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ABSTRACT. Inverse problems are usually ill-posed in such a way that it is necessary to use some method to reduce 

their deficiencies. For this purpose, we use the regularization by derivative matrices, known as Tikhonov regularization. 
There is a crucial problem in regularization, which is the selection of the regularization parameter 𝜆. In this work, we 

use generalized cross validation (GCV) as a tool for the selection of 𝜆. GCV is used here for an application in 
geophysical diffraction tomography, where the objective is to obtain the 2-D velocity distribution from the measured 
values of the scattered acoustic field. The results are compared to those obtained using L-curve, and also Θ-curve, 
which is an extension of L-curve. We present several simulation results with synthetic data, and in general the results 
using GCV are equal or eventually better than the other two approaches. 
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RESUMO. Os problemas inversos são geralmente mal postos de tal forma que é necessário usar algum método 

para reduzir suas deficiências.  Para este propósito, utilizamos a regularização por matrizes derivadas, conhecida 
como regularização de Tikhonov. Há um problema crucial no procedimento da regularização, que é a seleção do 

parâmetro de regularização 𝜆. Neste trabalho, usamos a validação cruzada generalizada (GCV) como uma ferramenta 
para a seleção do 𝜆. O GCV é usado aqui para uma aplicação em tomografia geofísica de difração, em que o objetivo 
é obter a distribuição 2-D da velocidade a partir dos valores medidos do campo acústico espalhado. Os resultados 

são comparados aos obtidos usando a curva L, e também a curva Θ, que é uma extensão da curva L. Apresentamos 
vários resultados de simulação com dados sintéticos e, em geral, os resultados usando GCV são iguais ou 
eventualmente melhores do que as outras duas abordagens. 
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INTRODUCTION 

The petroleum industry is the major user of 

geophysical inverse methods for subsurface 

imaging. Among the different methods, seismic 

methods (or exploration seismology methods) are 

the most common. There are two main classes of 

seismic tomography or more correctly acoustical 

tomography: those that use only kinematic 

traveltimes between sources and receivers, and 

those that use the wave amplitudes, i.e., a 

dynamic approach. In this work, we use a special 

kind of the latter, known in the literature as 

geophysical diffraction tomography (GDT). In 

GDT, the input data is the scattered acoustic field 

measured at the receivers, and the velocity of the 

medium is the inversion output. Instead of using 

the classical approach of GDT, that is, Fourier 

projection theorem (Devaney, 1984; Slaney et al., 

1984; Harris, 1987; Wu & Toksöz, 1987), we use 

a matrix formulation approach (Thompson et al., 

1994; Reiter & Rodi, 1996; Rocha-Filho et al., 

1996; Rocha-Filho et al., 1997). The main 

advantages of the matrix formulation are: (1) the 

option of having irregular spacing (i) between 

sources, (ii) between receivers and (iii) between 

sources and receivers (all very common in 

practical situations with real data); and (2) the 

possibility to study, in a better way, the ill-

posedness of the inverse problem. 

We use scattered acoustic data simulated 

with a 2-D finite difference scheme, e.g., second 

order in time and fourth order in space. The 

tomographic matrix is computed using a first order 

Born approximation. GDT is an ill-posed inverse 

problem, so it is necessary to use some tool to 

reduce this deficiency. The tool that we choose is 

the regularization of the inverse problem by 

derivative matrices, known in the literature by 

several names, in particular Tikhonov 

regularization. One regularization parameter, 𝜆, 

whose choice is already a problem, plays an 

especially crucial role.  

There are several techniques to find the 

optimum 𝜆, for example, the L-curve. In geophysical 

applications that employed the L-curve, one could 

mention Santos and Bassrei (2007) in GDT, and 

Giraud et al. (2019) who used L-curve in joint 

inversion of petrophysical and geophysical data. In 

other areas outside geophysics, Niknam Shahrak 

et al. (2013) used, among different techniques, the 

L-curve as a method to choose 𝜆 in a pore size 

distribution determination problem. Recently, 

Guizar-Sicairos et al. (2020) used the L-curve in an 

X-ray scattering problem.  

Besides using the L-curve, Santos & Bassrei 

(2007) proposed a variation of it, called the Θ-curve. 

The application of the Θ-curve as a method for the 

selection of optimum 𝜆 was employed in other 

application. For instance, Rodrigues & Bassrei 

(2016) used Θ-curve in traveltime tomography in 

real data from the Recôncavo Basin, state of Bahia, 

Brazil. And in correlated areas to GDT,  one could 

mention the work of Zhang (2011), who used Θ-

curve and a variation of it, called improved Θ-curve, 

in near field acoustic holography.  

Yao & Roberts (1999) used the generalized 

cross-validation (GCV) for the choice of the 

regularization parameter in linear seismic 

tomographic inversion. The GCV technique 

suggests that a good value for the regularization 

parameter 𝜆 should predict which element of the 

data vector is missing or has been removed. More 

precisely, if an element of the data vector is 

removed, then the corresponding regularized 

solution must predict this absence well. GCV has 

been used in several papers related to geophysical 

applications. Mojica & Bassrei (2015) used GCV to 

select the optimum 𝜆 in the inversion of 3-D gravity 

data with parallel processing. Oliveira & Bassrei 

(2015) used GCV to select the optimum 𝜆 in 

electromagnetic tomography. In GDT, Silva & 

Bassrei (2016) used GCV to select the optimum 𝜆 

in an application of multifrequency GDT as a tool 

for CO2 monitoring and Sande et al. (2019) used 

GCV to select the optimum 𝜆 in an iterative 
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multifrequency GDT where the background 

medium is not assumed to be known. In other 

applications outside geophysics, one could 

mention Lay-Ekuakille et al. (2010) who used GCV 

in a problem of leak detection of pipelines. 

Farquharson & Oldenburg (2004) compared GCV 

and L-curve for geophysical applications in non-

linear inversion of electromagnetic data. 

This paper has the following structure: the 

theories of linear inversion and regularization are 

reviewed, and the GCV technique is presented; then 

we review the theory of diffraction tomography within 

the framework of the Born approximation. For the 

simulations, we use the GCV method in GDT for two 

acquisition geometries: cross-hole and vertical 

seismic profile (VSP). We compare the GCV results 

with two other approaches: L-curve and Θ-curve. 

Linear Inversion, Regularization and 

Generalized Cross Validation 

Consider a modeling process where the input to 

some system is described by parameters 

contained in 𝐦 and the output is described as 𝐀𝐦 

which is a linear transformation on 𝐦. If the vector 

𝐝 describes the “observed” output of the system, 

the problem will be to “choose” the parameters 𝐦  

in order to minimize in some sense the difference 

between the observed 𝐝 and the prescribed output 

of the system 𝐀𝐦. If we measure this difference 

through the norm ‖•‖, our task will be to find the 

value of 𝐦 which minimizes 

∥Am− d∥2, (1) 

where the 𝑀 ×𝑁 matrix 𝑨 and the data vector 𝒅 

with 𝑀  elements are provided to the problem 

(Menke, 2012). This is called a least squares 

problem, which can be formally stated as follows. 

Considering the basic relationship 

d=Am+e, (2) 

we wish to minimize the error using the following 

objective function: 

𝛷(𝒎) = 𝒆𝑇𝒆 + 𝜆𝐿2, (3) 

where the error is given by 𝐞 = 𝐝 − 𝐀𝐦 , 𝜆  is a 

scalar called the damping parameter, and 𝐿2 =

𝐦𝑇𝐦. The estimated solution of Equation (3), also 

called the damped least squares (DLS) solution, is 

𝐦𝑒𝑠𝑡 = (𝐀𝑇𝐀+ 𝜆𝐈)−1𝐀𝑇𝐝𝑜𝑏𝑠. (4) 

The inverse of matrix (𝐀𝑇𝐀+ 𝜆𝐈)  is usually 

calculated using the singular value decomposition 

(SVD). A rectangular 𝑀 ×𝑁  matrix 𝑨  with rank 𝑘 

can be decomposed as 𝐀 = 𝐔𝚺 𝐕𝑇 , where 𝐔 is the 

𝑀 ×𝑀  matrix which contains the orthonormalized 

eigenvectors of 𝐀𝐀𝑇; 𝑽 is the 𝑁 × 𝑁  matrix which 

contains the orthonormalized eigenvectors of 𝐀𝑇𝐀; 

and 𝚺  is the 𝑀 ×𝑁  matrix which contains the 

singular values of 𝑨, written in decreasing order, that 

is, 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑘 . The GI 𝐀+ is a 𝑁 ×𝑀 matrix 

given by 𝐀+ = 𝐕𝚺+𝐔𝑇 ,  where 𝚺+  is the 𝑁 ×𝑀 

matrix which contains the reciprocals of the non-zero 

singular values of 𝐀, so that 

𝜮+ = (

𝑬 0 ⋯ 0
0 0 ⋯ 0
⋯ ⋯ ⋱ ⋮
0 0 ⋯ 0

), (5) 

and 𝑬  is the diagonal square matrix of order 𝑘 

expressed by 

𝑬 =

(

 

𝜎1
−1 0 ⋯ 0

0 𝜎2
−1 ⋯ 0

⋯ ⋯ ⋱ ⋮
0 0 ⋯ 𝜎𝑘

−1)

 . (6) 

Least-squares solutions very often do not provide 

good results and sometimes they do not even exist. 

In order to solve this problem, we use the tool of 

regularization or smoothing: the ill-conditioning of 

the matrix 𝐀 is regularized and the unstable least-

squares estimate 𝐦𝑒𝑠𝑡 is consequently smoothed to 

greatly reduce the influence of noise in 𝐝, hopefully 

without distorting the resulting smoothed image too 

far from the true 𝐦 (Titterington, 1985). 

The concept of regularization was introduced 

by Tikhonov in 1963 in order to improve the quality
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of the inversion. This theory was studied by many 

researchers, and we use the approach of Twomey 

(1963). See Bassrei & Rodi (1993) for more details 

about names and history in regularization theory. 

Consider the following objective function: 

𝛷(𝒎) = 𝒆𝑇𝒆 + 𝜆(𝑫𝑙𝒎)
𝑇𝑫𝑙𝒎,  (7) 

where 𝜆 is the regularization parameter and 𝐃𝑙 is 

the 𝑙-order derivative matrix. The estimated model 

of Equation (7) is given by 

𝒎𝑒𝑠𝑡 = (𝑨𝑇𝑨 + 𝜆𝑫𝑙
𝑇𝑫𝑙)

+𝑨𝑇𝒅𝑜𝑏𝑠.  (8) 

Notice that if 𝜆 = 0 we obtain the standard least 

squares, and the least squares is said to be 

damped if 𝑫0
𝑇𝑫0 = 𝑰.  If 𝐃  is the first derivative 

matrix then the regularization is called to be first 

order and so on. Each 2-D model was scanned line 

by line to be represented by a single vector, that is, 

rasterized. It simplifies the form of the discrete 

derivative approximation matrix, which resembles a 

regular pattern. Thus, the matrices 𝐃1 and 𝐃2 may 

be represented by the following templates: 

𝑫1 =

(

 
 

−1 1 0 0 0 0 0 ⋯ 0
0 −1 1 0 0 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 0 0 0 −1 1 0
0 ⋯ 0 0 0 0 0 −1 1)

 
 
, (9) 

and 

𝑫2 =

(

 
 

1 −2 1 0 0 0 0 ⋯ 0
0 1 −2 1 0 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 0 0 1 −2 1 0
0 ⋯ 0 0 0 0 1 −2 1)

 
 
. (10) 

For the determination of the optimum 

regularization parameter 𝜆  we used the GCV 

(generalized cross validation) approach. GCV is 

based on the principle of cross validation, that is, 

the regularized inverse problem is solved by 

making 𝑀  realizations and omitting, at each 

realization, one point of the observed data. For 

each realization a specified regularization 

parameter 𝜆  is used. It is expected that the 

selected 𝜆 is adequate, that is, the calculated data 

obtained by forward modeling for the 𝑘‑th 

realization (𝒅𝑘
𝑐𝑎𝑙𝑐(𝒎𝑘

𝑒𝑠𝑡)) is near to the observed 

data. Thus the optimum regularization parameter 

is the one which minimizes the conventional cross 

validation function 𝑉0(𝜆)  (Golub et al., 1979; 

Wahba, 1990) expressed by: 

𝑉0(𝜆) = ∑[𝒅𝑘
𝑜𝑏𝑠 − 𝒅𝑘

𝑐𝑎𝑙𝑐(𝒎𝑘
𝑒𝑠𝑡)]2

𝑁

𝑘=1

. (11) 

The same function can be evaluated in a more 

efficient way, not demanding the solution of the 

inverse problem for each omitted data, by using 

the following expression (Wahba, 1990): 

𝑉0(𝜆) =∑
[𝒅𝑖
𝑜𝑏𝑠 − 𝒅𝑖(𝒎𝜆)]

2

[1 − 𝐵𝑖𝑖(𝜆)]
2

𝑁

𝑖=1

. (12) 

where 𝒎𝜆 = (𝑨
𝑇𝑨 + 𝜆𝑫𝑙

𝑇𝑫𝑙)
−1𝑨𝑇𝒅𝑜𝑏𝑠  is the 

solution of the inverse problem for a particular 

value of 𝜆,  and 𝐵𝑖𝑖  is the 𝑖‑th  element of the 

diagonal matrix 𝑩 = 𝑨(𝑨𝑇𝑨+ 𝜆𝑫𝑙
𝑇𝑫𝑙)

−1𝑨𝑇 .  

Modifying the expression of conventional 

cross validation function, one obtains the 

generalized cross validation function or GCV as 

given by Wahba (1990): 

𝑉0(𝜆) =∑
‖𝒅𝑖

𝑜𝑏𝑠 − 𝒅(𝒎𝜆)‖
2

{tr[𝐈 − 𝐁(𝜆)]}2

𝑁

𝑖=1

. (13) 

which is invariant under an orthogonal 

transformation. In the denominator of Equation (13), 

the trace of a square matrix 𝑰 − 𝑩(𝜆), denoted by 

tr[𝐈 − 𝐁(𝜆)], is defined to be the sum of elements on 

the main diagonal of the matrix. 

For the solution of a non-linear problem, one 

often uses an iterative procedure, where GCV can 

be applied in each iterative step. In the last 

iteration, if there is convergence, the changes in 

model parameters will be small, indicating that the 

linearized approximations are an adequate 

description of the non-linear problem. Thus, one 

can apply GCV both to linear and non-linear 

problems, that is, since the estimate of optimum 

regularization parameter in the first iterations is 
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near the last ones, this approach can be used in 

non-linear problems. This means that GCV treats 

in a distinct way the Gaussian noise in observed 

data in relation to errors generated by the 

linearized inversion scheme. 

Diffraction Tomography Modeling 

via Born Approximation 

In this section, we discuss how to reformulate the 

original non-linear inversion problem in order to 

estimate the velocity field using linear inversion, 

i.e., diffraction tomography. This procedure is 

performed by considering only first-order 

scattering and small perturbations on velocity 

field. From the wave equation: 

𝛻2𝑈(𝒓, 𝑡) =
1

𝑐2(𝒓)

𝜕𝑈(𝒓, 𝑡)

𝜕𝑡2
, (14) 

where 𝑈(𝒓, 𝑡) is the displacement or pressure field 

and 𝑐(𝒓) is the acoustic velocity of the medium. 

Let us consider that this field can be represented 

by a harmonic solution 𝑈(𝒓,𝜔, 𝑡) = 𝑒−𝑖𝜔𝑡𝑃(𝒓, 𝜔). 

The resulting wave equation in frequency domain 

is the Helmholtz equation:  

[𝛻2 + 𝑘2]𝑃(𝒓, 𝜔) = 0, (15) 

where 𝑘 = 𝑘(𝑟, 𝜔) = √𝑘𝑥
2 + 𝑘𝑦

2. 

Some assumptions are made in order to 

further simplify the discussion without loss of 

generality since its formulation can be extended to 

a wider class of problems if needed. It is assumed 

that the medium is 2-D and acoustic, the incident 

field propagation is limited to a certain area 𝐴(𝒓′), 

and that there is a constant background velocity 𝑐0. 

Instead of using the velocity field directly, it is 

mapped into a velocity perturbation called the 

object function, which is more suitable to achieve 

the aimed linear formulation. The object function 

represents the perturbation of the velocity field at 

each point 𝒓 in relation to the background velocity 

and it is defined as:  

𝑂(𝒓) = 1 −
𝑐0
2

𝑐2(𝒓)
. (16) 

After simple algebraic manipulations, the 

object function is employed to redefine the 

wavenumber as its function. Equation (16) can be 

substituted into the Helmholtz equation, yielding: 

[𝛻2 + 𝑘0
2]𝑃𝑆(𝒓) = 𝑘0

2𝑂(𝒓)[𝑃𝑂(𝒓) + 𝑃𝑆(𝒓)], (17) 

where 𝑘0  is the homogeneous wavenumber, 

𝑃𝑂(𝒓)  is the incident field and 𝑃𝑆(𝒓)  is the 

scattered field.  

The obtained differential equation has a well-

known integral solution (Lo & Inderwiesen, 1994), 

which is the Lippmann-Schwinger equation:  

𝑃𝑆(𝒓) = −𝑘0
2∫ 𝑂(𝒓′)𝐺(𝒓, 𝒓′)[𝑃𝑂(𝒓′)
𝐴(𝒓′)

+ 𝑃𝑆(𝒓′)] 𝑑𝒓′. 

(18) 

This inverse scattering procedure is performed 

by estimating the object function from the scattered 

field, which is done by solving the Lippmann-

Schwinger integral equation. Although this equation 

is non-linear, it can be linearized, for example, via 

the first order Born approximation, which is valid for 

weak scattering of the incident field. 

The total field 𝑃𝑇(𝒓) is the sum of the incident 

field 𝑃𝑂(𝒓) and the scattered field 𝑃𝑆(𝒓): 𝑃𝑇(𝒓) =

𝑃𝑂(𝒓) + 𝑃𝑆(𝒓). We assume in Equation (18) that 

the scattered field is much weaker than the 

incident field (𝑃𝑆(𝒓) << 𝑃𝑂(𝒓)), in order to obtain 

a linear relationship between 𝑂(𝒓) and 𝑃𝑆(𝒓): 

𝑃𝑆(𝒓) = −𝑘0
2 ∫ 𝑂(𝒓′)𝐺(𝒓, 𝒓′)𝑃𝑂(𝒓′)

𝐴(𝒓′)

𝑑𝒓′. (19) 

The incident field generated by a line source at 𝒓𝑆 

(outside𝐴(𝒓′) is represented by the Green's function 

for acoustic propagation (Wu & Toksöz, 1987): 

𝑃𝑂(𝒓) = 𝐺(𝒓′, 𝒓𝑆), (20) 

which is substituted into the linear relationship 

between 𝑂(𝒓) and 𝑃𝑆(𝒓). Thus, the scattered field 

in 𝐴(𝒓)  registered by a receptor in 𝒓𝐺  can be 

rewritten as: 
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𝑃𝑆(𝒓) = −𝑘0
2∫ 𝑂(𝒓′)𝐺(𝒓𝐺 , 𝒓′)𝐺(𝒓′, 𝒓𝑆)
𝐴(𝒓′)

𝑑𝒓′. (21) 

The Equation (21) can be easily discretized 

(Rocha-Filho et al., 1996), yielding the aimed 

linear formulation 𝒅𝑜𝑏𝑠 = 𝑨𝒎,  which has to be 

inverted in order to compute the object function 

𝑂(𝒓). The velocity field is then directly obtained 

from the object function. The inversion was 

performed in this work using SVD with 

regularization, which we described earlier. 

NUMERICAL SIMULATIONS 

We explore the GCV approach for the selection of 

the regularization parameter in four synthetic 

examples for cross hole and VSP geometries. 

Each model has 225 blocks (15   15), that is, the 

vector of model parameters has 225 components. 

In all numerical experiments there are 16 sources 

and 16 receivers, in such a way that the data set 

has 256 complex numbers. Since we separate the 

complex numbers in real and imaginary parts, we 

have in fact 512 data points, making the 

tomographic matrix overdetermined (512 

equations   225 unknowns). The source emits a 

monochromatic wave of 200 Hz, and all the 

simulations were performed with noisy data. 

Basically, we added Gaussian noise at such a 

level that the RMS (root mean square) error 

between the original scattered field and the 

corrupted field is around 1%. For each example 

and for each order, we produced three GCV 

curves. Due to space limitations, we display only 

some results, although all simulations are 

summarized in Table 1, where the estimator 𝜀𝑟𝑚𝑠
𝑐  

expresses the RMS error of the acoustic velocity: 

𝜀𝑟𝑚𝑠
𝑐 =

√∑ (𝑐𝑖
𝑡𝑟𝑢𝑒 − 𝑐𝑖

𝑒𝑠𝑡)2𝑁
𝑖=1

√∑ (𝑐𝑖
𝑡𝑟𝑢𝑒)2𝑁

𝑖=1

× 100%. (22) 

In Table 1, besides the results with GCV we also 

provide the results from L-curve and Θ-curve, 

taken from Santos & Bassrei (2007).  

The scattered field was computed using a 

second order in time and fourth order in space, 

finite differences scheme. We adopted a Ricker's 

wavelet centered around 200 Hz as source, 

propagating through the medium limited by 

absorbing boundaries. First, we compute the 

primary field assuming a homogeneous medium 

with background velocity. Then we use the object 

model to compute the total field. We obtain the 

scattered field by subtracting the primary field from 

the total field. The Ricker wavelet was 

deconvolved from the scattered field in order to 

perform a monochromatic inversion. The 

calculated field at the source position has some 

differences of amplitude and phase in relation to 

the original Ricker's wavelet due to the modeling; 

these differences were adjusted using an average 

complex correction factor. 

The first synthetic example simulates a 

diffractor point. The background medium has 

4,000 m/s, and the inhomogeneity (diffractor point) 

is represented by a single block with 4,100 m/s, 

which means a 2.5% positive anomaly. Figure 1(a) 

shows the true model. The diffractor point is in fact 

a 10 m   10 m square or half wavelength   half 

wavelength. Figure 1(b) shows the GCV curve for 

zero order, and its minimum value was used to 

obtain the estimated model, showed in Figure 1(c). 

For the second order, the GCV curve, and the 

reconstructed model are shown in Figures 1(d) and 

1(e), respectively. The non-regularized solution, 

using standard least squares, is showed in Figure 

1(f). We notice that the three GCV curves are very 

similar (the first order is not showed here), and 

consequently, the results for zero, first, and second 

orders regularizations are also very similar. This 

can also be seen by checking Table 1. For this 

example, the regularized solution was not better 

than the non-regularized least squares.
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

(e) 

 

(f) 

Figure 1 - Diffractor point model. (a) 3-D representation of the true model. (b) GCV curve for zero order. (c) Estimated 

tomogram for zero order. (d) GCV curve for second order. (e) Estimated tomogram for second order. (f) Estimated 

tomogram using least squares. 

 

In the second example, there is a homogene-

ous inclusion in the form of a plus pod within the 

homogeneous background, which has 3,000 m/s. 

The inclusion (plus pod) has 3,300 m/s, which 

represents a positive anomaly of 10%. The plus pod 

true model can be seen in Figure 2(a). In terms of 

wavelength, the plus pod has a diameter of 5.3 

wavelengths. Figure 2(b) shows the GCV curve for 

zero order. The minimum value of Figure 2(b) was 

used to obtain the estimated model showed in 

Figure 2(c). For the second order, the GCV curve, 

and the reconstructed model are shown in Figures 

2(d) and 2(e), respectively. The least squares 

solution is presented in Figure 2(f). Comparing 

Figure 2(f) to Figure 2(c) or to Figure 2(e), we can 

conclude the necessity of some kind of 

regularization. The results displayed in Table 1 

corroborate this conclusion.
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Table 1 - Selection of the best regularization parameter 𝜆𝑏𝑒𝑠𝑡 

through three different methods and the correspondent 

value of the estimator 𝜀𝑟𝑚𝑠
𝑐 , computed using Equation (22). 

Model Method 𝝀𝒃𝒆𝒔𝒕 𝜺𝒓𝒎𝒔
𝒄  

 

example 1: 

diffractor point 

cross-hole  

 

order 0: L-curve 0.0008 0.07 

order 0: Θ-curve 0.0666 0.06 

order 0: GCV 0.0589 0.06 

order 1: L-curve 0.0006 0.07 

order 1: Θ-curve 0.0769 0.05 

order 1: GCV 0.0435 0.06 

order 2: L-curve 0.0003 0.07 

order 2: Θ-curve 0.0514 0.05 

order 2: GCV 0.0286 0.06 

least squares --- 0.06 

 

example 2: 

plus pod 

cross-hole 

 

order 0: L-curve 0.0060 0.69 

order 0: Θ-curve 0.0045 0.78 

order 0: GCV 0.0084 0.60 

order 1: L-curve 0.0111 0.52 

order 1: Θ-curve 0.0061 0.55 

order 1: GCV 0.0058 0.56 

order 2: L-curve 0.0041 0.53 

order 2: Θ-curve 0.0038 0.54 

order 2: GCV 0.0031 0.56 

least squares --- 2.68 

 

example 3: 

reef 

cross-hole 

 

order 0: L-curve 0.1234 0.51 

order 0: Θ-curve 0.1322 0.51 

order 0: GCV 0.2100 0.50 

order 1: L-curve 0.1599 0.51 

order 1: Θ-curve 0.3035 0.48 

order 1: GCV 0.5457 0.48 

order 2: L-curve 0.2449 0.53 

order 2: Θ-curve 0.4784 0.49 

order 2: GCV 0.7023 0.48 

least squares --- 0.53 

 

example 4:  

reef  

VSP 

 

order 0: L-curve 0.2139 0.60 

order 0: Θ-curve 0.2256 0.60 

order 0: GCV 0.1083 0.63 

order 1: L-curve 0.2783 0.55 

order 1: Θ-curve 0.2971 0.55 

order 1: GCV 0.6596 0.53 

order 2: L-curve 0.8463 0.53 

order 2: Θ-curve 0.5867 0.54 

order 2: GCV 0.7890 0.53 

least squares --- 0.61 

 

The third example, displayed in Figure 3(a), is 

a simple representation of a reef, as a possible oil 

reservoir. The acquisition geometry is still cross-

hole like the first and the second examples. The 

background medium has 4,000 m/s. There is also 

a low velocity layer, with 3,900 m/s, which means 

a minus 2.5% contrast. The central inhomogeneity 

(the reef) has 4,100 m/s which is equivalent to a 

plus 2.5% anomaly. In terms of wavelength the 

reef is 3.5 wavelengths   1 wavelength, and the 

low velocity layer is 7.5 wavelengths   1 

wavelength. Figure 3(b) shows the GCV curve for 

zero order, from which the minimum value was 

used to obtain the estimated model showed in 

Figure 3(c). For the second order, the GCV curve 

and the reconstructed model are shown in Figures 

3(d) and 3(e), respectively. The least squares 

solution is presented in Figure 3(f). Figure 3(f) 

displays a reasonable result, but if compared to 

the regularized solutions, that is, Figure 3(c) or 

Figure 3(e), it is the worst image, and with the 

highest value of the 𝜀𝑟𝑚𝑠
𝑐  estimator. The best 

result, both in terms of quality and error, is 

provided by the second order GCV regularization. 

For the VSP geometry, the true model is 

showed in Figure 4(a) which is the reef displayed 

in Figure 3(a). The sources are still located in a 

hole but the receivers are now located at the 

surface. Figure 4(b) shows the GCV curve for zero 

order, and its minimum was used to obtain the 

estimated model showed in Figure 4(c). For the 

second order, the GCV curve and the 

reconstructed model, are shown in Figures 4(d) 

and 4(e), respectively. The least squares solution 

is presented in Figure 4(f), which is completely 

inconsistent. The image obtained with zero order 

regularization is also very poor, and the first order 

(not showed) is poor to reasonable, whereas the 

second order provided the best image. Again, the 

results displayed in Table 1 corroborate this 

conclusion. 
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(a)  

(b) 

 
(c) 

 
(d) 

 

(e) 

 

(f) 

Figure 2 - Plus pod model. (a) 3-D representation of the true model. (b) GCV curve for zero order. (c) Estimated 

tomogram for zero order. (d) GCV curve for second order. (e) Estimated tomogram for zero order. (f) Estimated 

tomogram using least squares. 

 

CONCLUSIONS 

From four sets of overdetermined synthetic 

examples corrupted by noise and with an ill-

conditioned kernel matrix, we have shown that the 

regularization algorithm and the use of GCV for the 

selection of the regularization parameter are feasible 

in linear geophysical diffraction tomography. The 

comparison of the results, both visually and 

quantitatively, with the non-regularized solution 

confirms that some kind of regularization is 

necessary. We considered three orders of 

regularization, which are equivalent to the order of  
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(a)  

(b) 

 
(c) 

 
(d) 

 

(e) 

 

(f) 

Figure 3 - Simple reef model. Cross-hole geometry data acquisition. (a) 3-D representation of the true model. 

(b) GCV curve for zero order. (c) Estimated tomogram for zero order. (d) GCV curve for second order. (e) 

Estimated tomogram for second order. (f) Estimated tomogram using least squares. 

 

the derivative matrix. One important aspect is the 

selection of the regularization parameter, usually 

chosen by some trial and error approach. The 

results with GCV are consistent, providing good 

approximations to the true model, even considering 

that Gaussian noise is added to the scattered field. 

In general, GCV proved to be as efficient as the 

other two approaches used for comparison, L-curve 

and  Θ-curve, and sometimes more efficient. Also, 

the visual identification of the optimum regularization 

parameter is more straightforward in GCV when 

compared to the other two approaches. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4 - Simple reef model. VSP geometry data acquisition. (a) 3-D representation of the true model. (b) GCV 

curve for zero order. (c) Estimated tomogram for zero order. (d) GCV curve for second order. (e) Estimated 

tomogram for second order. (f) Estimated tomogram using least squares. 
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