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ABSTRACT. The analysis of seismic amplitudes has made the use of the seismic method in oil exploration more 
successful. This is due to the fact that amplitude anomalies can bring valuable information about the presence of 
hydrocarbons in the pores of a rock. Several studies have been carried out to analyze and establish criteria for such 
amplitude anomalies, thus giving rise to the Amplitude versus Offset (AVO) technique. This work aims to obtain elastic 
parameters of subsurface rocks through generalized inversion by the method of singular value decomposition (SVD). 
Based on the study of eigenvalues and eigenvectors through computational modeling with SVD, an analysis was made 
to obtain the elastic parameters and the criteria that must be used to obtain a coherent estimate in the inversion 
process. Two approximations by Aki and Richards were used, and compared with other approximations presented in 
the literature. In all of the studied approximations, the first parameter (𝛥𝑣௉/𝑣௉  or 𝛥𝑍௉/𝑍௉ , where 𝑣௉ is the P-wave 
velocity and 𝑍௉  is the P-wave impedance) was the one with the lowest percentage error and, depending on the 
maximum angle of incidence, the estimated value coincides with the exact one. The second parameter (𝛥𝑣ௌ/𝑣ௌ  or 
𝛥𝑍ௌ/𝑍ௌ where 𝑣ௌ is the S-wave velocity) was recovered satisfactorily in some cases and the third parameter (𝛥𝜌/𝜌, 
where 𝜌 is the density) was not recovered satisfactorily. 
 
Keywords: exploration seismology, seismic inversion, amplitude versus offset, singular value decomposition. 
 
 
RESUMO. A análise das amplitudes sísmicas tornou a utilização do método sísmico na exploração de petróleo mais 
bem sucedida. Isso se deve ao fato de que anomalias de amplitudes podem trazer informações valiosas sobre a 
presença de hidrocarbonetos nos poros de uma rocha. Diversos estudos foram feitos para analisar e estabelecer 
critérios para tais anomalias de amplitude, surgindo assim a técnica Amplitude versus Afastamento (AVO). Este 
trabalho tem como objetivo a obtenção de parâmetros elásticos das rochas de subsuperfície através da inversão 
generalizada pelo método da decomposição por valores singulares (SVD). Com base no estudo dos autovalores e 
autovetores através da modelagem computacional com SVD, foi feita uma análise na obtenção dos parâmetros 
elásticos e os critérios que devem ser utilizados para obter uma estimativa coerente no processo de inversão. Foram 
empregadas duas aproximações de Aki e Richards e comparadas com outras aproximações apresentadas na 
literatura. Em todas as aproximações estudadas, o primeiro parâmetro  (𝛥𝑣௉/𝑣௉ ou 𝛥𝑍௉/𝑍௉, sendo 𝑣௉ a velocidade da 
onda P e 𝑍௉ a impedância da onda P) foi o que apresentou o menor erro percentual e, a depender do angulo máximo 
de incidência, o valor estimado coincide com o exato. O segundo parâmetro (𝛥𝑣ௌ/𝑣ௌ ou 𝛥𝑍ௌ/𝑍ௌ, sendo 𝑣ௌ a velocidade 
da onda S) foi recuperado satisfatoriamente em alguns casos e o terceiro parâmetro (𝛥𝜌/𝜌, sendo 𝜌 a densidade) 
não foi recuperado satisfatoriamente. 
 
Palavras-chave: sismologia de exploração, inversão sísmica, amplitude versus afastamento, decomposição por 
valores singulares. 
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INTRODUCTION 

Exploration seismology is the branch of 
Geophysics that studies the propagation of elastic 
waves within the Earth with the aim of imagining the 
subsurface. The success of the seismic method in 
the exploration of hydrocarbons has become 
unquestionable and new tools have emerged and 
improved the method, making its use increasingly 
effective. Among these techniques, the amplitude 
versus offset analysis (AVO) stands out, which is 
the study of the variation of the reflected amplitude 
with the source-receiver distance. AVO was 
introduced by Ostrander (1984), when he 
demonstrated that the reflection coefficient of a 
sandstone with gas varies anomalously with 
increasing spacing, so that it could be used as a 
direct indicator of hydrocarbons. AVO analysis 
results from the theoretical relationship between 
the reflection coefficient, the wave incidence angle, 
the variations in P-wave and S-wave velocities and 
the variations in density through an interface. 
However, the exact expression that defines the 
reflection coefficient is very complex, making it 
necessary to formulate approximate and linear 
equations for it, proposed by several authors. The 
purpose of these approaches is to obtain a better 
understanding of the elastic parameters and to 
simplify their determination. 

More recently, Ma & Sun (2019) performed a 
direct inversion of Young's modulus and Poisson's 
ratio using exact Zoeppritz equations, and Liang 
et al. (2017) studied the stability study of pre-stack 
seismic inversion based on the full Zoeppritz 
equation.  

Starting from the AVO concept, in this study we 
used the singular value decomposition (SVD) 
technique to obtain the elastic parameters of the 
rocks, expressed by approximations of the exact 
equations of the seismic reflection coefficient, called 
Zoeppritz equations. We have studied, in particular, 
the Aki and Richards (2002) approximation, 

comparing it with the approximations presented by 
other authors, such as Bortfeld (1961), Shuey (1985) 
and Thomsen (1990). We discuss the validity and 
precision limits for each approximation using graphs. 
The tests were made by studying three models 
studied by Ostrander (1984), fixing values of the 
Poisson's ratio and changing the contrasts of P-
wave velocity and density. 

Using SVD, we verified which parameters of 
Aki and Richards (2002) approximation can best be 
obtained in the inversion process, taking into 
account the system of linear equations conditioning 
through the analysis of eigenvalues and 
eigenvectors. Finally, we used the reflection 
coefficient values as input data to obtain the elastic 
parameters. The inversion was made with synthetic 
data corresponding to a gas-filled reservoir, which 
is the model used by Ostrander (1984). 
 

Amplitude versus Offset  

The reflection coefficient of a P-wave is defined as 
the ratio between the amplitudes of the reflected 
and incident P-waves, and it depends on the P-
wave velocity, the S-wave velocity and the density 
of each of the layers that define an interface. The 
reflection coefficient for normal incidence is given 
by (Aki and Richards, 2002): 
 

𝑅଴ =
𝐴ଵ

𝐴଴
=

𝑣௉ଶ𝜌ଶ − 𝑣௉ଵ𝜌ଵ

𝑣௉ଶ𝜌ଶ + 𝑣௉ଵ𝜌ଵ
, (1)

 

where 𝐴଴ and 𝐴ଵ are the amplitudes of the incident 
and reflected P-waves, respectively; 𝑣௉ଵ  and 𝑣௉ଶ 
are the P-wave velocities of media 1 and 2, 
respectively; and 𝜌ଵ and 𝜌ଶ are the densities of 
media 1 and 2, respectively. In equation (1), for 
both media, the product between density and P-
wave velocity is called acoustic P-wave impedance, 
denoted by 𝑍௉. 
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The amplitude analysis of the reflected wave 
as a function of the incidence angle can be used to 
detect lateral variations in the elastic properties of 
reservoir rocks. One such property is the Poisson's 

ratio. The expressions for the reflection coefficients 
of plane waves in terms of the amplitudes as a 
function of the incidence angle were developed by 
Zoeppritz in 1919 (Aki and Richards, 2002:
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൲, (2) 

where 𝑣ௌଵ  and 𝑣ௌଶ  are the S-wave velocities in 
media 1 and 2, respectively; 𝜃ଵ, 𝜙ଵ, 𝜃ଶ and 𝜙ଶ are, 
respectively, the incidence angles of the P- and S-
waves, and the reflected angles of the P- and S-
waves; 𝐴ଵ,   𝐵ଵ,  𝐴ଶ  and 𝐵ଶ are, respectively, the 
amplitudes of the incident P- and S-waves, and 
the amplitudes of the reflected P- and S-waves. 

Due to their relative complexity and non-
linearity, Zoeppritz's equations do not allow an easy 
identification of the petrophysical parameters that 
influence the behavior of the reflection coefficients. 
However, the greatest interest of seismic 
exploration is in the relationship between an 
incident P-wave and its reflection as a function of 
incidence angle, given by the coefficient 𝐴ଵ, as well 
as in the estimation of elastic parameters of 
reservoir rocks, relating these parameters to the 
fluid contained in these reservoirs. The analysis of 
elastic parameters using Zoeppritz's equations 
becomes easier through linearized approximations 
of the exact solution such as, for example, the 
expression proposed by Aki and Richards (2002). 

The AVO technique is the study of the 
amplitude variation in the reflected wave in 
relation to the source-receiver distance, and it is 
used in seismic reflection to infer certain 
characteristics of the rocks. It was introduced by 
Ostrander (1984), who demonstrated that the 

reflection coefficient of a sandstone containing 
gas varies anomalously in relation to distance 
increase. Thus, this type of behavior can be used 
as a direct indicator of hydrocarbons. The 
recorded amplitude generally decreases with the 
distance, depending on the shear velocity. And at 
the base of siliciclastic reservoirs it usually 
increases with distance (Simm and Bacon, 2014). 
However, in the presence of gas, the opposite 
occurs, that is, there is an anomalous growth. 

The AVO analysis results from the theoretical 
relationship between the reflection coefficient and: 
(i) the incidence angle or distance (offset), (ii) P-
wave velocity, (iii) S-wave velocity, (iv) the density 
variations through an interface (Ostrander, 1984). 
This analysis has been used with considerable 
success to indicate the presence of hydrocarbons. 
Furthermore, understanding the interrelationship 
between seismic properties and physical 
characteristics of the environment such as 
lithology, porosity and fluid content in the pores of 
rocks is a necessary information for the 
quantitative extraction of information using the 
AVO technique (Ostrander, 1984). 

Koefoed (1955) investigated the variation of 
the reflection amplitude with respect to the 
incidence angle, and the use of this analysis as an 
indicator of the variation of the 𝑣௉/𝑣ௌ  ratio. He 
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considered three elastic properties of each 
medium: P-wave velocity, density and Poisson’s 
ratio. He also used simplifications of Zoeppritz's 
equations, defining four parameters that govern the 
behavior of the reflection coefficient between two 
isotropic media: (i) the P-wave velocities ratio; (ii) 
the density ratio; (iii) the Poisson's ratio of the upper 
layer and (iv) the Poisson's ratio of the lower layer. 

Ostrander (1984) demonstrated how the 
reflection coefficients influence the behavior of 
seismic wave amplitudes according to the four 
parameters mentioned above. The conditions 
imposed are restricted to regions with small 
angles and smaller than the pre-critical angle. In 
general, if the impedance and the Poisson’s ratio 
both increase or decrease from the upper to the 
lower layer, the reflection coefficient modulus and 
the absolute amplitude increase with the source-
receiver distance and there is an AVO anomaly. If 
the impedance and Poisson's ratio behave 
differently, the reflection coefficient modulus is 
decreasing and there is a decrease of amplitude 
with the distance. These conclusions obtained by 
Ostrander (1984) were based on a proposed 
model that consisted of a layer of shale 
interspersed by a layer of sandstone with gas. In 
most cases, gas-saturated sandstones that 
produce anomalies in amplitude have low 
impedance in relation to the shale that surrounds 
it, as well as reflections that grow in magnitude 
with distance. The great asset of AVO analysis lies 
in the relationship between Poisson's ratio and 
lithology. The presence of gas in pores of rocks 
causes the P-wave velocity to decrease while the 
S-wave velocity remains unchanged (Rüger and 
Gray, 2014). 

GENERALIZED INVERSION AND SINGULAR 
VALUE DECOMPOSITION 

The linear inverse problem is formulated as a 
system of linear equations: 

 

𝒅 = 𝑮𝒎, (3)

 

where 𝒅 = [𝑑ଵ, 𝑑ଶ, … , 𝑑ெ]்  is the column vector 
that represents the observed data, 𝒎 =

[𝑚ଵ, 𝑚ଶ, … , 𝑚ே]்  is the column vector that 
represents the set of model parameters to be 
estimated and 𝑮 is the 𝑀 × 𝑁matrix that relates 
the vectors 𝒅 and 𝒎. In the inverse procedure the 
unknown is the vector of model parameters 𝒎, so 
that the solution of Equation (3) is expressed by 
(Aster et al., 2016): 

𝒎 = 𝑮ା𝒅, (4)

where 𝑮ା  is a 𝑁 × 𝑀  matrix, called generalized 
inverse. 

A linear inverse problem is considered well-
posed or well-conditioned if it satisfies the conditions 
of existence, uniqueness and stability. The first two 
conditions require that the system has a solution and 
that it is unique. The latter condition is more difficult 
to achieve, since many geophysical inversion 
problems are unstable. To check whether a given 
system is well- or ill-conditioned, we determine the 
condition number (CN) of the matrix, expressed by 
(Aster et al., 2016): 

C𝑁 =  
𝜆୫ୟ୶

𝜆୫୧୬
, (5)

where 𝜆୫ୟ୶ and 𝜆୫୧୬ are the largest and smallest 
eigenvalue of the matrix, respectively. 

To obtain a generalized inverse or pseudo-
inverse matrix, we used singular value decompo-
sition. The matrix 𝐆 can be decomposed as: 

𝑮 = 𝑼𝜮𝑉் , (6)

Where 𝑼ெ×ெ is the matrix that contains the 
orthonormalized eigenvectors of 𝑮𝐆்; 𝜮ெ×ே  is the 
diagonal matrix that contains the square root of the 
eigenvectors of 𝑮்𝑮,  called singular values; and 
𝑽ே×ே is the matrix that contains the orthonormalized 
eigenvectors of 𝑮்𝑮.  The generalized inverse is 
expressed by (Aster et al., 2016): 
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𝑮ା = 𝑽𝜮ା𝑼் , (7)

 

where 𝜮ே×ெ
ା is the matrix that contains the 

reciprocal of the non-zero singular values, on the 
main diagonal of the square part of the matrix. 

MAIN APPROXIMATIONS OF THE 
REFLECTION COEFFICIENT 

The exact expression of the reflection coefficient 
was formulated by Červený et al. (1977) from 
Zoeppritz's equations. These equations demand 
the following elastic parameters and information: 
the P-wave velocities in the upper and lower 
layers, the S-wave velocities in the upper and 
lower layers, the density in the upper and lower 
layers, and the incidence angle. 

The set of equations involves four reflection 
coefficients and, for an incident and reflected P-
wave, we have: 
 

𝑅௉௉ = [𝑄ଶ + 𝛾𝑇ଶ𝑇ଷ + (𝛾 − 𝑄)ଶ𝑇ଷ𝑇ସ

− (1 + 𝑄)ଶ𝑇ଵ𝑇ଶ + (𝛾

− 1 − 𝑄)ଶ𝑇ଵ𝑇ଶ𝑇ଷ𝑇ସ]/𝐷, 
(8)

 

where 
 

𝐷 = 𝑄ଶ + 𝛾𝑇ଶ𝑇ଷ + (𝛾 − 𝑄)ଶ𝑇ଷ𝑇ସ + 𝛾𝑇ଵ𝑇ସ

+ (1 + 𝑄)ଶ𝑇ଵ𝑇ଶ

+ (𝛾 − 1 − 𝑄)ଶ𝑇ଵ𝑇ଶ𝑇ଷ𝑇ସ, 

𝑄 = 2𝑝ଶ(𝛾𝑣ௌଶ
ଶ − 𝑣ௌଵ

ଶ ), 

𝑇ଵ = 𝑝𝑣௉ଵ/(1 − 𝑝ଶ𝑣௉ଶ
ଶ )

ଵ
ଶ, 

𝑇ଶ = 𝑝𝑣ௌଵ/(1 − 𝑝ଶ𝑣ௌଵ
ଶ )

ଵ
ଶ, 

𝑇ଷ = 𝑝𝑣௉ଶ/(1 − 𝑝ଶ𝑣௉ଶ
ଶ )ଵ/ଶ, 

𝑇ସ = 𝑝𝑣ௌଶ/(1 − 𝑝ଶ𝑣ௌଶ
ଶ )

భ

మ, and 

𝛾 =
𝜌ଵ

𝜌ଶ
. 

 

In Equation (8) 𝜌௜,  𝑣௉௜ ,  𝑣ௌ௜  and 𝑝  are, 
respectively, the density, the P-wave velocity, the 
S-wave velocity, and the ray parameter. The sub-

index represents the top layer if it is 1 and the 
bottom if it is 2. This study will be limited only to 
the approximations of Equation (8), which defines 
the PP reflection coefficient. It is important to 
stress that this approach is valid for a isotropic, 
viscoelastic medium. 

Due to the relative complexity of the exact 
expression for the reflection coefficient of elastic 
waves, it became necessary to formulate 
approximations for it, in order to obtain a better 
understanding of the influence of elastic parameters 
and to facilitate their determination using the AVO 
technique. Barros (1997) and Barros and Ramos 
(1997) analyze various types of approaches 
present in the literature, such as Bortfeld (1961), 
Aki and Richards (2002), Shuey (1985) and 
Thomsen (1990). 

Two steps are necessary in the inversion of 
AVO data. First, the linearized expressions of the 
seismic reflection coefficient must be validated, by 
comparison to the exact expression. Second, we 
have to analyze the behavior of the eigenvalues and 
eigenvectors as function of the incidence angle. Alt-
hough we use the linearized inversion in this study, 
it is also possible to perform a non-linear approach, 
without making use of approximate expressions. 

BORTFELD APPROXIMATION 

Bortfeld (1961) formulated the first approximation 
of Zoeppritz's equations obtaining the following 
expression: 
 

𝑅௉௉(𝜃ଵ) ≈
1

2
𝑙𝑛 ൬

𝑣௉ଶ𝜌ଶ 𝑐𝑜𝑠 𝜃ଶ

𝑣௉ଵ𝜌ଵ 𝑐𝑜𝑠 𝜃ଵ
൰

+ ቌ
𝑙𝑛

𝜌ଵ

𝜌ଶ

𝑙𝑛
𝑣௉ଶ

𝑣௉ଵ
− 𝑙𝑛

𝑣௉ଶ𝑣ௌଶ

𝑣௉ଵ𝑣ௌଵ

ቍ 

X
𝑣ௌଵ

ଶ − 𝑣ௌଶ
ଶ

𝑣௉ଵ
ଶ senଶ𝜃ଵ. 

(9) 

 

The first term of this equation is called the acoustic 
effect, while the second one is called the elastic 
effect. This approach is only valid for angles 
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smaller than the critical one. By critical angle we 
mean an incidence angle that results in a 
transmission angle equal to 90o. Bortfeld (1961) 
suggested that the general features of the exact 
curves are repeated by the approximate curves 
and that the difference between the exact and 
approximate values is not greater than a small 
percentage value. However, Bortfeld (1961) also 
points out that the mentioned difference increases 
with the increase of the incidence angle and with 
the increase in the elastic parameter contrast. 

AKI AND RICHARDS APPROXIMATION 

Aki and Richards (2002) obtained an approximation 
for the reflection coefficient 𝑅௉௉(𝜃) deriving the first 
order effect of small variations in density and P-
wave and S-wave velocities for the problem of an 
interface between two solids. The objective was to 
verify the separate contributions of the density 
variation (𝛥𝜌), the P-wave velocity variation (𝛥𝑣௉), 
and the S-wave velocity variation (𝛥𝑣ௌ).  The 
approximation was derived from the exact formula, 
replacing each of the parameters of the two media 
by its average values and their differences. The 
considered angle is the average of the incidence 
and transmission angles. The obtained equation is 
given by: 
 

𝑅௉௉(𝜃) ≈
1

2 𝑐𝑜𝑠ଶ 𝜃
൬
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(10) 

 

where 
 

𝛥𝑣௉ = 𝑣௉ଶ − 𝑣௉ଵ, 

𝑣௉ =
𝑣௉ଵ + 𝑣௉ଶ

2
, 

𝛥𝑣ௌ = 𝑣ௌଶ − 𝑣ௌଵ, 

 

𝑣ௌ =
𝑣ௌଵ + 𝑣ௌଶ

2
, 

𝛥𝜌 = 𝜌ଶ − 𝜌ଵ, 

𝜌 =
𝜌ଵ + 𝜌ଶ

2
, 

𝜃 =
𝜃ଵ + 𝜃ଶ

2
. 

 

This equation presents three explicit 
parameters to be obtained in the inversion process. 
The parameter 𝛥𝑣௉/𝑣௉ describes the variation in the 
P-wave velocity and can be defined as its reflectivity. 
The analogue applies to the parameter𝛥𝑣ௌ/𝑣ௌ . The 
relative density variation is 𝛥𝜌/𝜌.  

The P- and S-wave reflectivity can provide 
valuable information about fluid changes in 
reservoirs, such as sandstones filled with gas and 
salt water, for example. 

SHUEY'S APPROXIMATION 

Shuey (1985) modified the Aki and Richards (2002) 
equation, replacing the properties 𝑣ௌ  and 𝛥𝑣ௌ  by 
𝜎 and 𝛥𝜎, obtaining the following result: 
 

𝑅௉௉(𝜃) ≈ 𝑅଴ + senଶ𝜃 ൤𝐴଴𝑅଴ +
𝛥𝜎

(1 − 𝜎)ଶ
൨

+
1

2
(tgଶ𝜃 −  senଶ𝜃) ൬

𝛥𝑣௉

𝑣௉
൰, 

(11) 

 

where 
 

𝑅଴ ≈
1

2
൬

𝛥𝑣௉

𝑣௉
+

𝛥𝜌

𝜌
൰ ≈

1

2
൬

𝛥𝑍௉

𝑍௉
൰, 

𝐴 = 𝐴଴ +
𝛥𝜎

(1 − 𝜎)ଶ𝑅଴
, 

𝐴଴ = 𝐵 − 2(1 + 𝐵)
1 − 2𝜎

1 − 𝜎
, 

𝐵 =
𝛥𝑣௉/𝑣௉

𝛥𝑣௉/𝑣௉ + 𝛥𝜌/𝜌
. 
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Equation (11) shows that combinations of elastic 
properties are effective in the angle 𝜃 range. The third 
term is proportional to 𝜃ସ, not normally contributing to 
angle values 𝜃 < 30௢  (Barros, 1997). The 
dimensionless parameter 𝐴 controls whether the 
amplitude initially increases (𝐴 > 0 ) or decreases 
(𝐴 < 0),  while the dimensionless parameter 𝐵 
controls the signal for wide angles. 

THOMSEN APPROXIMATION 

Thomsen (1990) suggests the introduction of the ri-
gidity module, 𝜇, in Equation (11) instead of Poisson's 
ratio, as Shuey (1985) proposed in his work. 
According to Thomsen (1990), the Poisson's ratio is 
irrelevant for wave propagation, since it was defined 
in terms of a thin bar compression experiment. How-
ever, the relative magnitude of compressional and 
shear deformations is an important notion, but Pois-
son's ratio is not a good way to express this magni-
tude. The solution found by Thomsen (1990) was to 
write Poisson's ratio in terms of other parameters, 
such as the ratio between compressional and shear 
velocities, obtaining the following expression: 
 

𝑅௉௉(𝜃) ≈
ଵ

ଶ
ቀ

௱௓ು

௓ು
ቁ − 2 ቀ

௩ೄ

௩ು
ቁ

ଶ

senଶ𝜃
௱ఓ

ఓ
+

ଵ

ଶ
tgଶ𝜃 ቀ

௱௩ು

௩ು
ቁ,  

(12) 

where 
௱ఓ

ఓ
= 2

௱௩ೄ

௩ೄ
+

௱ఘ

ఘ
.   

VALIDITY OF THE APPROXIMATE 
EQUATIONS 

The validity of the approximate equations was tested 
using the model studied by Ostrander (1984), shown 
in Table 1. Three pairs of Poisson’s ratio values were 
used, associated with the different values of velocity 
and density. The first case considers that there is no 
variation in the Poisson's ratio between the layers. 
The values 𝜎ଵ = 𝜎ଶ = 0.3 were used. The second 
model considers that the Poisson's ratio of the upper 
layer is greater than that of the lower layer; the values 
𝜎ଵ = 0.4  and 𝜎ଶ = 0.1  were used. Finally, the third 

case considers that the Poisson's ratio of the upper 
layer is less than that of the lower layer. The adopted 
values were 𝜎ଵ = 0.1 and 𝜎ଶ = 0.4. The approximate 
equations of the seismic reflection coefficient showed 
similar behavior in the three analyzed cases. In case 1, 
shown in Figure 1, we consider that the velocity ratio 
and also the density ratio are greater than 1; in this 
case, 𝑣௉ଶ/𝑣௉ଵ = 𝜌ଶ/𝜌ଵ = 1.25.  It can be seen that 
the errors were less than 10% for incidence angles up 
to 30°. In case 2, for velocity and density contrasts 
smaller than 1, for example, 𝑣௉ଶ/𝑣௉ଵ = 𝜌ଶ/𝜌ଵ = 0.8, 
the approximate equations curves shown in Figure 2 
present good accuracy for all the incidence angles 
considered. In case 3, shown in Figure 3, considering 
𝑣௉ଶ/𝑣௉ଵ = 𝜌ଶ/𝜌ଵ = 1.25, the approximate equations 
presented good accuracy for angles up to 30°. 
 

Table 1 - Model proposed by Ostrander (1984) 
for different values of the Poisson ratio. 

Case 𝝈𝟏 𝝈𝟐 

1 0.3 0.3 

2 0.4 0.1 

3 0.1 0.4 
 

ANALYSIS OF SENSITIVITY IN  
SYNTHETIC MODELS 
The linearized expressions of the reflection coefficient 
can be written as a general expression: 
 

𝑅௉௉(𝜃) ≈ 𝑔ଵଵ𝑚ଵ + 𝑔ଵଶ𝑚ଶ + 𝑔ଵଷ𝑚ଷ, (13) 
 

where 𝑔ଵ௝are the elements of the matrix 𝑮(𝜃) and 
𝑚௜ are the model parameters to be estimated. In 
this case, the matrix 𝑮(𝜃) can be represented by 
discrete values of 𝜃: 
 

𝑮(𝜃௞) ≈ [𝑔ଵଵ(𝜃௞) 𝑔ଵଶ(𝜃௞)𝑔ଵଷ(𝜃௞)],

𝑘 ∈ {0,1,2, ⋯ 𝑘 − 1}. 
(14) 

 

The matrix 𝑮்(𝜃௞)𝑮(𝜃௞) is given by (Barros, 1997; 
Barros and Ramos, 1997): 
 

𝑮்(𝜃௞)𝑮(𝜃௞) = 

⎝

⎜⎜
⎛

෍ 𝑔ଵଵ(𝜃௞)ଶ ෍ 𝑔ଵଵ(𝜃௞)𝑔ଵଶ(𝜃௞) ෍ 𝑔ଵଵ(𝜃௞)𝑔ଵଷ(𝜃௞)

෍ 𝑔ଵଵ(𝜃௞)𝑔ଵଶ(𝜃௞) ෍ 𝑔ଵଶ(𝜃௞)ଶ ෍ 𝑔ଵଶ(𝜃௞)𝑔ଵଷ(𝜃௞)

෍ 𝑔ଵଵ(𝜃௞)𝑔ଵଷ(𝜃௞) ෍ 𝑔ଵଶ(𝜃௞)𝑔ଵଷ(𝜃௞) ෍ 𝑔ଵଷ(𝜃௞)ଶ

 

⎠

⎟⎟
⎞

. 
(15) 
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Figure 1 - Simulations with the Ostrander (1984) model, case 1, with 𝜎ଵ = 𝜎ଶ = 0.3 and 𝑣௉ଶ/𝑣௉ଵ = 𝜌ଶ/𝜌ଵ = 1.25. The upper 
graph shows the reflection coefficient as a function of the incidence angle for the l and Richards, Thomsen, Bortfeld and 
Shuey approximations, in addition to the exact expression. The graph at the right shows the error for each approximation. 

 

 

Figure 2 - Simulations with the Ostrander (1984) model, case 2, with 𝜎ଵ = 0.4, 𝜎ଶ = 0.1 and 𝑣௉ଶ/𝑣௉ଵ = 𝜌ଶ/𝜌ଵ = 0.8. The 
upper graph shows the reflection coefficient as a function of the incidence angle for the Aki and Richards, Thomsen, Bortfeld 
and Shuey approximations, in addition to the exact expression. The graph at the right shows the error for each approximation. 

 

We consider that the data space is restricted from 
the normal incidence (𝜃 = 0௢ ) to a maximum angle 
𝜃௠௔௫ which is smaller than the critical angle. We will 
also consider that the data is sampled uniformly for 
incidence angles with a sampling interval 𝛥𝜃. 

We study the sensitivity of the inversion process 
for the approximation of Aki and Richards (2002), 
presented in terms of the equation 𝒅 = 𝑮𝒎, where 
the vector 𝒅  with dimension 𝑘 represents the 
reflection coefficient and is expressed as 
 

𝒅௢௕௦(𝜃௞) = 𝑅௣௣(𝜃௞). (16) 

The matrix 𝑮, with three columns and 𝑘 rows, is 
expressed as 

𝑮(𝜃௞) =

൬
ଵ

ଶ ௖௢௦మ ఏೖ
,

ଵ

ଶ
൤1 − 4 ቀ

௩ೄ

௩ು
ቁ

ଶ

senଶ𝜃௞൨ , 4 ቀ
௩ೄ

௩ು
ቁ

ଶ

senଶ𝜃௞൰,  
(17) 

and the vector 𝒎,  with three parameters, is 
expressed as 
 

𝒎 = ൬
𝛥𝑣௉

𝑣௉
,

𝛥𝜌

𝜌
,

𝛥𝑣ௌ

𝑣ௌ
൰

்

. (18) 

Through the matrix 𝑮(𝜃௞),  the reflectivity 

𝒅௢௕௦(𝜃௞) depends on the parameter 𝑣௉/𝑣ௌ. In this 

work, the value √3 for this ratio will be used (Nicolao 

et al., 1993), which corresponds to 𝜎 = 0.25 and is 

called Poisson solid.
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Figure 3 - Simulations with the Ostrander (1984) model, case 3, with 𝜎ଵ = 0.1, 𝜎ଶ = 0.4 and 𝑣௉ଶ/𝑣௉ଵ = 𝜌ଶ/𝜌ଵ = 1.25. The 
upper graph shows the reflection coefficient as a function of the angle of incidence for the Aki and Richards, Thomsen, 
Bortfeld and Shuey approximations, in addition to the exact expression. The graph at the right shows the error for each 
approximation. 

 

The three eigenvalues are functions of the maxi-
mum incidence angle and the unit of measurement is 
the logarithmic scale dB. 20 dB corresponds to a ratio 
of 10 in amplitude or 100 in energy. For the Aki and 
Richards (2002) approximation, the first eigenvalue 
(eigenvalue 1) contains almost all the signal energy, 
as can be seen in Figure 4. For a maximum incidence 
angle of 30°, the energy associated with the first 
eigenvalue it is 100 times greater than the energy 
associated with the second, and it is 10,000 times 
greater than the energy associated with the third one. 
The eigenvalue 2 is negligible for small incidence 
angles, but its value grows as the incidence angles 
increase. For large angles, eigenvalue 2 is from 10 to 
15 dB smaller than eigenvalue 1. Eigenvalue 3 has 
the lowest energy, being easily masked by noise 
(Nicolao et al., 1993). 

AUTOVECTORS IN MODEL SPACE 

The analysis of eigenvectors in the model space aims 
to determine which parameters can be obtained with 
better precision in the inversion process. For this, we 
calculate the cosine directors of each eigenvector and 
analyze the direction in which each one points. 
Studying the eigenvector associated with the first ei-
genvalue in the Aki and Richards (2002) approxima-
tion, we see in Figure 5 that for small angles, the 
variation in the P-wave velocity (eigenvector 1) and 
the variation in density (eigenvector 2) are similar, 

while the variation in the velocity of the S wave 
(eigenvector 3) is close to zero.  

 

Figure 4 - Relative amplitude of the eigenvalues as a 
function of the maximum incidence angle, using Aki and 
Richards (2002) approximation. 

 

 
Figure 5 - Cosine directors of the eigenvectors corresponding 
to the first eigenvalue calculated by Aki and Richards (2002) 
approximation. 
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Therefore, the first vector points in the direction of 
the P-wave impedance variation, expressed by: 
 

𝛥𝑍௉

𝑍௉
=

𝛥𝜌

𝜌
+

𝛥𝑣௉

𝑣௉
. (19) 

The eigenvector corresponding to the second 
eigenvalue is illustrated in Figure 6 and points to the 
sum of the S-wave velocity variation and the density 
variation, thus obtaining the S-wave impedance: 
 

𝛥𝑍ௌ

𝑍ௌ
=

𝛥𝜌

𝜌
+

𝛥𝑣ௌ

𝑣ௌ
. (20) 

 

 
Figure 6 - Cosine directors of the eigenvectors corresponding 
to the second eigenvalue calculated by Aki and Richards 
(2002) approximation.  

 

Finally, the eigenvector corresponding to the 
third eigenvalue, shown in Figure 7, has very low 
energy, indicating no particular physical property. 

 

 
Figure 7 - Cosine directors of the eigenvectors corresponding 
to the third eigenvalue calculated by Aki and Richards (2002) 
approximation.  

 

Based on these results, we can reformulate 
Equation (10) in terms of the P- and S-wave 
impedances, obtaining: 

 

𝑅௉௉(𝜃) ≈
ଵ

ଶ
(1 + 𝑡𝑎𝑛ଶ 𝜃)

௱௓ು

௓ು
− 4 ቀ

௩ೄ

௩ು
ቁ

ଶ

senଶ𝜃
௱௓ೄ

௓ೄ
−

൤
ଵ

ଶ
𝑡𝑎𝑛ଶ 𝜃 − 2 ቀ

௩ೄ

௩ು
ቁ

ଶ

senଶ𝜃൨
௱ఘ

ఘ
.  

(21) 

Next, we compare the results of the inversion 
process and the sensitivity analysis. We call Equation 
(10) the first  parameterization and Equation (21) the 
second one. This procedure is very important, as 
we see if, in fact, 𝛥𝑍௉/𝑍௉ can be more precisely 
determined, compared with 𝛥𝑣௉/𝑣௉  and 𝛥𝜌/𝜌 
separately. 

The analysis of eigenvalues and eigenvectors 
in the model space provides valuable information 
on the parameters to be obtained in the inversion 
process. The eigenvalues revealed the great 
difficulty of obtaining the three parameters defined 
in each approximate equation. Figure 4 shows that 
only the first eigenvalue can provide some 
information for all the considered maximum 
incidence angles. The second eigenvalue is only 
relevant for wide angles and the third eigenvalue is 
negligible. The simultaneous use of the three 
eigenvalues in the inversion process can 
compromise the quality of the parameter 
estimation. According to Figures 5, 6 and 7, in the 
approximation of Aki and Richards (2002), the 
parameters are not well determined individually, 
being a combination of them more appropriate for 
the estimate, as shown in Equations (19) and (20). 
In this case, the best estimated physical properties 
would be the P- and S-wave impedances instead of 
𝛥𝑣௉/𝑣௉ , 𝛥𝑣ௌ/𝑣ௌ and 𝛥𝜌/𝜌. 

Linear Inversion in Synthetic Models  
using Aki and Richards Approximation 
Linear inversion aims to recover elastic parameters 
using approximate equations, which are the 
theoretical basis of AVO analysis. Each equation 
contains three explicit parameters that can be 
estimated, with the assumption that the reflection 
coefficient is known. We can estimate the model 
parameters using a least squares solution, however, 
the classic inverse of the matrix 𝑮்𝑮 can be replaced 
by the generalized inverse, which is obtained by the 
SVD technique. Thus, the elastic parameters can be 
estimated by linear inversion by (Aster et al., 2016): 
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𝒎௘௦௧ = (𝑮்𝑮)ା𝑮்𝒅௢௕௦. (22) 
 

The observed data represent the reflection 
coefficient as a function of the incidence angle and 
the model parameters to be estimated represent the 
elastic parameters defined in the approximate 
equation. 

It is important to note that the approximate 
equations are subject to limitations that allow the 
linearization of elastic modeling and elastic 
inversion. The limitation of small contrasts in the 
parameters simplifies the estimation of the elastic 
parameters, but causes a loss of information, since 
the approximation is limited to values of incidence 
angles smaller than the critical angle. 

We used the Ostrander (1984) model for 
inversion, which consists of a gas-filled sandstone 
reservoir embedded in a shale pack. The tests were 
performed for two interfaces. The first interface 
corresponds to the top of the layer 
(shale/sandstone) and the second interface 
corresponds to the base of the layer 
(sandstone/shale). Table 2 shows the values in each 
layer of the P-wave velocity, the S-wave velocity, the 
density and the Poisson’s ratio. The inversion was 
performed for a wide range of maximum incidence 
angles, from 0° to 50°. We analyzed how each 
parameter behaves in the considered interval. 
 

Table 2 - Reservoir filled with gas for inversion of synthetic data. 
Values taken from Ostrander (1984). 

Layer Lithology 𝑣௉ ቀ
𝑚

𝑠
ቁ 𝑣ௌ ቀ

௠

௦
ቁ  𝜌 ቀ

௚

௖௠య
ቁ  𝜎 

1 Shale 3048.0 1244.3 2.40 0.40 

2 
Sandstone 
with gas 

2438.4 1625.6 2.14 0.10 

3 Shale 3048.0 1244.3 2.40 0.40 
 
 

RESULTS AND DISCUSSIONS 

The three parameters estimated in the first 
parameterization of the Aki and Richards (2002) 
approximation in Equation (9) are: P-wave 
reflectivity, 𝛥𝑣௉/𝑣௉ (parameter 1), density variation, 
𝛥𝜌/𝜌 (parameter 2) and S-wave reflectivity, 𝛥𝑣ௌ/𝑣ௌ 
(parameter 3). 

The result of the inversion of the top of the layer 
is shown in Figure 8. The estimate of the parameters 
using three eigenvalues is not satisfactory, but with 
the exclusion of the two smallest eigenvalues the 
result improves. As demonstrated in the sensitivity 
analysis, the first parameter can be well recovered, 
being better estimated for an angle range between 
30° and 40°. The second and third parameters are 
difficult to recover, and a good estimate is not 
possible in the inversion process. 

Figure 9 shows the result of the inversion of the 
base of the layer. It can be seen that the estimate of 
the first parameter for maximum incidence angles in 
the range of approximately 30° and 50° is very good, 
with less than 10% errors. The second parameter is 
only well estimated for an angle of around 45°, 
where the associated error is close to zero. The 
estimate of the third parameter is unsatisfactory with 
a high error. 

The second parameterization of the Aki and 
Richards (2002) approximation, presented in 
equation (21), was also used. The three parameters 
to be obtained are: P-wave impedance variation, 
𝛥𝑍௉/𝑍௉  (parameter 1), S-wave impedance 
variation, 𝛥𝑍ௌ/𝑍ௌ (parameter 2) and relative density 
variation, 𝛥𝜌/𝜌 (parameter 3). 

Figure 10 shows the result of the inversion at 
the top of the layer. The first parameter was well 
obtained for all incidence angles, corroborating 
perfectly with the sensitivity analysis. The error 
increases for large incidence angles, being smaller 
than 10% for a maximum angle of 50°. The estimate 
of the first parameter for this parameterization is 
much better than the previous one, when equation 
(10) was used. However, obtaining the second and 
third parameters proved to be very inconsistent, with 
a very high error for the analyzed angle range. 

Figure 11 shows the result of the inversion at 
the base of the layer with little difference from the 
top. The first parameter is still well estimated, 
however, limited to an angle range from 0° to 35°. 
The other parameters are not estimated 
satisfactorily, despite the fact that the errors are 
reduced for larger angles.  
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Figure 8 - Result of the inversion of synthetic data using the first parameterization of Aki and Richards 
(2002) approximation in the shale/sandstone interface, top of the layer. The graph at the right shows the 
error for each estimated parameter. 

 

 
Figure 9 - Result of the inversion of synthetic data using the first parameterization of Aki and Richards (2002) 
approximation in the sandstone/shale interface, base of the layer. The graph at the right shows the error for 
each estimated parameter. 

 

 
Figure 10 - Result of the inversion of synthetic data using the second parameterization of Aki and Richards 
(2002) approximation in the shale/sandstone interface, top of the layer. The graph at the right shows the error 
for each estimated parameter. 

 

The sensitivity analysis of the inversion process of the 
linearized expressions showed the ill-conditioning of 
the problem, but the angle range from 0º to 50º 
showed that it is possible to accurately estimate the 
first two parameters. The third parameter could not be 

estimated accurately in either case. Tests with the Aki 
and Richards (2002) approximation showed that the 
second parameterization, presented in Equation (21), 
recovers the first parameter (𝛥𝑍௉/𝑍௉)  very well, 
showing that the sum of the parameters 𝛥𝑣௉/𝑣௉ and  
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Figure 11 - Result of the inversion of synthetic data using the second parameterization of Aki and 
Richards (2002) approximation in the sandstone/shale interface, base of the layer. The graph at the right 
shows the error for each estimated parameter, 

 
𝜟𝝆/𝝆 is better determined than each one separately. 
In the first parameterization, Equation (9), there is a 
possibility to satisfactorily determine the second 
parameter (𝜟𝝆/𝝆), but only at the base of the layer. 

CONCLUSIONS 

The approximations of the exact expression of the 
seismic reflection coefficient present an excellent 
precision, when we take into account small contrasts 
in the parameters and incidence angles below the 
critical angle. In all tests, the approximations showed 
an error of less than 10% for angles up to 30°, except 
for two models that had different Poisson's ratio. The 
natural tendency of curves in approximate equations 
is to move away from the exact curve as the 
incidence angle increases. We analyzed the 
eigenvalues and eigenvectors in the model space 
using the SVD technique. With this procedure we 
obtained the estimated parameters and the 
conditioning of the system. The eigenvalue analysis 
revealed the difficulty of obtaining the three 
parameters in the inversion process. We studied the 
behavior of each parameter for maximum incidence 
angles in a range of 0° to 50°. The inverse matrix 
was obtained by the SVD technique, truncating the 
two smallest eigenvalues. In all the studied 
approximations, the first parameter is the one with 
the lowest percentage error and, depending on the 
maximum incidence angle, the estimated value 
coincides with the exact value. The second 

parameterization of the Aki and Richards 
approximation corroborated perfectly with the 
sensitivity analysis, demonstrating that the P-wave 
velocity variation and the relative density variation 
can be better determined together, thus forming a 
impedance variation, rather than separately. 
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