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ANALYSIS OF MAGNETIC FIELD COMPONENTS ANOMALIES DUE
TO HOMOGENEOUS POLYHEDRONS

Eduardo M. S. Amarante and Edson E. S. Sampaio

ABSTRACT. A procedure for determining semi-analytical expressions for the magnetic fields caused by homoge-
neous polyhedral bodies based on Green’s theorem has been developed. It constitutes a modification of previous
developments for the gravity field of three-dimensional bodies and employs the discretization of the faces of the poly-
hedron by triangles and the definition of local coordinates for each triangle. A maximum misfit of less than 1.0%
between the values computed with these analytical expressions and those obtained with closed expressions for
prismatic bodies, applied to a homogeneous cube, demonstrates the effectiveness of the procedure. Examples of
magnetic maps due to octahedral bodies with different forms and orientations show that it is possible to obtain a
qualitative distinction among their anomalies. Therefore, the present analysis constitutes a basis for future inverse
modeling of convex polyhedrons and will be useful in geophysical exploration.
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RESUMO. Foi desenvolvido um procedimento para determinar expressões analíticas para os campos magnéticos
causados por corpos poliédricos homogêneos com base no teorema de Green. Constitui uma modificação dos
desenvolvimentos anteriores para o campo gravitacional de corpos tridimensionais e emprega a discretização das
faces do poliedro por triângulos e a definição das coordenadas locais para cada triângulo. Um erro máximo inferior
a 1,0% entre os valores calculados com essas expressões analíticas e os obtidos com expressões fechadas para
corpos prismáticos, aplicados a um cubo homogêneo, demonstra a eficácia do procedimento. Exemplos de mapas
magnéticos devido a corpos octaédricos com diferentes formas e orientações mostram que é possível obter uma
distinção qualitativa entre suas anomalias. Portanto, a presente análise constitui uma base para futura modelagem
inversa de poliedros convexos e será útil na exploração geofísica.
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INTRODUCTION

The literature of analytical solutions for gravimetric and
magnetic fields at observation points external to bod-
ies with polyhedral geometry is extensive. Cady (1980)
computed gravity and magnetic anomalies along a sin-
gle profile for a polygonal prism with a constant cross
section, known as 2.5D model. Werner (1994) and
Werner and Scheeres (1996) have derived closed ex-
pressions for the gravity potential due to a homoge-
neous polyhedron solving the surface integral as a func-
tion of the solid angle and summing line integrals along
polygonal contours. Götze and Lahmeyer (1988) deter-
mined an analytical expression of the gravity field of a
polyhedral body as a function of its edges by transform-
ing the volume integral into a sum of line integrals and
modeled the respective magnetic field with Poisson’s
theorem. Okabe (1979) obtained analytical expressions
for the first and second derivative of the gravity potential
due to a homogeneous polyhedron with polygonal faces
and claimed to sequentially apply twice the divergence
theorem. Singh and Guptasarma (2001) computed the
gravimetric field due to a polyhedral body with ficticious
distribution of mass in points located inside and outside
of the body, on planar surface and even on an edge or
corner of the body. The same procedure can be applied
to calculate the magnetic field from the uniformly mag-
netic object. The main advantage in their methodology
is to compute both fields at the same time, but the article
did not show the coding steps. Discretizing the faces in
triangles facilitates the understanding of how the mag-
netic field is generated because the total field produced
by the body is just the superposition of the magnetic
field of every single triangle. Barros et al. (2013) devel-
oped a code in MATLAB/OCTAVE language to compute
magnetic and gravimetric anomalies of prismatic bod-
ies with arbitrary dimensions showing the application for
different bodies. The code is freely distributed.

We have developed analytical expressions for the
magnetic anomalies due to a homogeneous polyhe-
dron by adapting and expanding the procedures of Paul
(1974) and Werner (1994). In the first step, we applied
the divergence theorem to transform the volume integral
of the magnetic potentials into surface integrals. The
second step consisted of discretizing each face into tri-
angles to obtain the potentials due to each triangle. In
the third step, we have employed a coordinate system
defined for each triangle (X ′

n, Y
′
n, Z

′
n), instead of the

global coordinate system (X, Y, Z). This procedure fa-
cilitates the calculation of the integrals, of either of the
potentials or of the derived magnetic field components
(Bx, By, Bz). The derivation and computation of these
fields related to the global coordinate system (X, Y, Z)
constitutes the last step.

The solution is valid for internal points because the
integrals do not diverge at points inside of a mass or a
magnetic dipole distribution (Kellogg (2012)). We trans-
formed the double integrals into single integrals solving
them analytically or by numerical methods. To validate

the procedure, we computed the magnetic anomalies
for a rectangular prism and compared with the method
presented in Blakely (1996). The maximum error was
less than 1.0%.

THEORY AND METHOD

Each planar face of a homogeneous convex polyhedron
was divided into triangles such that the total number
of triangles of the solid be N . Also, we expressed the
magnetic potential, V (r⃗), due to this polyhedron be an
external observation point, r⃗ = xî + yĵ + zk̂, of a rect-
angular system, XYZ, with an origin O as:

V (r⃗) = C0

∫
v0

M⃗(r⃗0) · ∇0
1

|r⃗ − r⃗0|
dv0

(1)

In Eq. 1, C0 = µ0

4π = 10−7 henry meter−1 is the mag-
netic constant, µ0 representing the permeability of free
space, M⃗ is the magnetization, and r⃗0 = x0î+y0ĵ+z0k̂
is a variable source point inside the polyhedron faces.

Applying the divergence theorem in Eq. 1 we have:

V (r⃗) = C0

N∑
n=1

∫
S0n

M⃗(r⃗0) · û0n

|r⃗ − r⃗0n |
dS0n (2)

Therefore, we obtain the magnetic potential as a func-
tion of the contributions of the polyhedron’s faces. In
Eq. 2, û0n is the unit vector perpendicular to each trian-
gular area of every face and its index n refers to each
triangle of the faces.

Since these unit vectors will be in different direc-
tions, it is necessary to define a local coordinate sys-
tem, XnYnZn, for each planar face. The systems will
have the same origin O; their Zn axis will be orthogonal
and oriented outward of the respective face, and their
Xn axis will be parallel to one of the sides of the n-th
triangle. The change of coordinates causes a rotation
of the axis but no translation. Figure 1 illustrates the
scheme.

From the definition of the position of the three vertex,
ABC, of each triangle,

r⃗An
= xAn

î+ yAn
ĵ + zAn

k̂,

r⃗Bn
= xBn

î+ yBn
ĵ + zBn

k̂, and

r⃗Cn
= xCn

î+ yCn
ĵ + zCn

k̂,

(3)

we may establish the vectors correspondent to two
sides of the triangles: A⃗Bn = r⃗Bn

− r⃗An
and A⃗Cn =

r⃗Cn− r⃗An . Consequently, we determine the unit vectors
of the local coordinate systems as:
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Figure 1. Rotation of the global coordinate system to the coordinate systems of each face.

î′ =
A⃗B

|A⃗B|
,

k̂′ =
A⃗B × B⃗C

|A⃗B × B⃗C|
,

ĵ′ = k̂′ × î′.

(4)

The choice of the vector A⃗B has to satisfy the condition

that k̂′ be oriented outward of the polyhedron. Since

all the vectors from the origin remain unchanged in the

new coordinate system, we may write:

r⃗ = x′î′ + y′ĵ′ + z′k̂′,

r⃗An
= x′

An
î+ y′An

ĵ + z′An
k̂,

r⃗Bn
= x′

Bn
î+ y′Bn

ĵ + z′Bn
k̂,

r⃗Cn
= x′

Cn
î+ y′Cn

ĵ + z′Cn
k̂,

(5)

and the relationship between the components of the

vectors in the two coordinate systems is given by:



X ′

Y ′

Z ′


=



î · î′ ĵ · î′ k̂ · î′

î · ĵ′ ĵ · ĵ′ k̂ · ĵ′

î · k̂′ ĵ · k̂′ k̂ · k̂′





X

Y

Z


. (6)

Therefore, we can express the magnetic potentials of

a determined triangle of a determined face in its own

coordinate system:

V (r⃗) = C0

∫
x′
0

∫
y′
0

M⃗ ′(r⃗′0) · k̂′

|r⃗′ − r⃗′0|
dy′0dx

′
0. (7)

The integration limits of y′0 in Equation 7 are a func-

tion of x′
0. As illustrated in Figure 2, the lower limit is

y′A = y′B and the upper limits are respectively equal to:

y01(x
′) = y′A +

(y′C − y′A)(x
′ − x′

A)

x′
i − x′

A

, for x′ ≤ x′
i,

y02(x
′) = y′A +

(y′C − y′A)(x
′
A − x′)

x′
B − x′

i

, for x′ ≥ x′
i.

(8)

Figure 2. Illustration of the limits of integration in a tri-
angular area.
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Under those circumstances the respective compo-

nents of the magnetic field are given by:

Bx(r⃗′) = C0(M⃗ ′ · k̂′)(̂i′ · î)
∫
x′
0

∫
y′
0

(x′ − x′
0)

|r⃗′ − r⃗′0|3
dy′0dx

′
0+

C0(M⃗ ′ · k̂′)(ĵ′ · î)
∫
x′
0

∫
y′
0

(y′ − y′0)

|r⃗′ − r⃗′0|3
dy′0dx

′
0+

C0(M⃗ ′ · k̂′)(k̂′ · î)(z′ − z′0)

∫
x′
0

∫
y′
0

dy′0dx
′
0

|r⃗′ − r⃗′0|3
,

By(r⃗′) = C0(M⃗ ′ · k̂′)(̂i′ · ĵ)
∫
x′
0

∫
y′
0

(x′ − x′
0)

|r⃗′ − r⃗′0|3
dy′0dx

′
0+

C0(M⃗ ′ · k̂′)(ĵ′ · ĵ)
∫
x′
0

∫
y′
0

(y′ − y′0)

|r⃗′ − r⃗′0|3
dy′0dx

′
0+

C0(M⃗ ′ · k̂′)(k̂′ · ĵ)(z′ − z′0)

∫
x′
0

∫
y′
0

dy′0dx
′
0

|r⃗′ − r⃗′0|3
,

Bz(r⃗′) = C0(M⃗ ′ · k̂′)(̂i′ · k̂)
∫
x′
0

∫
y′
0

(x′ − x′
0)

|r⃗′ − r⃗′0|3
dy′0dx

′
0+

C0(M⃗ ′ · k̂′)(ĵ′ · k̂)
∫
x′
0

∫
y′
0

(y′ − y′0)

|r⃗′ − r⃗′0|3
dy′0dx

′
0+

C0(M⃗ ′ · k̂′)(k̂′ · k̂)(z′ − z′0)

∫
x′
0

∫
y′
0

dy′0dx
′
0

|r⃗′ − r⃗′0|3
.

(9)

Adding the contribution of all N triangles yields the

magnetic anomalies of the polyhedral body.

Equation 9 can be written as:

Bη(r⃗′) =

3∑
n=1

ϕηnIn, η = x, y, z. (10)

ϕηn is the matrix of the constants. The double in-

tegrals I1 and I3 were transformed into single inte-

grals and solved by numerical methods, whereas I2

was solved analytically (see appendix).

The algorithm was written in FORTRAN 90 language

to compute the magnetic field from bodies with triangu-

lar faces. The triangle parameters were read from an

input file. The file has the coordinates of each trian-

gle organized in three columns (X, Y, Z). The points are

arranged in a right-handed Cartesian system of coordi-

nates and every triangle has the unitary surface vector

pointing out of the polyhedron. The algorithm read them

and the magnetic field is computed. It is necessary to

discretize the faces of bodies in triangles if the faces

are not triangular shaped. An auxiliary code was de-

veloped in Python language to prepare the input file for

the software which computes the magnetic anomalies

in cases where the prismatic bodies have a rectangu-

lar base. For other cases, the algorithm needs to be

adapted. The output is a text file (.txt) which is compati-

ble with softwares like Surfer®(Golden Software, LLC).

VALIDATION OF THE METHOD

To validate the method, a cube having 50 m edges and

induced magnetization M = 1A/m was positioned with

its center at coordinates (100, 100, 50) at the center of

a 200 m × 200 m area. Each face was discretized with

four equal triangles performing a total of 24 triangles.

We assumed a magnetic inclination of -27◦ and a mag-

netic declination of -23◦.

The results have been fitted to those computed with

the subroutine mbox of Blakely (1996).

The error between the fields calculated by our devel-

opment (Fcal) and by that subroutine (Fsub) is given

by:

error = 2× |Fcal − Fsub|
|Fcal|+ |Fsub|

× 100%. (11)

Figure 3 shows the magnetic anomaly due to magne-

tized cube computed by our method. The relative error

is less than 1.0%. Figure 4 shows the behavior of this

error on a map. Notice that the maximum values of the

error occur for field values close to zero.

Figure 3. Total field anomaly due to the cube in nT. The
dashed line shown is the projection of the cube on the
surface indicating where the cube is located on the map.
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Figure 4. Map of the relative error between the two
methods.

RESULTS

The inducing field for the cases analysed here has an

inclination of -27◦ and a declinaton of -23◦. By decom-

posing it along two directions: one parallel and the other

perpendicular to each face, only the perpendicular com-

ponent will magnetize the face by induction. The mag-

netic field of each body results from the contribution of

its faces and the contribution of each face depends on

its size and spatial orientation. Therefore, given equal

sizes, a face with the smallest angle between its normal

versor and the inductive field direction contributes more

than a face with a different planar orientation.

Figure 5 presents the configuration and the coordi-

nates of four polyhedrons: two pyramids, one paral-

lelepiped and one dodecahedron. The angle θ between

the perpendicular component of the inducing field and

the outward normal versor of a face may assume two

values: θ = 0◦ for an outward field and θ = 180◦ for an

inward field relative to the face. The first case produces

a secondary field congruent with the inductive field and

the second case produces a secondary field opposing

the inductive field. Three faces of the northern pyramid

are congruent and two are opposed, three faces of the

southern pyramid are opposed and two are congruent,

three faces of the parallelepiped are opposed and three

are congruent.

Figure 6 shows the magnetic anomalies due to the

solids of Figure 5. Taking as a reference the field pro-

duced by the parallelepiped, notice that the line join-

ing the nuclei of the anomalies due to the two pyramids

are displaced in the east-west direction. This fact re-

sults from the geometry of the bodies and of the orien-

Figure 5. Configuration of the four polyhedrons used
to compute the magnetic anomalies displayed, respec-
tively, in Figure 6.

tation and inclination of their faces relative to the induc-

ing field. The field produced by the dodecahedron is the

sum of the other three.

Figure 6. Magnetic anomalies (nT) of the four polyhe-
drons shown in Figure 5 magnetized by an inducting
field with inclination of -27◦ and declination of -23◦. The
dashed lines shown are the projections of bodies on the
surface and they indicate where the bodies are located
on the map.

Figure 7 presents the configuration and the coordi-

nates of the vertices of four octahedrons and Figure 8

displays their respective magnetic anomalies. The third

and the fourth octahedrons have the same shape as the

first but are inclined 25◦ north and south, respectively.

The second has the same orientation of the first but has

an irregular shape. The dashed lines in Figure 8 indi-

cate their projection on the plane Z = 0m. For the third

Braz. J. Geophys., 39(1), 2021
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and fourth solids, the semi-axis along the X direction

with a shorter size indicate the direction of the dip.

Figure 7. Configuration of the four octahedrons used
to compute the magnetic anomalies displayed respec-
tively, in Figure 8.

Due to the orientation of the inducing field, the south-

eastern, the upper southern, the northwestern, and the

lower northern faces contribute more for the magnetic

anomaly than the other four; the first two are opposed

and the last two are congruent to the inducing field. So,

the positions of the nuclei of the magnetic anomalies

depend on their sizes and orientations.

Octahedron 1 is symmetric with respect to the three

coordinate axes (plane Z = 100m) and its anomaly nu-

cleus are close to Y = 0m. The non-symmetric con-

dition of octahedron 2 with respect to the X axis, pro-

duces a western displacement of those nuclei. Octae-

hdrons 3 and 4 are identical to the first body and pro-

duce similarly shaped anomalies, but as mirrored im-

ages around Y = 0m. However, there is a change in

amplitude of the magnetic field. The east-west deviation

occurs because of the dip. This shows that, in regions

of the southern hemisphere with western declination, a

northerly dipping body deviates the magnetic anomaly

to the west and a southerly dipping body deviates it to

the east.

Figure 8. Magnetic anomalies (nT) of the four octahe-
drons shown in Figure 7 magnetized by an inducting
field with inclination of -27◦ and declination of -23◦. The
dashed lines shown are the projections of bodies on the
surface and they indicate where the bodies are located
on the map.

CONCLUSION

This new approach will be useful for the inverse model-

ing and interpretation of magnetic anomalies of com-

plex shaped bodies, especially in mining exploration,

since mineralized bodies have shapes very different

from those commonly used: prisms, spheres and cylin-

ders.

The misfit smaller than 1.0% between this procedure

and the closed form for prismatic bodies shows that we

may decrease computer costs avoiding the discretiza-

tion of too many triangles. The present development

is not restricted to the determination of the anomalies

at external observation points of homogeneous regular

convex polyhedrons. It may be adapted to inhomoge-

neous solids by modeling them as constituted of several

smaller homogeneous bodies. It may also determine

values at internal observation points, in order to simu-

late data collected along drill holes and mine shafts.
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APPENDIX

Integrals I2 have four possible solutions: (1) for Ck > 0

and ∆k < 0; (2) for Ck > 0 and ∆k = 0; (3) for Ck > 0

and ∆k > 0; and (4) for Ck < 0 and ∆k < 0, where

∆ = 4AkCk − B2
k. The coefficients Ak, Bk, and Ck

are given as functions of the geometrical parameters

of the triangles – the angular and linear coefficients of

the straight lines joining the vertex ak and bk and the

observation stations x′, y′ and z′. Consequently, Ak =

x′2+y′2+(z′−z′0)
2−2y′bk+b2k, Bk = −2x′−2y′ak+

2akbk, and Ck = 1 + a2k.

First solution

Il2(r⃗′) = ln
[(P22

P21

) 1√
C2

(P11

P12

) 1√
C1

]
, (12)

Pkj = 2Ck

√
CkRkj + 2Ckx

′
0j + Bk, and Rkj = Ak +

Bkxj + Ckx
2
j .

Second solution

Il2(r⃗′) = ln
[(W22

W21

) 1√
C2

(W11

w12

) 1√
C1

]
, (13)

Wkj = 2Ckx
′
0j +Bk.

Third solution

Il2(r⃗′) =
1

i
√
C2

[
arcsin

( iW22√
∆2

)
− arcsin

( iW21√
∆2

)]
−

1

i
√
C1

[
arcsin

( iW12√
∆1

)
− arcsin

( iW11√
∆1

)]
(14)

Fourth solution

Il2(r⃗′) =
−1√
−C2

[
arcsin

( W22√
−∆2

)
−

arcsin
( W21√

−∆2

)]
+

1√
−C1

[
arcsin

( W12√
−∆1

)
− arcsin

( W11√
−∆1

)]
(15)

E.M.S.A.: Algebra development (lead), modelling,

methodology (equal), coding, data analysis (lead) and

writing (lead). E.E.S.S.: Algebra development (sup-

porting), methodology (equal), data analysis (support-

ing) and writing (supporting).
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