

Brazilian Journal of Geophysics, 38(2),2020

CPU3 and GPU1 results from the previous
section are also in the table. The parameters and
stacked sections are not displayed due to no
differences in the previous section.

(a) Velocity parameter in m/s

(b) Angle parameter in s/m

Figure 8 – Comparison between CPU1 (left) and GPU1

(right) estimated parameter result for FO-OCT in data

set St.

Table 6 – Hardware configuration for scalability tests.

Configuration Processing Unit RAM
(GB)

Price
(USD/h)

MULCPU1
(2×c5.24xlarge)

192 Xeon
Platinum

8124 3GHz
vCores

384 9.060

MULGPU1
(p3.8xlarge)

4 Nvidia Tesla
V100 16GB 244 12.240

MULGPU2
(p3.16xlarge)

8 Nvidia Tesla
V100 16GB 488 24.480

Figure 9 – Comparison between CPU1 (top) and GPU1

(bottom) stacked result for FO-OCT in data set Re.

(a) Velocity parameter in m/s

(b) Angle parameter in s/m

Figure 10 – Comparison between CPU1 (left) and GPU1

(right) estimated parameter result for FO-OCT in data set Re.

OKITA NT, COIMBRA TA, RIBEIRO J & TYGEL M 11

Brazilian Journal of Geophysics,38(4),2020

Table 7 – Execution time and prices for ZO-OCT in data set St.

Configuration Execution Time
(minutes)

Price
(USD)

CPU3 2.02 0.138
MULCPU1 1.75 0.238

GPU1 0.20 0.010
MULGPU1 0.17 0.035
MULGPU2 0.30 0.124

Comparing the scalability of CPU instances in
Table 7, it is noticeable that there is almost no
performance impact when using multiple CPUs
instances compared to a single one; the same
behavior can be seen in GPU instances. On the
other hand, the price increases to the same
proportion as we add more GPUs or CPU
instances. This problem is that the data set is too
small; therefore, adding more instances to work
on the estimation would not improve
performance, as the bottleneck is not in the
estimation process anymore.

Table 8 – Execution time and prices for ZO-OCT in data set Re.

Configuration Execution Time
(minutes)

Price
(USD)

CPU3 192.32 13.078
MULCPU1 102.16 13.894

GPU1 6.00 0.306
MULGPU1 1.05 0.215
MULGPU2 0.80 0.325

Differently from the St data set, the significantly
larger Re data set produces noticeable
performance improvements, as seen in Table 8.
As expected, when using double the number of
CPU instances, we see that the execution time
drops in about fifty percent. Following the same
pattern, we see nearly eight performance
improvement improvements when using eight
GPUs and, surprisingly, about five performance
improvement times using four GPUs.

The explanation for the superlinear performance
scalability when using configuration MULGPU1
compared to GPU1 relies on more details from the
Amazon Web Services cloud infrastructure. Briefly, it
is explained by using different availability zones
when creating the instances, with GPU1 and
MULGPU2 running on zone us-east-1b, while
MULGPU1 ran on zone us-east-1f. Even though
there should be no differences when using instances
from different availability zones within the same
region, this does not happen, with some instances in
some zones outperforming the same hardware
configuration in other zones. The performance
variation between different availability zones and in
different moments in time is an already known
challenge when using cloud computing (see, Schad
et al., 2010). However, such variations do not impact
the overall conclusion, even though they were
obtained from a single execution, as we observe
orders of magnitude of differences.

With these linear performance increases, the
MULCPU and MULGPU configurations’ execution
price also remains about the same as the CPU and
GPU ones; since the price per hour is also directly
proportional to the number of instances being
deployed (or the number of GPUs in an instance).
Notably, there is also a price increase when using
multiple instances caused by waiting for the new
instance to boot and load the data before the
estimation process. The only exception to that small
increase in price is MULGPU2. Due to its
superlinear performance improvement, it ends up
costing even less than GPU1.

The second experiment performed is the OCT
regularization in both data sets St and Re, with their
results shown in Tables 9 and 10, respectively.
Again the parameters and regularized sections are
not displayed since there is no difference to those
obtained in the previous section.

12 USING GPUS ON THE CLOUD FOR DATA REGULARIZATION

Brazilian Journal of Geophysics, 38(2),2020

Table 9 – Execution time and prices for FO-OCT in data set St.

Configuration Execution Time
(minutes)

Price
(USD)

CPU3 33.91 2.306
MULCPU1 17.15 2.332

GPU1 2.95 0.150
MULGPU1 0.80 0.164
MULGPU2 0.67 0.271

The regularization performed in data set St
has its execution times and prices shown in
Table 9. As expected, MULCPU1 cuts the
execution time to around 50% of the original
CPU3 time, with a very similar price; this
happens due to the price per hour being twice as
expensive as the CPU3 configurations while the
execution time is only half the original. Similar
behavior happens in the GPU configurations, in
which we can see MULGPU1 performing four
times faster than GPU1, without drastically
increasing the price. In MULGPU2, on the other
hand, we see that the performance increase was
below the expected; along with it comes a larger
increase in price, since it is eight times more
expensive per hour than GPU1, while its
performance is only around 4.5 times faster.

Table 10 – Execution time and prices for FO-OCT.

Configuration Execution Time
(minutes)

Price
(USD)

CPU3 484.15 32.922
MULCPU1 248.29 33.768

GPU1 13.26 0.676
MULGPU1 2.45 0.500
MULGPU2 1.75 0.715

Finally, with a larger data set such as the Re
data set, we can see the performance
improvements as we increase the number of
machines. Notably, the MULCPU1 configuration
is still around twice as fast as the CPU3
configuration, both at very similar prices.
Regarding the GPU configurations, MULGPU1

presents a superlinear performance (being over
four times faster than the GPU1 configuration
with four times the number of GPUs; the reason
was briefly aforementioned) MULGPU2 is about
eight times faster than the GPU1 configuration.
Regarding pricing, MULGPU2 has a very similar
price to GPU1, while MULGPU1, with its
superlinear performance increase, offers the
cheapest option among all configurations.

After analyzing how each configuration
performs, we can conclude that adding more CPU
instances or GPU instances to perform the
processing task does not affect their pricing, given
that the task can scale linearly. Therefore, GPU
powered instances still are far superior to their
CPU counterparts both in execution time and in
price, with over one hundred times faster
execution times with dozens of times lower prices.
Notably, as we increase the number of instances
being used, we also see small increases in prices.
There is a constant price regarding booting the
instance and loading the data before the actual
processing. Furthermore, one must be careful with
scaling limits since smaller data sets (e.g., the St
data set) or simpler traveltimes operators (e.g.,
zero-offset stacking) can benefit little or even lose
performance when adding more instances,
leading to higher charges than necessary.

Memory usage

A final important point to highlight is memory
usage, as large datasets are expected to require
more memory. Also, it is noteworthy that GPU
devices have considerably less memory than
CPU systems, which can be seen in Tables 1
and 6, where the GPU memory is capped at
16GB, while the system memory can be in the
order of hundreds of gigabytes. Therefore, the

OKITA NT, COIMBRA TA, RIBEIRO J & TYGEL M 13

Brazilian Journal of Geophysics,38(4),2020

challenge of high memory requirements become
more significant with such devices. It is possible
to use a unified memory approach to allow a
single device to access the whole memory
system plus all the other GPUs’ memory, dealing
with the aforementioned challenge. The
advantage of using such a scheme is a robust
page faulting and migration mechanism,
implemented on recent GPU architectures
(starting with Nvidia Pascal), where data is
migrated on-demand to where it is accessed.
Hence, enabling the usage of more memory than
what is usually available to on devices, improving
code transparency, and freeing the developer
from manual memory management (see, Harris,
2013). However, those benefits come at a
possible cost of transfer time overhead due to the
data movement from device to system memory,
which can negatively affect execution time.
However, if the memory required fits in the GPU
memory, there is no impact on performance.

CONCLUSION

In this work, we accelerated both the ZO-OCT
stacking and FO-OCT regularization with GPU
devices, exploring how the performance
improves. Furthermore, by using the cloud, we
were able to analyze how the price can be
affected as well, since, in the pay-as-you-go
model, the user only pays for how long the
instance is being used, then lower execution
times can lead to lower prices.

The GPU implementation provided the same
quality results with times up to ten times lower
than the CPU implementation, along with cost
savings in the order of thirty times. Furthermore,
even the smallest GPU configurations were able

to beat all high-end CPU configurations, resulting
in less time and a fraction of the price. A final point
of analysis was the scalability potential, which was
performed by running the same program and data
sets with multiple CPU instances and multiple
GPU devices. While we saw a performance
increase in more massive data sets, the price
remained very similar to executing the problem
with only a single CPU instance or a single GPU
instance. In smaller data sets, we did not see any
performance increase or even saw performance
degradation; this leads to higher charges
proportional to the number of new instances
created (or GPU devices used). Finally, we
observe that there are limits to how much the
program can scale depending on the input;
therefore, an analysis of the optimal number of
instances may be required.

In conclusion, the OCT traveltime benefits
mainly from GPU devices, drastically
decreasing the time spent processing and
delivering low prices on the cloud. Not only that
but in large workloads, the programs can scale
well (with either multiple CPUs or GPUs),
delivering significantly faster execution prices
at a very similar price.

ACKNOWLEDGMENTS

This work was possible thanks to the support of
Petrobras and Fapesp (2013/08293-7).

REFERENCES

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D.,
Katz, R., Konwinski, A., Lee, G., Patterson, D.,
Rabkin, A., Stoica, I., and Zaharia, M., 2010, A
view of cloud computing: Communications of the

14 USING GPUS ON THE CLOUD FOR DATA REGULARIZATION

Brazilian Journal of Geophysics, 38(2),2020

ACM, 53, no. 4, 50–58.

Barros T., Ferrari, R., Krummenauer, R., and Lopes,
R., 2015, Differential evolution-based optimization
procedure for automatic estimation of the common-
reflection surface traveltime parameters:
Geophysics, 80, no. 6, WD189–WD200.

Benedicto, C., Rodrigues, I.L., Tygel, M., Breternitz,
M., and Borin, E., 2017, Harvesting the
computational power of heterogeneous clusters to
accelerate seismic processing: 15th International
Congress of the Brazilian Geophysical Society, Rio
de Janeiro, Brazil.

Coimbra, T. A., Novais, A., and Schleicher, J.,
2016, Offset-continuation stacking: Theory and
proof of concept: Geophysics, 81, no. 5, V387–
V401.

Deelman, E., Singh, G., Livny, M., Berriman, B.,
and Good, J., 2008, The cost of doing science on
the cloud: The montage example: 2008 SC -
International Conference for High Performance
Computing, Networking, Storage and Analysis,
Austin, Texas.

Emeras, J., Varrette, S., Plugaru, V., and Bouvry,
P., 2016, Amazon elastic compute cloud (EC2)
versus in-house HPC platform: A cost analysis:
IEEE Transactions on Cloud Computing, 7, no. 2,
456– 468.

Harris, M., 2013, Unified memory in CUDA 6:
NVIDIA Developer Blog. Access on September 29th

2020. Available on: https://developer.nvidia.com/
blog/unified-memoryin-cuda-6/.

Neidell, N. S., and Taner, M. T., 1971, Semblance
and other coherency measures for multichannel
data: Geophysics, 36, no. 3, 482–497.

Okita, N., Coimbra, T., Rodamilans, C., Tygel, M.,
and Borin, E., 2018, Using SPITS to optimize the
cost of high-performance geophysics processing
on the cloud: First EAGE Workshop on High
Performance Computing for Upstream in Latin
America, Santander, Colombia.

Okita, N., Coimbra, T. A., Ribeiro, J., and Tygel, M.,
2019, Using graphics processing units on the cloud
to accelerate and reduce processing cost of pa-
rameters estimation of seismic processing algorithm:
16th International Congress of the Brazilian
Geophysical Society, Rio de Janeiro, Brazil.

Schad, J., Dittrich, J., and Quiane-Ruiz, J.-A.,
2010,´ Runtime measurements in the cloud:
Observing, analyzing, and reducing variance: Proc.
VLDB Endow., 3, no. 1-2, 460–471.

Storn, R., and Price, K., 1997, Differential evolution
a simple and efficient heuristic for global
optimization over continuous spaces: Journal of
Global Optimization, 11, no. 4, 341–359.

Walda, J., and Gajewski, D., 2017, Determination
of wavefront attributes by differential evolution in
the presence of conflicting dips: Geophysics, 82,
no. 4, V229–V239.

Recebido em 16 de outubro de 2019 / Aceito em 18 de novembro de 2020
Received on October 16, 2019 / Accepted on November 18, 2020

https://developer.nvidia.com/blog/unified-memoryin-cuda-6/
https://developer.nvidia.com/blog/unified-memoryin-cuda-6/

	INTRODUCTION
	FORMULATION OF THE PROBLEM
	Coherency
	RESULTS
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

