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NUMERICAL SIMULATION OF ELASTIC/ELECTROMAGNETIC
WAVES PROPAGATION: URSIN’S APPROACH
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Marcia Miranda Azeredo 2

ABSTRACT. This work aims to present and implement a mathematical algorithm based on Ursin’s formalism to nu-
merically simulate the propagation of elastic and electromagnetic waves in stratified 3D media. One of the significant
advantages of the Ursin formalism is that, under certain conditions, this method allows one to consider partial differ-
ential equations describing various dynamic physical processes in a single form. Unlike the original work of Ursin, in
the case of Maxwell’s equations, to describe the process of propagation of electromagnetic waves in air, we used a
hyperbolic version of Maxwell’s equations; and in the Earth’s subsurface, a diffusion (parabolic) version. An analysis
of the elastic/electromagnetic responses is carried out in this paper, proving the effectiveness of the mathematical
algorithm through numerical simulations.
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RESUMO. O objetivo deste trabalho é apresentar e implementar numericamente um algoritmo matemático, baseado
no formalismo de Ursin, para a simulação da propagação de ondas elásticas e eletromagnéticas em meios 3D es-
tratificados. Uma das grandes vantagens do formalismo de Ursin é que este método permite, sob certas condições,
tratar as equações diferenciais parciais que descrevem vários processos físicos dinâmicos diferentes em uma única
forma. Diferente do trabalho original de Ursin, no caso das equações de Maxwell, para caraterizar o processo de
propagação das ondas eletromagnéticas no ar, usamos uma versão hiperbólica das equações de Maxwell, e na
subsuperfície da terra - uma versão de difusão (parabólica). Uma análise das respostas elásticas/eletromagnéticas
é realizada neste artigo, comprovando a eficácia do algoritmo matemático através de simulações numéricas.
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INTRODUCTION

Many types of research are being performed to carry
out computational and numerical simulations that de-
scribe several physical phenomena related to oil
prospecting or other minerals and physical phenomena
related to earthquakes or other applications.

There are many works dedicated to developing
and applying analytical and matrix methods for waves
propagation analysis in stratified media composed of
homogeneous layers; see, for instance, Thomson
(1950); Haskell (1953); Brekhovskih (1960); Kunetz and
D’Erceville (1962); Molotkov (1984); Tygel and Hubral
(1987); Mackay and Lakhtakia (2020). One of the forms
of the matrix method, which was introduced by Ursin
(1983) for the analysis of elastic and electromagnetic
waves propagation, is now widely used in the study
of physical processes in the stratified media. For ex-
ample, the case of viscoelastic media was analyzed in
Ursin and Stovas (2002), and for propagation in poroe-
lastic media in low and high frequencies, see Azeredo
and Priimenko (2015); Miranda and Priimenko (2017);
Oliveira et al. (2018). White and Zhou (2006) showed
how the electrokinetic system of equations, which mod-
els the electroseismic effect, can be written in a conve-
nient mathematical form suggested by Ursin.

The organization of this article is as follows: In Sec-
tion Statement of the Problems, from Lamé parameters
plugged in Hooke’s law, Cauchy’s equations of motion
and Maxwell’s equations, we built two systems of par-
tial differential equations (PDE’s) that model the elas-
tic and electromagnetic waves propagation in the 3D
space. When the functions depend only on the depth,
Fourier transforms are useful to turn the PDE’s systems
that model wave propagation into ordinary differential
equations (ODE’s) systems. This approach permits us
to put the Lamé and Maxwell system in the Ursin for-
mat, which is very useful for analyzing wave processes
in stratified media. It is necessary to say that unlike the
original work of Ursin, in the case of Maxwell’s equa-
tions, to describe the process of propagation of elec-
tromagnetic waves in air, we used the complete (hyper-
bolic) version of Maxwell’s equations; and in the Earth’s
subsurface, a diffusion version. The resulting system
of differential equations was considered when an exter-
nal source of electromagnetic oscillations was located
only in the subsurface. In addition, following Pride and
Haarsten (1996); Haarsten and Pride (1997), the prob-
lem was reduced to a problem considered only in the
earth’s subsurface. In Section Ursin Method we shortly
present the Ursin method, i.e., the Ursin diagonaliza-
tion process, the reflection and transmission matrices,
source and boundary conditions, representation of dif-
ferent types of sources. The derivation of the main for-
mulas of the Ursin diagonalization process was orga-
nized somewhat differently. In Section Solution in Real
Space we present the formulas, which permit calculat-
ing the obtained solution in the real space. Section Nu-
meric Examples deals with the results of several nu-

merical experiments. They were implemented to illus-
trate the theoretical results in the previous sections. We
built efficient computer codes that allow simulations of
the elastic and electromagnetic waves propagating in
a 3D stratified half-space. In Section Conclusion, we
collected some additional comments. Finally, in the Ap-
pendix, we present the explicit formulas for the calcula-
tion of the eigenvalues and eigenvectors mentioned in
Section Solution in Real Space for the considered elas-
tic and electromagnetic problems.

STATEMENT OF THE PROBLEMS

Elastic Problem

We shall consider wave propagation in an isotropic
elastic medium R+ = ∪N

n=0Rn, composed by stratified
layers identified with Rn = {x = (x, y, z) ∈ R3 : zn <
z < zn+1}, with 0 = z0 < z1 · · · < zN+1 = ∞. We
assume that all material parameters are represented
by piecewise constant functions depending only on the
depth coordinate z, with the discontinuities at the points
z = zn, n = 1, 2, . . . , N .

In the temporal frequency (ω) domain (time depen-
dence of e−iωt is assumed), the Lamé equations are, at
each point x ∈ R3,

− iωρu̇ = ∇ · τ + f ,

− iωτ = λ(∇ · u̇)I+G(∇u̇+∇u̇T ),
(1)

see, for instance, Sokolnikoff (1946). Here f =
(f1, f2, f3)

T is a vector-function characterizing an exter-
nal elastic source; u̇ = −iωu is the solid velocity where
u = (u1, u2, u3)

T is the displacement vector, and τ is
the elastic stress tensor; I is the 3 × 3 identity matrix
and T means the transposition. The material parame-
ters are as follows: λ and G, the Lamé coefficients; ρ,
the material density.

For material parameters that depend only on the
depth coordinate z, we take Fourier transforms in the
two lateral coordinates x, y. Let (kx, ky)T be the hori-
zontal wavenumber and let

k =
√

k2x + k2y, γ =
k

ω

be the magnitude of the horizontal wavenumber and
the horizontal slowness, respectively. Define the lateral
Fourier transforms

f̂(kx, ky, z) ≡ F (f)

=

∫∫
R2

f(x, y, z)e−i(kxx+kyy)dxdy
(2)

and

f(x, y, z) ≡ F−1(f̂)

=
1

4π2

∫∫
R2

f̂(kx, ky, z)e
i(kxx+kyy)dkxdky

(3)

with similar expressions for the other variables.
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Note 1 The lateral Fourier transforms (2) and (3) have
a different dependency from that adopted in the tempo-
ral transform (47).

Let us apply the lateral Fourier transform (2) to equa-
tions (1). The resulting system is greatly simplified if we
rotate to a coordinate system x̃ = (x̃, ỹ, z̃)T with the
first coordinate oriented in the direction of the horizon-
tal wavenumber (kx, ky)T . By doing so, all plane waves
have a spatial dependence of the form eikx̂. Therefore,
the rotation matrix is

Ω =


kx

k
ky

k 0

−ky

k
kx

k 0

0 0 1

 .

Define

x̃ = Ωx̂, ũ = Ωû, τ̃ = Ωτ̂ΩT , f̃ = Ωf̂ . (4)

Let

Φ(1) =
[
˙̃u3, τ̃13, τ̃33, ˙̃u1

]T
, Φ(2) =

[
˙̃u2, τ̃23

]T
, (5)

and n1 = 2 and n2 = 1. Then the 2nm-dimensional
vectors Φ(m) satisfy uncoupled systems of linear ODE’s
of the Ursin form

dΦ(m)

dz
= −iωM(m)Φ(m) + S(m), m = 1, 2, (6)

where S(m) are 2nm-dimensional source vectors and
the 2nm × 2nm matrices M(m) are of the block form

M(m) =

 0 M
(m)
1

M
(m)
2 0

 (7)

with symmetric nm × nm submatrices

M
(m)
1 = M

(m)
1

T
, M

(m)
2 = M

(m)
2

T
.

System 1 (m = 1) contains compressional (P ) and
vertical shear (SV ) waves. For this system we have

M
(1)
1 =

 1
λ+2G

λγ
λ+2G

λγ
λ+2G ρ− 4γ2G(λ+G)

λ+2G

 ,

M
(1)
2 =

ρ γ

γ G−1

 , S(1) = (0,−f̃1, f̃3, 0)
T .

(8)

Once Φ(1) has been determined, we may also compute
two variables which are dependent only on System 1:

τ̃11 = γ
λ2 − (λ+ 2G)2

λ+ 2G
˙̃u1 +

λ

λ+ 2G
τ̃33,

τ̃22 = γ
λ2 − λ(λ+ 2G)

λ+ 2G
˙̃u1 +

λ

λ+ 2G
τ̃33.

System 2 (m = 2) contains shear horizontal (SH)

waves. For this system, we obtain

M
(2)
1 = G−1,

M
(2)
2 = ρ−Gγ2, S(2) = (0,−f̃2)

T .
(9)

Once Φ(2) has been determined, we may also compute
the variable which is dependent only on System 2:

τ̃12 = −Gγ ˙̃u2.

At the internal layer boundaries z = zn, n =
1, 2, . . . , N , we use the continuity of u, the normal com-
ponents of τ ; see, for instance, Carcione (2007). It im-
mediately applies

z = zn :
[
˙̃u
]
= 0, [τ̃13] = [τ̃23] = [τ̃33] = 0,

where [·] is the jump of corresponding function across
the discontinuity z = zn.

The boundary conditions at the free surface z = 0
are

z = 0 : τ̃13 = τ̃23 = τ̃33 = 0.

And finally, at the infinity the solution satisfy the fol-
lowing radiation conditions:

lim
z→∞

˙̃u = 0.

Electromagnetic Problem

We shall consider wave propagation in an isotropic
electromagnetic medium R = R− ∪ R+, where R− =
{x ∈ R3 : −∞ < z < z0} characterizes the air infi-
nite layer. We assume that all material parameters are
represented by piecewise constant functions depending
only on the depth coordinate z, with the discontinuities
at the points z = zn, n = 1, 2, . . . , N .

In the temporal frequency domain, the Maxwell equa-
tions are, at each point x ∈ R3,

∇×E = iωµ0H

∇×H = σ̄E+ j

∇ ·H = 0.

(10)

Here E = (E1, E2, E3)
T is the electric field; H =

(H1, H2, H3)
T is the magnetic field; j = (j1, j2, j3)

T is
the external electromagnetic source; and σ̄ = σ − iωϵ.
The material parameters of this system are as follows:
µ0, the constant magnetic permeability; ϵ, the electric
permitivity; σ, the conductivity.

Note 2 It is customary in the analysis of the Earth’s in-
terior to assume the quasi-static behavior of Maxwell’s
equations; see for instance Griffiths (1999). This means
that ϵ = ϵ0, σ = 0 =⇒ σ̄ = −iωϵ0 in the air, and in the
Earth’s interior we neglect by the displacement current
−iωϵE formally assuming ϵ = 0 =⇒ σ̄ = σ.

Applying only the lateral Fourier transform (2), we can
directly represent the Maxwell equations (10) in the
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Ursin form (6), avoiding the rotation Ω, where

Φ(1) =
[
Ĥ2, Ê1

]T
, Φ(2) =

[
Ê2,−Ĥ1

]T
, (11)

and

M
(1)
1 =

σ̄

iω
, M

(1)
2 = −µ0 − i

ωγ2

σ̄
,

S(1) =

(
−ĵ1,−

iγω

σ̄
ĵ3

)T (12)

for System 1, and

M
(2)
1 = −µ0, M

(2)
2 =

σ̄

iω
+

γ2

µ0
,

S(2) =
(
0,−ĵ2

)T
(13)

for System 2.
Once Φ(m), m = 1, 2, have been determined, we

may also compute the following variables:

System 1 : Ê3 = − ik

σ̄
Ĥ2 −

1

σ̄
ĵ3,

System 2 : Ĥ3 =
γ

µ0
Ê2.

At the internal layer boundaries z = zn, n =
1, 2, . . . , N , we use the continuity of the tangential com-
ponents of E and H. It immediately applies

z = zn :
[
Êk

]
=

[
Ĥk

]
= 0, k = 1, 2.

Following Pride and Haarsten (1996); Haarsten and
Pride (1997), we can reduce the domain R of study to
the Earth’s interior only, excluding the upper (air) infi-
nite layer, i.e., to consider Eqs.(6), (11)–(13) in R+ do-
main only with the following boundary conditions at the
earth/air surface z = 0

System 1 : Ĥ2 = − ϵ0
q0

Ê1,

System 2 : Ĥ1 =
q0
µ0

Ê2,
(14)

where q0 is the vertical slowness of an electromagnetic
wave in the air, i.e.,

q0 =
√
ϵ0µ0 − γ2. (15)

And finally, at the infinity, the solution satisfy the fol-
lowing radiation conditions:

lim
z→∞

Êk = lim
z→∞

Ĥk = 0, k = 1, 2.

Note 3 Note that this problem can also be solved using
the same approach (with the rotation Ω) that was used
to solve the problem of the propagation of elastic waves
in a piecewise constant elastic medium.

URSIN METHOD

As we have shown, we’ve been able to write the Lamé
and Maxwell equations in a single form (6), which can
be solved using the method proposed by Ursin (1983),
divided into several steps described in the next section.

Ursin diagonalization

We shortly present Ursin’s diagonalization procedure in
the form that it will be used here; see, for instance, Az-
eredo and Priimenko (2015) for detail. We consider ma-
trices of the form (7) dropping the superscript (m) for
simplicity.

Assume that M1M2 has n distinct nonzero eigenval-
ues λ2

j , j = 1, 2, . . . , n, with associated eigenvectors

aj , such that aTj M2aj = λj . Here λj =
√
λ2
j with the

branch chosen so that Im(λj) ≥ 0 and λj > 0 if λj is
real. Define bj = λ−1

j M2aj . This vector is an eigen-
vector of M2M1 with eigenvalue λ2

j . Using the symme-
tries of M1 and M2, we obtain aTj bi = δij , where δij is
the Kronecker delta.

Let L1 be the n × n-matrix whose j-th column is
aj , and let L2 be the n × n-matrix whose i-th col-
umn is bi, then L−1

1 = LT
2 , L−1

2 = LT
1 . Introduce

Λ = diag(λ1, λ2, . . . , λn). Then L2Λ = M2L1 and
M1L2 = L1Λ, which implies

M1 = L1ΛLT
1 , M2 = L2ΛLT

2 . (16)

Introducing the diagonal matrix Λ̃ = diag(Λ,−Λ) and
using (16), we finally obtain

M = LΛ̃L−1, (17)

where

L =
1√
2

L1 L1

L2 −L2

 , L−1 =
1√
2

LT
2 LT

1

LT
2 −LT

1

 .

Reflection and transmission matrices

Firstly, we consider a homogeneous source-free region
of space. Dropping (m) we have a 2n-dimensional sys-
tem of the form (6) with M constant and S = 0. Let

Φ = LΨ and Ψ = (U,D)
T
, (18)

where U and D are n-vectors. Inserting (18) into (6)
and using (17) we arrive at

d

dz
Ψ = −iωΛ̃Ψ.

Then

Ψ(z) =
(
e−iωΛ(z−z0)U(z0), e

iωΛ(z−z0)D(z0)
)T

, (19)

where z0 is a fixed point in the same source-free re-
gion. The vectors U and D characterize up-going (U)
and down-going (D) waves. Next, consider an interface
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at z = z, where the material parameters vary discontin-
uously across z. We denote by ± quantities evaluated
at z± = z ± 0. Since Φ is continuous across z, we
obtain

Ψ+ = JΨ−, Ψ− = J−1Ψ+, (20)

where the jump matrix is

J = (L+)−1L− =

JA JB

JB JA

 ,

J−1 =

 JT
A −JT

B

−JT
B JT

A

 ,

and JA,JB are the n× n matrices

JA =
1

2

[(
L+
2

)T
L−
1 +

(
L+
1

)T
L−
2

]
,

JB =
1

2

[(
L+
2

)T
L−
1 −

(
L+
1

)T
L−
2

]
.

Next, we consider a stack of layers 0 < z1 < · · · <
zN < ∞. We denote by subscript j a quantity at inter-
face z = zj , with superscripts ± as before. Then(

U−
N ,D−

N

)T
= J−1

N

(
0,D+

N

)T
,

where we have used that there is no up-going wave be-
low the last interface at z = zN . So, we obtain

U−
N = ΓND−

N , D+
N = TND−

N ,

where

ΓN = −JT
B,N

(
JT
A,N

)−1
, TN =

(
JT
A,N

)−1
. (21)

Here ΓN is the reflection matrix and TN is the trans-
mission matrix from the last interface z = zN .

Let j < N and △zj = zj+1− zj , j = 0, 1, . . . , N − 1,
be the layer thickness. Then by jumping across the layer
boundary and using (19) and (20) we obtain

U−
j = JT

A,je
iωΛj△zjU−

j+1 − JT
B,je

−iωΛj△zjD−
j+1

D−
j = −JT

B,je
iωΛj△zjU−

j+1 + JT
A,je

−iωΛj△zjD−
j+1.

(22)

Define reflection and transmission matrices Γj ,Tj by
the relations for any incident wave D−

j at the top of the
stack of layers underlying z = zj

U−
j = ΓjD

−
j , D+

j = TjD
−
j . (23)

Therefore Γj computes the reflected wave from the
stack, and Tj computes the transmitted wave below the
stack when the incident wave is known. From (22), (23)
we obtain by induction

Γj =
(
JT
A,jΓ̃j+1 − JT

B,j

)(
− JT

B,jΓ̃j+1 + JT
A,j

)−1

Tj = Tj+1e
iωΛj△zj

(
− JT

B,jΓ̃j+1 + JT
A,j

)−1
,

(24)

where Γ̃j+1 = eiωΛj△zjΓj+1e
iωΛj△zj . Again, by in-

duction it can be shown that Γj is symmetric.

Thus, all the reflection and transmission matrices can
be calculated by (24), starting with (21).

Sources and boundary conditions

Consider again a 2n-dimensional system of the form (6)
with (m) omitted. Let the source be of the form

S = S0δ(z − zs) + S1δ
′(z − zs) (25)

with S0 and S1 independent of z. Here δ is the Dirac
function.

Let
Φ0 = Φ− S1δ(z − zs). (26)

Then from (25), (26), and (6),

dΦ0

dz
= −iωMΦ0 + [S0 − iωMS1]δ(z − zs). (27)

Define n-vectors SA and SB by the following formula(
SA,SB

)T
= iωMS1 − S0. (28)

Integrating (27) over an interval (zs − ϵ, zs + ϵ) with
ϵ → 0, we obtain the following jump condition across
the source

Φ(z−s ) = Φ(z+s ) +
(
SA,SB

)T
. (29)

Inserting a fictitious layer boundary at z = z+s , we com-
pute the reflection matrix Γs ≡ Γ(z+s ) from the top of
this layer. Note that at z+s , JA = I and JB = 0, since
the material properties do not change at zs. Then the
up-going wave Us ≡ Us(z

+
s ) is related to the down-

going wave Ds ≡ Ds(z
+
s ) there by (23). Then we have

Ψ(z+s ) =
(
ΓsDs,Ds

)T
. (30)

Using (18), (29) and (30), we obtain

Ψ(z−s ) =
(
ΓsDs,Ds

)T
+

1√
2

(
LT
2 SA + LT

1 SB ,L
T
2 SA − LT

1 SB

)T
.

This expression may now be propagated upwards
through the layers, using (19) and jumped upwards
across layers boundaries using (20) until we reach the
free surface at z = 0+. Then the n boundary conditions
at z = 0 can be used to find the n unknowns Ds.

Consider now one particular case when zs ∈ (0, z1).
In this case

Ψ(0+) =
(
eiωΛszsΓsDs, e

−iωΛszsDs

)T
+

1√
2

(
eiωΛszs(LT

2 SA + LT
1 SB),

e−iωΛszs(LT
2 SA − LT

1 SB)
)T

.

(31)
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We next write

Φ(0+) =
(
GAΦ0,GBΦ0

)T
, (32)

where Φ0 is an n-vector of unknowns at z = 0 and
GA,GB are n × n matrices. Using (18), (31) and (32)
we obtain

Φ0 =
(
eiωΛzsΓse

iωΛzs
(
LT
2 GA − LT

1 GB

)
−
(
LT
2 GA + LT

1 GB

))−1

eiωΛzs

×
(
Γs

(
LT
2 SA − LT

1 SB

)
−
(
LT
2 SA + LT

1 SB

))
,

Ds =
1√
2
eiωΛzs

(
LT
2 GA − LT

1 GB

)
Φ0

− 1√
2

(
LT
2 SA − LT

1 SB

)
.

(33)

In particular, when the source is situated just below the
surface, we get

Φ0 =
((

Γs − I
)
LT
2 GA −

(
Γs + I

)
LT
1 GB

)−1

×
((

Γs − I
)
LT
2 SA −

(
Γs + I

)
LT
1 SB

) (34)

as zs → 0+. Φ0 defines all of Φ at the free surface, and
Ds,Us = ΓsDs give all of Φ just below the source.
Now we are able to compute Φ in any z ∈ R+ by prop-
agating through the layers using (19) and (20).

Note 4 Propagation of an upward-going wave in the
downward direction will be unstable numerically us-
ing (19) because the complex exponentials grow rather
than decay with distance. Therefore, numerically one
has to obtain U from D using the reflection or transmis-
sion matrices.

Types of sources

In this section, we consider several examples of possi-
ble elastic and electromagnetic sources.

Elastic case

Dynamite source. A dynamite source can be defined
in the following form

f(x) = −s(ω)∇δ(x− xs),

where xs = (0, 0, zs)
T is the source position and s(ω)

is the spectrum of the source moment s(t). Applying
the lateral Fourier transform (2) we obtain

f̂ = −s(ω)
(
ikxδ(z − zs), ikyδ(z − zs), δ

′(z − zs)
)T

.

The rotation by Ω yields

f̃ = −s(ω)
(
ikδ(z − zs), 0, δ

′(z − zs)
)T

. (35)

Substitution of (35) into (8) gives the source for Sys-

tem 1 in the form (25) with

S
(1)
0 = iks(ω)

(
0, 1, 0, 0

)T

, S
(1)
1 = s(ω)(0,−1)T .

(36)
Substitution of (35) into (9) shows that S(2) is zero, then
ṽ2, τ̃23 associated with System 2 are zero too. This is to
be a expected result because System 2 is related to SH-
waves, which are not excited by the dynamite source.
Substitution of (36) into (28) gives

S
(1)
A = iω(λ+ 2G)s(w)

(
0, 1

)T
, S

(1)
B = (0, 0)T . (37)

Formulas (37) may be used in (33) or (34) for a shallow
source, to obtain all the tilde (̃ ) functions.

Vertical source. We next consider a vertical point
source acting on the Earth’s surface, i.e.,

f(x) = (0, 0, 1)T s(ω)δ(x)δ(y)δ(z − zs), (38)

where zs → 0+ puts the source on the Earth’s surface
z = 0. This models hammer, weight drop, and vibroseis
sources. Applying the lateral Fourier transform (6) and
rotation Ω, we arrive at

f̃ = f̂ = (0, 0, 1)T s(ω)δ(z − zs). (39)

Substitution of (39) into (8) and (9) yields the sources
for Systems 1 and 2 in the form

System 1 : S(1) = (0, 0, 1, 0)T s(ω)δ(z − zs),

System 2 : S(2) = (0, 0)T .

In the case of System 1 we obtain the following expres-
sion from (25), (28) and (38):

S
(1)
A = (0, 0)T , S

(1)
B = s(ω)(1, 0)T .

In the case of System 2, all the variables are zero, as it
was in the case of dynamite source.

Electromagnetic case

The Ursin form of the Maxwell equations was obtained
without the application of rotation Ω. For this reason, the
electromagnetic source can be directly incorporated in
the Ursin form of the electromagnetic equations.

Source current in a plane. We consider the distri-
bution of source currents in the source plane z = zs.
Because of linearity and horizontal translation invari-
ance, we need only to consider a point dipole at x =
(0, 0, zs)

T , with source current

j = j0δ(x)δ(y)δ(z − zs), j0 = (j01 , j
0
2 , j

0
3)

T . (40)

Solutions for other sources in the plane z = zs can be
synthesized by translation and superposition of sources
of this type.
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Applying to (40) the lateral Fourier transform (6), we
arrive at

j = j0δ(z − zs). (41)

Substitution of (41) into (12) and (13) yields the sources
for electromagnetic Systems 1 and 2 in the form

System 1 : S(1) =

(
−j01 ,−

iγω

σ̄
j03

)T

,

System 2 : S(2) =
(
0,−j02

)T
.

In the case of System 1 we obtain the following expres-
sion from (25), (28) and (40):

S
(1)
A = j01 and S

(1)
B =

i γ ω

σ̄
j03 .

Similarly for System 2:

S
(0)
A = 0 and S

(1)
B = j02 .

SOLUTION IN REAL SPACE

Elastic problem

From the tilde variables, the lateral Fourier transforms,
i.e., the hat variables, can be computed by inverting the
rotation in (4). Note that the matrices for Systems 1 and
2 depend only on the magnitude, k (or equivalently on
the slowness γ), of the vector (kx, ky)T and not on its
direction. However, factors of kx and ky are introduced
by inverse rotation Ω−1 and possibly by the directional-
ity of the source. For any function ĥ(k) let

Tj1,j2
(
ĥ
)
≡ F−1

(
kj1x kj2y ĥ(k)

)
= (−i)j1+j2

(
∂

∂x

)j1 ( ∂

∂y

)j2

F−1
(
ĥ(k)

)
.

(42)

We can compute these quantities as Hankel transforms
in the cylindrical coordinates r, θ, z; see, for instance,
Bracewell (1978). Define

Bj1,j2

(
ĥ
)
=

1

2π

∫ ∞

0

kj1Jj2(kr)ĥ(k)dk, (43)

where Jj2 is the Bessel function and j1, j2 are nonneg-
ative integers. Then

T0,0 = B1,0,

T1,0 = i cos θB2,1, T0,1 = i sin θB2,1,

T1,1 = sin θ cos θ
(
B3,0 −

2

r
B2,1

)
,

T2,0 = cos2 θB3,0 −
cos 2θ

r
B2,1,

T0,2 = sin2 θB3,0 +
cos 2θ

r
B2,1.

(44)

To invert the rotation Ω, note that from (5) and the van-
ishing of System 2, ˙̃u2, τ̃12, τ̃23 are identically zero. All
the remaining tilde functions depend only on k and can

be calculated by the following formulas

˙̂u1 =
kx
k

˙̃u1, ˙̂u2 =
ky
k

˙̃u1, ˙̂u3 = ˙̃u3

τ̂11 =
k21 τ̃11 + k22 τ̃22

k2
, τ̂12 =

kxky(τ̃11 − τ̃22)

k2

τ̂22 =
k22 τ̃11 + k21 τ̃22

k2
, τ̂13 =

kxτ̃13
k

,

τ̂13 =
ky τ̃13
k

, τ̂33 = τ̃33.

(45)

Formulas (45) can be inverted in cylindrical coordinates
(r, θ, z), using (42)–(44), to real space:

u̇ =
(
iB1,1( ˙̃u1)

)
er +

(
B1,0( ˙̃u3)

)
ez

τ11 = T2,0
(
k−2τ̃11

)
+ T0,2

(
k−2τ̃22

)
,

τ12 = T1,1
(
k−2(τ̃11 − τ̃22)

)
τ22 = T0,2

(
k−2τ̃11

)
+ T2,0

(
k−2τ̃22

)
,

τ13 = T1,0
(
k−1τ̃13

)
, τ23 = T0,1

(
k−1τ̃13

)
,

τ33 = T0,0(τ̃33).

(46)

Here er and ez are unit vectors in the r and z directions,
respectively. Thus, the velocity u̇ and the stress tensor
τ may be computed in cylindrical coordinates from (46)
using transforms (43) and (44) of appropriate tilde func-
tions. After that, all the variables can be computed in
the time domain through the inverse Fourier transform

h(t) =
1

2π

∫
R
h(ω)e−iωtdω. (47)

Electromagnetic problem

The solution to the electromagnetic problem was ob-
tained without the application of the rotation Ω. For this
reason, the solution in real space will be the following

E = B0,0(Ê), H = B0,0(Ĥ).

After that, all the variables can be computed in the time
domain, applying the inverse Fourier transform (47).

NUMERICAL EXAMPLES AND DISCUSSION

Table 1 shows the values of the parameters used in the
numerical simulations.

For both elastic and electromagnetic waves, the blue
color indicates the trace calculated using the real part
of the obtained solutions; and red, their imaginary part.

Elastic waves simulation

Consider a particular case of the vertical source given
by the following formula

f = rck(t)(0, 0, 1)T δ(x)δ(y)δ(z − zs),

where rck(t) is the Ricker wavelet, defined as

rck(t) = (1− 1

2
ω2
pt

2) e(− 1
4ω

2
pt

2),
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Table 1. Layer properties to simulate propagation through stratified media

Property Layer 1 Layer 2 Layer 3

Bulk density (Kg/m3) 2200 2400 2200

Compressibility modulus (Pa) 4.69× 109 2.69× 109 6.05× 109

Shear modulus (Pa) 3.46× 109 7.78× 109 1.46× 109

Conductivity (S/m) 0.2 0.1 0.3

where ωp = 80 rad/s is the dominant frequency.
We simulate the P - and S-wave propagation when

the stratified medium consists of three layers: layer 1
has a depth of 1000m, and the upper boundary is a
free surface in contact with air; layer 2 has a depth of
500m, the upper interface is in contact with layer 1; and
the lower interface is in contact with layer 3, where layer
3 has an infinite depth. The characteristics of the three
layers are in Table 1. Thus, in Figures 1 and 2 we ob-
serve the seismic trace with several events that record
the P - or S-wave arrival times. We see reflected waves
on the first or second interfaces, as well as their multi-
ples.

We observe in Figure 1 the seismic trace of an
elastic wave in the simulation where the source and
the receiver are at the same position on the free sur-
face. To interpret this seismic trace given by the matrix
method, we compare the arrival times of several types
of waves, see Table 2, with arrival times in the trace.
Table 2 was built using the properties of the medium in
layer 1 and layer 2 of Table 1, and shows arrival times
of P - and S-wave, and PS-conversion, reflected on the
first or second interfaces. The arrival times in Table 2
are calculated using the following expressions for the
velocities of P - and S-waves

VP =

√
λ+ 2G

ρ
and VS =

√
G

ρ
.

Therefore, using Table 2 and the output given by the
matrix method in Figure 1, we outline some observa-
tions about the seismic propagation:

The receiver and the source are placed at the same
position on the surface, so Event 1 at time zero records
the direct wave. Note that the blue phase in Event 1
is similar to Ricker pulse (no dispersion effect) and the
red phase is not significant (no attenuation effect) since
the wave did not propagate yet. Event 2 occurs at the
required time (row 1 of Table 2) for the P -wave to prop-
agate back and forth between the surface and the first
interface, so Event 2 records the reflection of the P -
wave on the first interface. The amplitude of Event 2
is much smaller than the amplitude of Event 1, due to
both the loss of energy while propagating and mainly
due to the wave transmitted to the second layer. Event
3 occurs at the required time for the P -wave to be re-

flected on the second interface, as we see in row 3 of
Table 2. The Event 3 also occurs in the necessary time
(row 2 of Table 2) for the PS-conversion when reflected
on the first interface. The simultaneous arrival of these
two waves may explain why the amplitude of Event 3 is
greater than the amplitude of Event 2. The arrival time
(row 4) of Event 4 is required for the S-wave be reflected
on the first interface. Event 5 has twice the arrival time
(row 5) and a smaller amplitude than Event 2, that is,
Event 5 is a multiple of the P -wave reflected on the first
interface. Event 5 has a much smaller amplitude than
Event 2 because of the difference in travel distance and
because Event 2 faces only one loss of energy at the in-
terface (one reflection) while event 5 faces two losses of
energy at the interface (two reflections, considering the
total reflection below the free surface). Event 6 records
the reflected S-wave on the second interface as we can
check on row 7 in Table 2. Event 6 is also the arrival
time (row 6) of the PS-conversion when the conver-
sion occurs at the second reflection on the first inter-
face. The simultaneous arrival of these two waves may
explain why the amplitude of Event 6 is greater than the
amplitude of Event 4. Event 7 has twice the arrival time
(row 8) of Event 3; it is a multiple of the P -wave re-
flected on the second interface. Event 8 is three times
the arrival time (row 9) of Event 2; it is the second mul-
tiple of the P -wave reflected on the first interface. The
seismic trace shows no precision after Event 8. For ex-
ample, the row 10 of Table 2 shows the arrival time of
the multiple of S-wave reflected on the first interface at
3.1896 s, but the most close events in Figure 1 occur
before that time. They are Event 9 at 2.85 s and Event
10 at 2.99 s, approximately. Another example is the ar-
rival of the third multiple of P -wave reflected on the first
interface (row 11), whose closest event is 11 at 3.34 s.

In the second simulation of mechanical waves, the
source-receiver distance is 750m, while we place the
source on the free surface and the receiver vertically
below the source. In Figure 2, we observe the arrival
of the direct wave (Event 1) for the same model as Fig-
ure 1, and the only difference is the source-receiver dis-
tance. Comparing Event 1, see Figures 1 and 2, the
amplitude of the direct wave decreases due to the loss
of energy to the medium while the wave propagates be-
tween source and receiver. We also observe dispersion
effect (blue phase) and attenuation effect (red phase).
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Table 2. Arrival times of several elastic waves

Rows Waves Arrival times (s)

1 P -wave reflected at 1st interface 0.8706

2 PS-conversion at 1st interface 1.2327

3 P -wave reflected at 2nd interface 1.2333

4 S-wave reflected at 1st interface 1.5948

5 1st multiple of P -wave reflected at 1st interface 1.7412

6 PS-conversion when reflected twice at 1st interface 2.1033

7 S-wave reflected at 2nd interface 2.1502

8 multiple of P -wave reflected at 2nd interface 2.4665

9 2nd multiple of P -wave reflected at 1st interface 2.6118

10 multiple of S-wave reflected at 1st interface 3.1896

11 3rd multiple of P -wave reflected at 1st interface 3.4825

12 multiple of S-wave reflected at 2nd interface 4.3004

Since the receiver is close to the first interface, the first
reflection in Figure 2 occurs earlier than in Figure 1, at
5.1 s, and it is very close to the direct wave.

Note 5 Our simulations using the Ursin matrix method
are implemented symmetrically around the origin. This
approach is interesting for better visualization of the di-
rect wave when the source and receiver are placed in
the same position and when we are working with non-
causal functions to simulate a seismic source; see, for
instance, Madariaga (2015). Note that in the electro-
magnetic case, the formulas obtained in the Appendix
are asymmetric with respect to ω ∈ [−ωN , ωN ], where
ωN is the Nyquist frequency. Although some minor
adaptations of the algorithm reflected the asymmetry
are required, we have some implementation advan-
tages because the Ricker pulse and its Fourier trans-
form are symmetric. We also remark that there is no
computational cost much higher than the conventional
approach since the intervals [0, 2ωN ] and [−ωN , ωN ]
are the same size. In the elastic case, there is no such
need due to the symmetry of the corresponding formu-
las with respect ω ∈ [−ωN , ωN ]. In general, this is a
consequence of the fact that the Lamé system does not
change when ω is replaced by −ω, while Maxwell’s sys-
tem (with σ ̸= 0) changes.

Electromagnetic waves simulation

Consider a particular case of the electromagnetic
source given by

j = j0δ(x)δ(y)δ(z − zs), zs → 0+,

where j0 = (j01 , j
0
2 , j

0
3)

T , and j0i , i = 1, 2, 3, are strongly
concentrated functions in the frequency domain given
by

j0i (ω) =
2ω2

√
πω3

p

e
−ω2

ω2
p .

The simulation is done assuming ϵ0 = 8.854 ×
10−12 F/m and µ0 = 4π × 10−7 [Tm/A].

The results presented in Figure 3 were obtained for
the case of a stratified medium consisting of three lay-
ers, where the thickness of the first layer is 2000m, the
second is 1000m, and the thickness of the third layer is
infinity; the source and receiver are at the same position
on the free surface z = 0.

Let’s highlight some characteristics of the electro-
magnetic trace in Figure 3. Event 1 records the direct
wave and occurs at the beginning of time since the re-
ceiver and source are located at the same position on
the surface. Note that the phase is similar to Ricker’s
pulse. Event 2, at time 0.025 s, records the arrival of the
wave reflected on the first interface, at 2000m deep.
This depth and this arrival time show the wave’s speed
is on the order of 104 m/s, as expected in this kind of
media. Event 3 occurs at the time required for the wave
to be reflected on the second interface at 3000m deep.
Event 4 occurs twice the time of Event 2. It is the mul-
tiple of the reflected wave on the first interface. The
amplitude of Event 2 is not much smaller than the am-
plitude of Event 1, and the amplitude of Event 4 is not
much smaller than the amplitude of Event 2, suggest-
ing the waves undergo total reflection in the free sur-
face. The amplitude decreases almost exclusively due
to both the loss of energy in the propagation medium
and the reflection on the first interface (energy trans-
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Figure 1. Mechanical propagation in 3D half-space, where the thickness of the first layer is 1000m; the second,
500m, and the source and receiver are at the same position on the free surface

Figure 2. Mechanical propagation in 3D half-space, where the thickness of the first layer is 1000m; the second,
500m, the source is on the free surface, and the receiver is at a depth of 750m vertically below the source

mitted to second layer). Despite the propagation over
a greater distance, the amplitude of Event 4 is greater
than the amplitude of Event 3, because in Event 4 the
wave undergoes two moments of energy loss (two re-
flections), while in Event 3 the wave undergoes three
moments of energy loss (two transmissions and one re-
flection). The phases show prolonged oscillations, not
observed in mechanical cases and it is possibly due to
reverberation phenomena. The trace also shows small
variations between events that do not happen in me-
chanical simulations. They may have been generated
due to a lack of precision or numerical instabilities.

Figure 4 shows the results of the second experiment
using the same parameters as in the previous simu-
lation shown in Figure 3, with the only difference that
this time the thickness of the second layer is 3000m.
Following Figure 4, we list some observations: Since
source and receiver are in the same position, Event 1
occurs at time zero. Event 2 records the arrival of the
wave reflected on the first interface. Since we have
not changed the first layer characteristics, Event 2 in

Figure 4 shows the same amplitude and arrival time
as Event 2 in Figure 3. Event 3 is twice of the arrival
time of Event 2, therefore it is the multiple of the wave
reflected on the first interface. Again, as we did not
change the first layer’s characteristics, Event 3 in Fig-
ure 4 shows approximately the same amplitude and ar-
rival time as Event 4 in Figure 3. Event 4 in Figure 4
occurs at the time required for the wave to reflect on the
second interface, which is 5000m deep. Observe that
Event 4 corresponds to Event 3 in Figure 3, but shows
a slightly smaller amplitude, slightly longer oscillations
and greater travel time. Event 5 has three times the ar-
rival time of Event 2. It is the arrival of the second mul-
tiple of the wave reflected in the first interface. Event
4 occurs sooner than Event 5 but has a smaller am-
plitude. The wave that generated Event 4 propagates
through two layers, while the wave from Event 5 prop-
agates only in the first layer. Possibly, the transmission
phenomena cause more significant energy loss than the
reflection phenomena.
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Figure 3. Electromagnetic propagation in 3D half-space, where the thickness of the first layer is 2000m, the second
is 1000m, and the source and receiver are at the same position on the free surface

Figure 4. Electromagnetic propagation in 3D half-space, where the thickness of the first layer is 2000m, the second
is 3000m, and the source and receiver are at the same position on the free surface

CONCLUSION

In this article, we presented and numerically performed
the Ursin matricial method in the case of the elastic and
electromagnetic waves propagated in the 3D stratified
media. We found out that the proposed algorithm effec-
tively simulates the P - and S-waves propagation and
the PS-conversion, and it is also useful for modeling
the electromagnetic waves.

In the case of electromagnetic waves, to describe the
process of propagation of waves in the air, we used the
complete (hyperbolic) version of Maxwell’s equations;
and in the Earth’s subsurface, the diffusion (parabolic)
version. Applying the boundary conditions (14) and
(15), we were able to reduce the study area of the cor-
responding problem to the 3D half-space simulating the
Earth’s interior, thus reducing the numerical algorithm
computational cost keeping the impact of the air half-
space.
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APPENDIX A.

In this Appendix, we represent the explicit formulas for
calculation of the eigenvalues and eigenvectors men-
tioned in Section Ursin Method for the considered elas-
tic and electromagnetic problems.
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Elastic problem

System 1. There are two waves modes: fast com-
pressional wave or P-wave (j = 1) and vertical shear
wave or SV -wave (j = 2). In this case, the two distinct
nonzero eigenvalues q2j of matrices M1M2 and M2M1

are:

q2j =
1

2

[ ρ

λ+ 2G
+

ρ

G
− 2γ2

±

√(
ρ

λ+ 2G
− ρ

G

)2

+

(
β1ρ

λ+ 2G
+

β2ρ

G

)
γ2

]
,

where j = 1, 2, the signals (+) and (-) are for j = 1 and
j = 2, respectively; and

β1 = 16 +
8λ

λ+ 2G
and β2 = 4 +

4λ2

(λ+ 2G)2
.

The corresponding eigenvectors are

a
(1)
1 =

√
q1

ρ+ 2γa1 +
a2
1

G

(1, a1)
T
,

a
(1)
2 =

√
q2

a22ρ+ 2γa2 +
1
G

(a2, 1)
T
,

where

a1 =
q21 − 1

λ+2G
γλ

λ+2G

and a2 =

γλ
λ+G

q22 − 1
λ+2G

,

and

b
(1)
1 =

1

q1
M

(1)
2 a

(1)
1 , b

(1)
2 =

1

q2
M

(1)
2 a

(1)
2 .

System 2. There is only the horizontal shear wave (SH-
wave). The corresponding eigenvalue q2 is calculated
by

q2 =
ρ

G
− γ2,

and the eigenvectors are

a(2) =

√
q

ρ−Gγ2
, b(2) =

√
ρ−Gγ2

q
.

Electromagnetic problem

System 1. In this case, the eigenvalue q2 is given by

q2 = −µ0σ̄

iω
− γ2,

and the eigenvectors are

a(1) =

√
q

−µ0 − iωγ2

σ̄

, b(1) =
1

q

(
−µ0 −

iωγ2

σ̄

)
a(1).

System 2. The corresponding eigenvalue q2 is calcu-
lated by

q2 = −µ0σ̄

iω
− γ2,

and the eigenvectors are

a(2) =

√
q

σ̄
iω + γ2

µ0

, b(2) =
1

q

(
σ̄

iω
+

γ2

µ0

)
a(2).
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