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ABSTRACT. Salt Evaporites may be grouped into three major seismic facies: Halite, High Velocity Salts (formed by 

anhydrite and gypsum) and Low Velocity Salts (formed mainly by carnallite, sylvite and tachyhydrite). However, the 
tachyhydrite mineral presents the biggest technical and financial concerns as it causes fluid loss during the salt drilling 
operation as observed in the Santos Basin, Brazilian Offshore, due to its high solubility. The correct facies identification 
allows adjusting the drilling parameters accordingly to the estimated salt type, minimizing operational problems and 
economic losses. In this article, we propose the use of selected seismic attributes from 2D sections combined with 
some of the most recent machine learning algorithms such as Uniform Manifold Approximation and Projection for 
Dimension Reduction (UMAP) and Hierarchical Density-Based Spatial Clustering of Applications with Noise 
(HDBSCAN), to identify stratifications within the salt layer and their corresponding salt type. 

 
Keywords: machine learning, salt drilling, risk reduction, seismic attributes. 

 
 
RESUMO. Evaporitos salinos podem ser agrupados em três fácies sísmicas principais: Halita, Sais de Alta 

Velocidade (formados por anidrita e gipsita) e Sais de Baixa Velocidade (formados principalmente por carnalita, silvita 
e taquidrita). No entanto, o mineral taquidrita apresenta as maiores preocupações técnicas e financeiras, pois causa 
perda de fluidos durante a operação de perfuração do sal, conforme observado na Bacia de Santos, offshore 
brasileiro, devido à sua alta solubilidade. A correta identificação de fácies permite ajustar os parâmetros de perfuração 
de acordo com o tipo de sal estimado, minimizando problemas operacionais e perdas econômicas. Neste artigo, 
propomos o uso de atributos sísmicos selecionados de seções 2D combinados com alguns dos mais recentes 
algoritmos de aprendizado de máquina, como Uniform Manifold Approximation and Projection for Dimension 
Reduction (UMAP) e Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN), para 
identificar estratificações dentro da camada de sal e o tipo de sal correspondente. 
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INTRODUCTION 

The main problems associated with drilling wells for 

oil and gas industry are largely related to the 

disturbances of balance between rock stresses and 

pore pressure outside the hole, the wellbore mud 

pressure and chemical composition that fill the well. 

Whenever this balance is disturbed the wellbore 

problems occur. 

Drilling operation activities in salt zones have 

gained importance in Brazil due to the discovery in 

2005 of large oil and gas reserves in the pre-salt 

province (ANP, 2013). High operating costs, 

associated with deep water drilling, place additional 

emphasis on reducing required drilling time, without 

quality losses. 

One of the main causes of drilling problems in 

the Santos Basin, Brazilian Offshore, is the fluid 

circulation loss due to mineral absorption (Lomba 

et al., 2013). The continuity loss of whole mud to a 

formation probably is the most common and 

undoubting the most expensive drilling well 

problem. Depending on its severity, lost circulation 

can lead to: 

• Increasing in costs for drilling mud and 

associated materials; 

• Formation damage and decreasing of 

productivity; 

• Wellbore fluid level drops, increasing the 

chance of stuck pipe, borehole instability, 

and kicks; 

• Loss of formation evaluation data, since the 

information normally obtained from drilled 

cuttings and mud returns may be 

unobtainable. 

One of the methods to avoid lost circulation is 

the correct use of mud types for each section of the 

well (Lomba et al., 2013): 

“The drilling of evaporites with high mobility 

with synthetic based muds may result in wellbore 

collapse, high torques, difficult reaming, stuck pipe, 

deviations, casing collapse and, eventually, loss of 

the well. In some cases, stress concentration, after 

drilling the salt, may cause stuck bit, mainly during 

the connections, demanding the injection of fresh 

water pills for its liberation. In some wells, the 

frequent use of those pills results in such an 

irregular section as if it had been drilled with a water 

based fluid, thus rendering the mentioned problems 

more critical.” 

The objective of this article is to present the 

results after modeling the salt section in Santos 

Basin to identify its different types of salt and 

stratifications, using a selected and innovative 

machine learning approach, with a seismic attribute 

combination. This model may support the decision 

in changing the drilling parameters before entering 

a Low Velocity Salt portion that has high solubility, 

therefore preventing problems related with lost 

circulation.  

Seismic attributes are extracted from the 

seismic data and were introduced as a part of the 

seismic interpretation in the early seventies. Since 

that time, many new seismic attributes derived from 

the amplitude response, and the referred 

application to lead the interpretation of geologic 

structure, stratigraphy, and rock/pore fluid 

properties were reported (Chopra & Marfurt, 2005). 

Commonly, the combination of attributes or a multi-

attribute analysis is carried out to gauge more 

overall information than what is possible with only 

one single attribute. A crucial problem in a multi-

attribute analysis is the selection and the number of 

seismic attributes to be considered. Kalkomey 

(1997) shows that the probability of observing a 

spurious correlation increases as the number of 

control points decreases and also as the number of 

seismic attributes being used increases. 

Artificial neural networks (ANN) are capable of 

capturing linear and non-linear relationships among 

attributes (Hagan et al., 2002). The choice between 

supervised and unsupervised ANNs in geoscience 

is dependent on the analysis of each case (Sayago 

et al., 2012; Bhattacharya et al., 2016).  

Machine Learning has been used in the 

seismic scale to predict geological structures, 

stratigraphy, rock and fluid properties, usually 

through seismic interpretation and inversion 
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(Iturrarán-Viveros et al., 2021). To achieve it, fully 

convolutional deep networks have been used in the 

area of fault interpretation (Long et al., 2015), and 

it has also been used 3D convolutional neural 

networks (Waldeland et al., 2018), and deep 

encoder-decoder networks for stratigraphic 

interpretation (Badrinarayanan et al., 2015). These 

mentioned techniques classify a 3D Post-Stack 

data set based on 3D sub-cubes or 2D sections, 

and they require a relatively low number of labels 

(classes). Interpretation in seismic images has long 

used texture attributes to better identify and 

highlight areas of interest. These attributes can be 

seen as feature maps in seismic texture. In the salt 

case, we note that the texture is quite chaotic, 

where the surrounding seismic is more ''striped''. 

However, the Santos Basin is an example of an 

exception where its salt layers are highly stratified. 

 

The Santos Basin General Settings 

The domain of the Santos Basin field-reservoirs is 

located in the central portion of the basin, 

approximately 180 km off the coast of Rio de 

Janeiro City at a water depth, in average, around 

1,900 m. The reservoirs are situated between 

5,000 and 6,000 m below sea level and under a 

layer of salt, named as Ariri Formation, which can 

ranges from a few hundred meters to over 2,000 m 

(Mohriak et al., 2012). 

There are some points of attention regarding 

the application of Machine Learning to predict the 

geological structures of the Santos Basin. They are 

based on the available dataset that is composed of 

wells containing samples of the three types of salt 

we are interested to identify: LVS, Halite and HVS. 

It is worth highlighting that there are different types 

of saline evaporite minerals within the salt section 

in the Santos and Campos basins, and the 

research carried out in log analysis shows that not 

all these types of minerals are seismically 

detectable by the amplitude seismic attribute 

(Gobatto et al., 2016). Moreover, the salt section is 

composed of many more different types of 

evaporates than these three simplified classes. The 

variations in this portion and the related 

thicknesses depend on the complexity of the 

hydrocarbon field and the corresponding saline 

structuring. Oliveira et al. (2015) observed an 

inverse correlation between the thickness of the 

salt section and the salt velocity behaviors.  

Given the problem we stated before, we 

propose the use of a multi-attribute technique to 

handle several available attributes to better identify 

the salt mineral occurrences. 

 

MATERIALS AND METHODS 

In this section, we individually explain the 

processing steps that we use to model the types of 

salts in this article. In order to simplify, we group the 

proposed workflow into three main steps (Fig. 1). 

The solution proposed and described by 

Mesquita et al. (2019) is computationally 

demanding and it is based on non-intuitive 

parameters. The workflow here proposed is 

comparable to applying Self Organizing Maps 

(SOM) such as presented by Kohonen (2001), in 

which a non-supervised network performs a 

reduction of dimensionality and the data clustering. 

It results in a bi-dimensional map representing the 

input data that were grouped by the intrinsic 

similarity. However, our new proposed approach 

differs from SOM once it offers better control of 

each step. It is composed of two classification 

steps: the first one is unsupervised and the second 

one supervised, as demonstrated by Moqbel & 

Wang (2011). Therefore, our workflow is an attempt 

to improve the approach proposed by Moqbel & 

Wang (2011) by using in our case the raw seismic 

trace instead of working with pixels. That decision 

makes our algorithm faster and capable to return 

even better results. For this, we use a novel 

dimensionality reduction technique, UMAP, 

followed by an unsupervised “state of the art” 

clusterization algorithm, HDBSCAN, to model a set 

of seismic facies we are interested in. Once we 

have the calibrated labels, we can perform the 

classification of a Post-Stack Depth Migration 

(PSDM) data.
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Figure 1 - Workflow for seismic facies classification using the approach we explore in this article. 

 

WORKFLOW 

Step 1 in Figure 1:  

• Defining the region of interest 

The input data were extracted from a region of 

interest defined by the top and the base of the salt 

(Fig. 2). In this region, we have information about 

the salt velocity in one well, and we select the 

seismic line crossing this well (Fig. 3, left part). In 

this seismic line, we select a rectangular window 

containing 120 traces, and each trace presents 

250 samples, with the well in the middle as 

depicted in Figure 2. 

For this region of interest, we select four 

seismic attributes, as shown in Figure 3. We end 

this step with four matrices containing all the data 

we use as input for the next step. We combine 

these matrices as a tensor, called I, and we refer 

it to a single attribute value as 𝐼[ℎ, 𝑤, 𝑐] where h is 

the row of the matrix, w is the column and 𝑐 ∈

{1,2,3,4} that represents the attribute. 

In addition, we denote 𝐼[ℎ, 𝑤]  as a four 

dimensional vector composed by the attribute 

samples, that is denoted in Equation 1: 

𝐼[ℎ, 𝑤] =

= ( 𝐼[ℎ, 𝑤, 1], 𝐼[ℎ, 𝑤, 2], 𝐼[ℎ, 𝑤, 3], 𝐼[ℎ, 𝑤, 4]) (1) 

The input data consist of pieces of volumetric 

attributes extracted from a PSDM seismic type. 

From these volumetric attributes, we extracted 

inlines on the position of each well that shows occur-

rences of these salts, in special the LVS (Fig. 4). 
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Figure 2 - Seismic line from the volume seismic with the mapped salt top and base 

horizons. The red, green and blue colors are associated with the surface depth positions 

– the red color represents the shallow portions, the green the intermediate portions and 

blue the deepest portion, for each of the horizons. In the middle, one of the wells used is 

depicted as the yellow line. 

 

 

Figure 3 - Data slice from top to bottom of the salt layer on a 50 trace radius from the well location on the inline. 
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Figure 4 - Four attributes used in this seismic facies classification. 

 

• Choosing the Seismic Attributes 

Based on previous knowledge and experiences 

we select eight attributes that best highlighted the 

LVS occurrences. In order to know the 

reasonable amount of components to use, we 

perform a variance analysis on the data. 

According to the graph presented in Figure 5, four 

components are responsible for 97% of the 

dataset variance. Removing the remaining 

components is important to avoid redundancy 

and possible model overfittings, such as 

components that had high correlation or that do 

not highlight the salt reflections we are interested 

in when matching to the well log as proposed by 

Hampson et al. (2001). 

In a salt evaporitic deposition sequence, to 

distinguish different salt minerals using only the 

amplitude attribute is difficult and ambiguous 

due to the lack of seismic resolution once some 

salt layers are thinner than the ones the method 

is capable to solve. Both anhydrite and carnallite 

show a seismic response from positive to 

negative peaks and vice-versa respectively, 

although having a phase shift of 180 degrees. 

For instance, the lack of resolution may indicate 

a tuning effect when a lateral lobe of a carnallite 

response overprints the effective response 

(main lobe) of an anhydrite response (Fig. 6). 

Due to this mentioned seismic behavior / 

weakness, the best solution to define thin salt 

layers is the seismic inversion usage, which 

generates the absolute acoustic impedance. 

However, as it is not the focus of this work, we 

generate the Relative Acoustic Impedance (RAI) 

volumetric attribute instead of the absolute 

acoustic impedance and we use it as the main 

attribute to conduct our research.  

Knowing that we only need four attributes, 

we tested some of the available ones within a 

commercial software, and we built a correlation 

matrix, which can be seen in Table 1. From it, 

we may assume that the best attributes to 

handle our machine learning approach are first 

derivative, Edge evidence, RMS Amplitude and 

the RAI itself. However, in comparison to the 

well log outputs, when we use the method as 

proposed by Hampson et al. (2001), we observe 

that the first derivative does not reflect the salt 

layers we are interested in. Although it has a 

good ranking (low correlation with RAI), we 

discharge it. However, as we need four seismic 

attributes to run our algorithm, we use the 

Amplitude attribute instead. 

 



 MESQUITA ET AL.   23 
 

Brazilian Journal of Geophysics, 39(1),2021 

 

 

Figure 5 - Dataset explained variance chart. The first four components have 97% of the 

explained variance. 

 

 

 

Figure 6 - Comparison of the seismic response of the amplitude attribute with the acoustic 

impedance attribute. Teixeira et al. (2020). 
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Table 1 - Correlation among the tested attributes. 

 

Next we describe few details about the chosen 

attributes: 

• Amplitude: The seismic standard reflectivi-

ty amplitude is an attribute related to the 

physical properties of the subsurface as a 

function of the reflections at the different 

acoustic interfaces; 

• Root Mean Square (RMS) Amplitude: It is 

a statistical measurement of the magnitude 

of variation in amplitude throughout a 

dataset. Generally, higher acoustic im-

pedance variations are associated with 

variations within stacked lithology and re-

sult in higher RMS values. It is computed 

in a sliding tapered window of N samples 

as the square root of the sum of all the 

trace values x squared where w and n are 

the window values as presented in the 

Equation 2. 

 

𝑥𝑟𝑚𝑠 =  √
1

𝑁
 ∑ 𝑤𝑛𝑥𝑛

2

𝑁

𝑛=1

 (2) 

• Relative Acoustic Impedance (RAI): It is the 

relative product of density and seismic 

velocity, which varies among different rock 

layers and is commonly symbolized as Z. It 

is also considered as a stratigraphic 

method. This attribute shows apparent 

acoustic contrast. It indicates the sequence 

boundaries, the unconformity surfaces and 

the discontinuities. It can also support the 

quantification of porosity or fluid content in 

the reservoir. Besides, it helps to define the 

density contrast encountered at the 

interface between two distinct lithologies. It 

is computed by integrating the traces, then 

passing the result through a High-pass filter 

to reduce the potentially introduced low-

frequency noise (Connolly, 1999). In our 

case, we use a frequency cutoff of 10 Hz 

because we note this is the dominant 

frequency of the wavelet inside the salt 

layer. It can be expressed as Equation 3 

below: 

〈𝑍𝑛〉 =  〈𝑍0〉𝑒𝑥𝑝 (2 ∑ 𝑅𝑗∆𝑡
𝑛

𝑗=0
) (3) 

 

 
Amplitude 

RMS 
Amplitude 

Relative 
Acoustic 

Impedance 

First 

Derivative 
Instantaneous 

Frequency 
TECVA 

Edge 
Evidence 

Amplitude 
Contrast 

Amplitude 1.000 0.674 0.585 0.149 0.149 0.122 0.023 0.175 

RMS 
Amplitude 

0.674 1.000 0.584 0.118 0.197 0.080 0.026 0.173 

Relative 
Acoustic 

Impedance 

0.585 0.584 1.000 0.208 0.988 0.812 0.016 0.865 

First 

Derivative 
0.149 0.118 0.208 1.000 0.109 0.037 0.018 0.018 

Instantaneous 
Frequency 

0.149 0.197 0.968 0.109 1.000 0.991 0.056 0.004 

TECVA 0.122 0.080 0.812 0.037 0.991 1.000 0.482 0.482 

Edge 
Evidence 

0.023 0.026 0.016 0.018 0.056 0.482 1.000 0.034 

Amplitude 
Contrast 

0.175 0.173 0.865 0.018 0.004 0.482 0.034 1.000 
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Where 〈𝑍〉 indicates the average impedance over 

a layer j, R is the reflectivity, j is the time sample 

varying from 0 to n, and t is time. 

• Edge Evidence: It is a statistical edge 

enhancement method used to delineate 

fault and any geological body borders, such 

as salt bodies, within seismic data. It is a 

structural method. The algorithm is related 

to the Radon transform and Hough 

transform, but it uses an integral to detect 

edges within an image, and it is limited to a 

user-defined window. The Edge Evidence 

attribute works by searching locally in all 

directions for line segments where the 

values on the line differ significantly from 

the surrounding values (Aqrawi & Boe, 

2011). This same method can be used for 

any arbitrary number of attributes and it can 

be used to assist in mapping other desirable 

lithologies. 

 

Step 2 in Figure 1:  

• Dimensionality reduction and regularization 

with UMAP 

With the input data I from the previous step, we 

define a set of samples, where each sample 

𝐼[ℎ, 𝑤] is a vector having four dimensions. Then, 

we transform these samples using the Uniform 

Manifold Approximation and Projection for 

Dimension Reduction (UMAP) (McInnes et al., 

2020) and we cluster the transform samples 

applying the Hierarchical Density-Based Spatial 

Clustering of Applications with Noise (HDBSCAN) 

(McInnes et al., 2017).  

We construct the UMAP technique from a theo-

retical framework based on Riemannian geometry 

and algebraic topology. Dimensionality reduction 

seeks to produce a lower dimensional representa-

tion of higher dimensional data, preserving the 

relevant features. Dimensionality reduction algo-

rithms tend to fall into two categories: those that 

seek to preserve the distance structures within the 

data and those that favor the preservation of local 

distances over global distances. The UMAP falls 

into the second described category. 

The theoretical foundations for UMAP are 

largely based on manifold theory and topological 

data analysis. At a high level, UMAP uses local 

manifold approximations and patches together 

with their local fuzzy simplicial set representations 

to construct a topological representation of the 

high dimensional data. Given some low 

dimensional representation of the data, it uses a 

similar process to build an equivalent topological 

representation.   

Thus, UMAP optimizes the layout of the data 

representation in the low dimensional space to 

minimize the cross-entropy between the two 

topological representations. The theoretical 

description of the algorithm works in terms of fuzzy 

simplicial sets.  Computationally this is only 

tractable for the one skeleton, which can be 

described as a weighted graph. From a practical 

computational perspective this means that UMAP 

can ultimately be described in terms of 

construction and operations on weighted graphs. 

In particular, that statement situates UMAP in the 

class of k-neighbor based graph learning 

algorithms such as Laplacian Eigenmaps, Isomap 

and t-SNE (van Der Maaten & Hinton, 2008).  

Therefore, UMAP is used mainly as a 

dimensionality reduction method, but its 

formulation also has a regularization effect. In this 

work, our main interest is in the regulatory effect. 

See Figure 7. 

We can use the UMAP to transform groups of 

points that are very dense into groups with more 

uniform density points. The minimal distance 

between the points in the embedding can be 

controlled by the minimal distance hyper-

parameter. This has a positive effect because it 

facilitates the task of clustering algorithms that work 

towards expanding sample selection, such as 

Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) and HDBSCAN. Comparing 

the result of Figure 8 (b) to Figure 8 (c), we can see 

the effect of this regularization after employing the 

UMAP, once the seismic facies are better defined.
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Figure 7 - Dimensionality reduction and regularization using UMAP technique. Four 

seismic attributes and the UMAP were used to create an embedded space with two 

components. The two new components are the inputs for the clustering algorithm. 
 

 
Figure 8 - Input seismic attributes and seismic facies found by different methods: (a) K-means, (b) HDBSCAN, (c) 

UMAP + HDBSCAN, (d) UMAP + Modified HDBSCAN. 
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The integrating procedure of UMAP with a 

hierarchical clustering algorithm provides the best 

evidence of existing local and global structures of 

data. Here we use HDBSCAN as presented by 

McInnes et al. (2017). It performs DBSCAN 

(Campello et al., 2013) over varying epsilon values, 

and it integrates the result to find a new clustering 

that gives the best stability over epsilon, which is the 

parameter that specifies how close points should be 

to each other to be considered a part of a cluster.  

This allows HDBSCAN to find clusters of varying 

densities, rather than DBSCAN, and it is the most 

robust parameter for selection. In Figure 8 we 

compare the result of the proposed clustering 

method, UMAP + HDBSCAN (d) against the k-

means algorithm (a) (MacQueen, 1967), with the 

original HDBSCAN (b) without the UMAP step and 

HDBSCAN with UMAP (c). 

The UMAP has two main hyper-parameters: the 

number of neighbors that balances local versus 

global structure in the data, and the minimal 

distance that controls how tightly UMAP is allowed 

to pack the referred points together. We set the 

number of neighbors to 35 and minimal distance to 

0.01, and we select these values based on a grid 

search and visual inspection of the facies 

distribution. In Figure 7 we depict the inputs and 

outputs generated by the UMAP algorithm with the 

selected hyper-parameters. 

 

• Clustering for seismic facies definition with 

HDBSCAN 

The HDBSCAN was used with the default 

parameters, except for the metric parameter. We 

chose the Mahalanobis metric, once this one is 

useful because it is scale invariant. In this way, it is 

more robust to the possible unscaled output of the 

UMAP transformation. We present the seismic 

facies obtained with this methodology in Figure 8 (c). 

One warning to HDBSCAN usage is related to 

its formulation, once it tries to separate the clusters 

from the background data, causing misdetection of 

the points that are among the clusters, possibly 

making it classify them as noise. We can see this 

effect in Figure 8 (c), where many points were 

classified as belonging to the noise class (the 

darker blue points). To fix the problem, we modified 

the HDBSCAN algorithm. For each point classified 

as noise we look at for the nearest classified point, 

and we transfer its referred label in order to have 

the right one. We present the result of this 

modification in Figure 8 (d). 

 

• Propagate the HDBSCAN labels 

After the application of the proposed clustering 

method (UMAP + Modified HDBSCAN), we ended 

with a seismic facies map of our region of interest. 

Later, we want to expand this seismic facies 

classification to all the seismic data we are dealing 

with. To make this expansion properly we directly 

use the model, transforming the new samples 

applying the UMAP and using the condensed tree 

that was created by the HDBSCAN method to 

predict the new labels. The classification for new 

data points took approximately half a millisecond 

per sample in an Intel Core I5-9600KF CPU. This 

is little on the slow side, but the process can be 

directly done using parallel computing. See Figure 

9 (c) where we propagate the seismic facies 

information to the seismic cube. 

 

Step 3 in Figure 1:  

• Seismic facies calibration with salt stratigraphy 

In this step, we want to map the seismic facies 

from Step 2 with the salt stratigraphy. This is a 

problem with incomplete information because the 

seismic is not perfect and contains several sources 

of uncertainty. Considering the example we present 

in Figure 10 (a), the well data show that there are 

LVSs (green points) in the middle of the picture. 

However, the seismic data are not capable to display 

any reflection over the well trace, but when the left 

and right parts of the well are observed, the referred 

reflections are present. There are several possible 

correct mappings from the seismic to the salt layers. 

In this sense, to create the mapping we use interpre-

tation, which facilitates the process of creating two 

main sources of information as it is proposed: 

knowledge about the salt distribution and well logs.
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Figure 9 - Input seismic attributes and seismic facies found by different methods: (a) K-means, (b) HDBSCAN, (c) UMAP + 

HDBSCAN, (d) UMAP + Modified HDBSCAN. 

Gao (2007) uses the method of calibrating the 

clusters using the control of the well, giving rise 

to what is called a “posteriori supervision”. There 

the author uses wells along with his own 

knowledge of the depositional environment in 

which he was working on to calibrate the found 

clusters. Based on this procedure, we use the 

same process. Here the same wells that we are 

using as a reference serve to calibrate the 

seismic facies. For this, another processing step 

has to be performed before, which is the seismic-

well tie, to place all the information in the same 

domain and perform the data calibration. 

We want to map the seismic facies to three 

different stratigraphic groups: LVS, Halite 

(Background) and HVS, as presented in Table 2.  

To create the maps we load the seismic facies 

obtained in Step 2 into a commercial interpreta-

tion software, where we can visualize the well 

data and the seismic facies data, as shown in 

Figure 10. The green points over the well trace 

indicate the regions with the records of LVS 

occurrences, and we select the seismic facies 

associated with those regions. We present the 

resulting process of this selection in Figure 9 (d) 

and with more detail in Figure 10 (b). The facies 

selection is achieved in an easier way because 

we employ the HDBSCAN algorithm. Usual 

clusterization algorithms generate labels that do 

not have a specific order as shown in Figure 8 

(a). Differently, the HDBSCAN generates ordered 

labels of seismic facies, and those labels are 

integer numbers. This, in general words, means 

that facies with similar attribute characteristics 

have closer labels. We can observe the structure 

results in Figures 7(c) and (d). We use the same 

process to select the facies associated with HVSs 

and the remaining facies are associated with the 

Halite, our background facies. The final result is 

a 2D section obtained from the 3D cube, with the 

salt classification based on our premises (Figs. 

11 and 12). 

 

• Model classification 

Once we classify the data, we can then assign 

values accordingly to our prior knowledge of the 

lithology and using the wells as reference. We 

use the theoretical values of the salt layers 

according to Table 2. It presents the mineral 

grouping as proposed by Maul et al. (2018), 

indicating the chemical formulas of each mineral 

as well as the related main acoustic properties. 

RESULTS, ANALYSIS AND DISCUSSIONS 

As we can see in Figure 11, and with more detail 

in Figure 12, the Amplitude inline was classified 

and values were assigned to each class that was 

found using our method and that we are 

interested. There, the green color represents the 

background lithology – Halite; the dark blue color 

represents the LVSs; and the yellow color 

represents the HVSs.  
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Table 2 - Stratigraphic groups; their mineral composition and respective properties; and average values, covering 182 drilled 

wells in Santos Basin, Offshore Brazil. Adapted from Maul et al. (2018).  

Stratigraphic Group Mineral Composition Density (g/cm3) 
Interval 

Velocity (m/s) 

LVS 

Tachyhydrite CaMg2Cl6.12(H2O) 1.57 3,300 

Carnallite KMgCl3.6(H2O) 1.66 3,910 

Sylvite KCl 1.86 3,910 

Background Halite NaCl 2.10 4,550 

HVS 
Gypsum CaSO4.2(H2O) 2.35 5,810 

Anhydrite CaSO4 2.98 6,100 

 

 
Figure 10 - (a) 3D seismic data and well data. The green points at the well path (red and green lines) 

indicate LVS occurrences; (b) LVS selected facies. 

 

In this case, we did the classification for the 

whole inline, disregarding the post-salt and pre-

salt portions. The same methodology can be 

used changing only the model where each 

different lithology is an identified class and where 

the input seismic attributes for each of these 

depositional environments (siliciclastic and 

carbonatic) vary from the ones we used in this 

work. In addition, the slice data chosen must 

match the environment in order to properly 

evaluate.  

As we can see in Figure 13, we can perform 

the same approach considering 3D volumes, only 

taking into account the time consuming when 

performing it. We could assign any value to each 

of the found classes, such as impedance values. 

Besides, we assume that the method is versatile 

and that can be further explored for many other 

applications, regarding seismic interpretation. 

The whole process is very accessible to 

anyone with minimum programming skills. This 

workflow was implemented using Python 3.7 and 

ScikitLearn package (Pedregosa et al., 2011), 

plus Petrel interpretation software, but any other 

tools (for coding and interpretation) could be used. 

We classified and identified some 

Tachyhydrite mineral (the main issue for the well 

drilling programs in the salt section). However, as 

most of them are thinner than few meters, in 

some case presenting centimetric thickness, 

which is far from and below the concept of the 

seismic resolution (Widess, 1973), our approach 

was not capable to properly separate them. Even 

though, the LVSs can be identified as a package.
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Figure 11 - Method applied to an entire seismic line: top, 

original seismic amplitudes; middle, seismic facies detected 

by the proposed UMAP + Modified HDBSCAN algorithm; 

bottom, the identified and calibrated salt lithology. 

 

 
Figure 12 - Detail of Figure 11: top, original seismic 

amplitudes; middle, seismic facies detected by the proposed 

UMAP + Modified HDBSCAN algorithm; bottom, the 

identified and calibrated salt lithology. 
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Figure 13 - 3D seismic volume classified and loaded to a commercial 

interpretation software. In blue color it is illustrated the LVS occurrences; 

in green, the halite (background) representation; and in red, the LVS 

presences. 

 

CONCLUSIONS 

Our proposed machine learning workflow com-

bined with the right seismic attributes can lead to 

the identification of the desirable salt heterogenei-

ties; in our case the existing stratification observed 

in a well and from seismic images. It helps to gener-

ate accurate velocity models for seismic processing 

in portions where the salt stratification is present, 

collaborating to the generation of reliable seismic 

images, especially in structural complex regions.  

The same approach can be used for geome-

chanical issues, however the resolution matter is a 

subject that demands more mitigations. Using our 

approach we easily differentiate the three groups of 

salt, LVS, Halite and HVS, as described in litera-

ture. Unfortunately, our algorithm is not capable to 

properly split the LVS group, identifying and 

categorizing all the occurrence of Tachyhydrite yet. 

Although sometimes this full separation was not 

possible, the results can still be used as an aid to 

the drilling engineers to plan and to adapt the drill-

ing parameters before and in the moment the well 

is been drilled. It helps to avoid fluid losses when 

entering the LVS layers that lead to a lot of time and 

financial issues as well as to assure safety in the 

drilling operations. 

We can add many pre-processing steps as 

noise filtering and Q factor normalization to recover 

the attenuation effects. However, even without 

these steps, the method shows its strength as a 

much better alternative to the classic PCA + K-

means normally used. It is comparable to, or better 

than, the Self Organizing Maps which by itself does 

not solve the problem without a pre-conditioning 

PCA plus further steps. 

Besides, we introduce here the concept of using 

the UMAP as a regularization step to the data, di-

minishing the need for normalization, filtering, PCA 

and many other steps normally used in traditional 

methods. Additionally, we implement a modification 

to the HDBSCAN technique, allowing a hierarchical 

clusterization method, to work together with the dis-

tribution of varying densities, which produces much 

better results than K-means or KNN.  

It all starts from a detailed data selection, 

commencing from the wells and ending with data 

slice and seismic inlines from the seismic cube, and 

then applying dimensionality reduction and 

clusterization followed by a calibration step. Finally, 

we concluded our running approach delivering a 

salt categorized seismic volume. We then assigned 

values to the categorized data according to the 

class behaviors, the interval velocity property in our 

case, allowing to build a reliable and geological 3D 

velocity model for the salt section. Summarizing, 

we start from an unsupervised classification 

technique, we generate the model and we use the 

wells and the salt proportions as a base to map the 

seismic facies to the salt lithology.  We finish with a 

model showing the accurate distribution of the three 

salt stratification groups we were interested in: 

LVS, Halite and HVS.  

In a future work, we plan to use autoencoders 

for the detection of rare events, since Tachyhydrite 

is an uncommon but problematic salt. We judge this 

technique promising and worthy to be continued. 
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