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ABSTRACT. The permeability estimate, using geophysical well logs, is an important and difficult task in a reservoir 
characterization, which is usually done with empirical models or statistical regression. Thus, logs were used to 
achieve this goal in two wells of a carbonate reservoir in Campos Basin, together with geological information and 
laboratory measurements on rock samples. The test Well A10 was zoned in electrofacies and models were built 
for each one. Next, the hydraulic flow units were defined and correlated to the logs and to the electrofacies. The 
same was done in a blind test in Well A3. The Principal Component Analysis, Cluster and Discriminant techniques, 
Multiple Linear Regression, Alternate Conditional Expectation and Hydraulic Flow Unit were used. The quality of 
the estimates was calculated using the Mean Absolute Error and the Coefficient of Determination. At Well A10, 
the Hydraulic Flow Unit was the most promising approach. The Alternate Conditional Expectation, without zoning, 
was the closest to experimental laboratory data in Well A3. These results indicate that all methods are feasible in 
inferring permeability, however, an inadequate classification of zones can lead to erroneous estimates. 
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RESUMO. A estimativa da permeabilidade, usando perfis de poços, é uma tarefa importante e difícil na 
caracterização de reservatórios, a qual é normalmente feita com modelos empíricos ou regressão estatística. Com 
esse fim, os perfis de poços juntamente com informações geológicas e medições de laboratório em amostras de 
rocha foram usados em dois poços de um reservatório carbonático da Bacia de Campos. O poço de teste A10 foi 
zoneado em eletrofácies e modelos foram construídos para cada uma. As unidades de fluxo hidráulico foram 
definidas e correlacionadas aos perfis a às eletrofácies. Isso foi feito num teste cego no poço A3. As técnicas 
Análise de Componentes Principais, de Cluster e Discriminante, Regressão Linear Múltipla, Expectativa 
Condicional Alternada e Unidade de Fluxo Hidráulico foram utilizadas. A qualidade das estimativas foi calculada 
com o Erro Médio Absoluto e o Coeficiente de Determinação. No Poço A10, a Unidade de Fluxo Hidráulico foi a 
abordagem mais promissora. A Expectativa Condicional Alternada, sem zoneamento, foi a técnica mais próxima 
dos dados experimentais de laboratório no poço A3. Esses resultados indicam que todos os métodos são viáveis 
na inferência da permeabilidade, porém, uma classificação inadequada das zonas pode levar a estimativas 
errôneas. 

 

Palavras-chave: reservatório carbonático, estimativas de permeabilidade, estatísticas multivariadas, perfis de poços, 
medições laboratoriais. 
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INTRODUCTION 

The characterization of a reservoir is an 
especially important part of the management and 
development of an oil field. This involves many 
processes, such as analyzing experimental data, 
interpreting well logs, integrating geological and 
geochemical information, and so on. With that, it 
is possible to do a better quantitative distribution 
of the properties and prediction of the flow 
behavior in the reservoir. The estimation of the 
permeability of a rock, from well logs, within these 
activities, is an important and difficult task, in the 
characterization of a reservoir (Abbaszadeh et 
al.,1996; Martin et al., 1997). 

Empirical models need adjustments to be 
applied in different depositional environments. 
(Wendt et al., 1986). The statistical regression, 
on the other hand, has been used more often 
because it is more flexible to do this kind of 
estimate, but involves a priori assumptions 
regarding the parameters. The conventional 
statistical regression has, generally, been done 
parametrically, using multiple linear or nonlinear 
models, that require a priori assumption about 
the data (Jensen & Lake, 1985). In late years, 
non-parametric regression techniques, such as 
Alternating Conditional Expectations (ACE), 
have been presented to overcome the 
restrictions of conventional multiple regression 
methods (Datta-Gupta et al., 1999; Breiman & 
Friedman, 1985; Breiman, L. 1993).  

Another technique that is employed, to 
facilitate this characterization process, is the 
reservoir zoning, which consists in the division 
into zones, with geological, petrophysical 
and/or depositional similar characteristics. The 
zoning technique was proposed by Amaefule et 
al. (1993), in which the reservoir is divided into 
Hydraulic Flow Units. These units have 
characteristics that describe the fluid flow 
internally, with similar or different properties 
from others. 

The applications, in complex carbonate 
reservoirs, have shown outstanding promise in 
the management of many patterns of 
heterogeneity in rock properties (Barman et al., 
1998; Lee et al., 2002). Nevertheless, it remains 

significantly difficult to identify sharp local 
variations in a reservoir property caused by 
abrupt changes in the depositional environment 
(Huang et al., 1996). Another distinctive feature, 
in carbonate reservoirs, is the inconsistency of the 
porosity – permeability relationship, i.e., low 
permeability, in regions that exhibit high porosity, 
and vice-versa. All these characteristics are 
extremely important from the point of view of 
predicted behavior of the flow in the reservoir (Lee 
& Datta-Gupta, 1999; Xue et al., 1997; Mathisen 
et al., 2003).  

Therefore, the real purpose of this study is 
to compare the Multiple Linear Regression, 
Alternating Conditional Expectations and 
Hydraulic Flow Units techniques in the 
permeability estimation of a carbonate reservoir 
in Oilfield A in Campos Basin, Southeastern 
Brazil. The lithological information, the results 
of laboratory tests on rock samples and, the 
geophysical logs from two wells were used to 
do this.  

Thus, all of the aforementioned approaches 
were tested, and their performances were 
evaluated throughout the study. These results 
lead towards the search for techniques with 
better performance than those achieved in the 
research and, in the application of the 
knowledge acquired, in these estimates, in 
more complex reservoirs, such as those found 
in the pre-salt layer. 

Geological Context 
The Campos Basin is in the coast of Rio de 
Janeiro, in the southeastern region of Brazil. It 
occupies an area approximately of 120.000 km2 

and has a bathymetry of 3.500 m. The basin is 
limited to the north by the Espírito Santo Basin, 
at High of Vitória and, to the south, by the 
Santos Basin, at Cabo Frio High. Its origin is 
related to the separation of the South American 
and African plates, followed by the opening of 
the Atlantic Ocean (Bizzi et al., 2003). The 
Oilfield A is composed by Albian carbonate 
reservoirs of Quissamã Formation and it is 
located in the southwest part of the Campos 
Basin (Fig. 1).
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Figure 1 - Albian carbonate reservoirs in the Campos Basin showing the approximate location 
through a yellow dashed ellipse (modified from Bruhn et al., 2003). 

 
According to Winter et al. (2007), the 

sedimentation of this carbonate starts in the drift 
phase, at the beginning of Albian with marine 
deposition (Fig. 2).  

The depositional model of this oilfield 
corresponds to a carbonate platform (Spadini et al., 
1988). This depositional model characterizes, 
according to Okubo et al. (2015), the sedimentation 
in high energy environment (oolitic and oncolitic 
granstones), moderate energy environment (oolitic 
peloidal grainstones and oncolitic bioclastic 
packstones) and low energy environment (peloidal 
bioclastic packstones and wackestone) (Fig. 3).  

The Oilfield A has a total of 27 wells and, from 
this total, we selected two wells to carry out this 
study. The selected wells (A3 and A10) were 
chosen because they have a more complete 
dataset, with photos and sequential analysis of 

cores, geophysical logs, composite logs, and 
laboratory tests (water saturation with retort and 
membrane, mercury injection etc.). The Well A10 is 
on the carbonate ramp in the high energy zone and 
the Well A3 is in the moderate energy zone. They 
are spaced 1.36 km apart, with Well A3 32° east 
from Well A10 (Fig. 4). 

MATERIALS AND METHODS 
To develop this work, different mathematical 
approaches were used, such as Principal 
Component Analysis (PCA), The Cluster Analysis 
(CA), Discriminant Function Analysis (DAF), 
Multiple Linear Regression (MLR), Alternating 
Conditional Expectations (ACE). Along with these 
techniques, some petrophysical methodologies 
have also been used, such as Hydraulic Flow Units 
(HFU) and Winland Approach (WA).
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Figure 2 - Generalized geological section for the eastern Brazilian marginal basins. Shallow carbonate platform mega 
sequence (early to middle Albian) is identified by SC (modified from Bruhn et al., 2003). 

 
 

 
Figure 3 - Depositional model of the carbonate ramp in the Campos Basin during the Albian (modified from Okubo et 
al., 2015). 
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Figure 4 - Location of the Wells A3 and A10 on the carbonate ramp. In detail, the 
plug photos and laminae of the facies associated with energy zones: in the high 
energy zone we find oncolitic peloidal grainstone, in the zone of moderate energy 
oncolitic (modified from Okubo et al., 2015) 

 
PCA transforms an original set of variables into 

another set, called the principal components (PC) of 
equivalent dimensions. This transformation occurs 
with the smallest possible loss of information, which 
also seeks to eliminate some original data that have 
little information. This transformation is only 
possible if the initial variables are not independent 
and have non-zero correlation coefficients (Vicini & 
Souza, 2005; Jensen & Lake, 1985). 

CA classifies the data into groups, classes, or 
categories, in a situation where no prior information 
on groups is available, known as unsupervised 
classification (Kriegel et al., 2012; Agrawal et al., 
2005). The objective of the CA is that the units 
within the groups should be as similar as possible 
and the formed groups should be as different as 
possible. This work uses k-means clustering, 
which randomly divides the data in k initial groups. 
K-means clustering is a method of vector 
quantization, originally from signal processing, that 
is popular for cluster analysis in data mining. This 
clustering aims to partition n observations into k 
clusters in which each observation belongs to the 
cluster with the nearest mean, serving as a 
prototype of the cluster. Then, the centroid of initial 
groups is computed, and each data point is 
relocated to the nearest centroid. The centroids 
are recalculated and, after that, each point in the 
data set is reallocated to the nearest centroid. This 

is made until there is no more reallocation. Once 
the k-means clustering is complete, several larger 
groups, which can be geologically justified, are 
reached. The results of these groupings can be 
presented by graphs dendrograms. The 
dendrograms present the elements and the 
melting points or divide the groups formed at each 
stage (Sancevero et al., 2008; Konate et al., 2017; 
Puskarczyk, 2020). 

The next step is to use a hierarchical clustering 
technique, which consists in the fusion of the 
groups, obtained by the k-means clustering, by 
similarity until all data forms only one group 
(Steinbach et al., 2000; Vattani, 2011). With the 
hierarchical clustering, the initial groups that are not 
geologically explained converge into groups that 
can be geologically explained: the electrofacies 
(EF). With the data from well logs grouped in the 
EF, a function was used to classify them into new 
groups (Ferreira, 1996). DAF was used to classify 
and distribute existing groups into new classes or 
categories. It is a method used in statistics, pattern 
recognition and machine learning to find a linear 
combination of features that characterizes or 
separates two or more classes of objects or 
events. The resulting combination may be used as 
a linear classifier, or, more commonly, for 
dimensionality reduction before later classification. 
This technique is utilized when the groups are  
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known beforehand, whatever goes in the opposite 
direction to CA. has the following form (Hair et al., 
2009; Esbensen et al., 2002): 

 
𝑍𝑍𝑓𝑓𝑓𝑓 = ∝  + 𝑤𝑤1𝑥𝑥1𝑓𝑓 + 𝑤𝑤2𝑥𝑥2𝑓𝑓 + ⋯+ 𝑤𝑤𝑝𝑝𝑥𝑥𝑝𝑝𝑓𝑓  (1) 

 

where 𝑍𝑍𝑓𝑓𝑓𝑓 is the discriminant score of the f 
discriminant function to the t observation; α is the y-
axis intercept; 𝑤𝑤𝑝𝑝 is the discriminant weight to the 
independent variable 𝑥𝑥𝑝𝑝; and 𝑥𝑥𝑝𝑝𝑓𝑓 is the t 
observation in the 𝑥𝑥𝑝𝑝 independent variable 
(Büyüköztürk & Çoklukbökeoglu, 2008). 

MLR is used to study the relationship between 
a dependent variable with multiple independent 
variables. The MLR has the following form 
(Montgomery et al., 2015): 

 

𝑦𝑦 = α + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑢𝑢𝑋𝑋𝑢𝑢 + Ɛ (2) 
 

where y is the dependent variable; 𝑋𝑋𝑢𝑢 is the 
independent variable; α is the linear coefficient; 𝛽𝛽𝑢𝑢 
is the angular coefficient; and Ɛ is the error. 

ACE is one of the methods to find nonlinear 
transformations of variables that produce the best 
fitting additive model in multiple regression 
problems. This produces the maximum linear 
effect between the transformed independent 
variables and the transformed response variable 
(Breiman & Friedman, 1985). The knowledge of 
such transformations aids in the interpretation and 
understanding of the relationship between the 
response and predictors, to minimize the fraction 
of variance not explained. The transformation is 
obtained from data in an iterative way (Wang & 
Murphy, 2004): 

 

𝜃𝜃(𝑌𝑌) = �𝜑𝜑𝑛𝑛(𝑉𝑉𝑖𝑖) + 𝑒𝑒
𝑚𝑚

𝑛𝑛=1

 (3) 

 

where 𝜃𝜃 is the transform of the dependent variable; 
Y, 𝜑𝜑𝑛𝑛 are the transforms of independent variables 
𝑉𝑉𝑝𝑝; and e is the error. 

To quantify the HFU, a graphic method like the 
Modified Lorenz Plot (MLP) was used, which, 
according to Gunter et al. (1997), offers a guide on 
how many HFU are necessary to represent the 
geological structure. In accord with these authors, 
the MLP shows, in percentage, the accumulated 

flux capacity (kz) versus the accumulated storage 
capacity (φz). To characterize the HFU, it is applied 
the equations proposed by Amaefule et al. (1993) to 
calculate the Flow Zone Indicator (FZI). The FZI is 
an exclusive indicator for each HFU and it is based 
on its porosity and its permeability data, which are 
measured in plugs: 

 

𝐹𝐹𝑍𝑍𝐹𝐹 =
𝑅𝑅𝑅𝑅𝐹𝐹
φ𝑧𝑧

 (4) 

 

where RQI (𝜇𝜇m) is the Reservoir Quality Index 
and the φ𝑧𝑧 (fraction) is the pore by grain volume 
ratio, which can be computed by the following 
equations: 

 

𝑅𝑅𝑅𝑅𝐹𝐹 = 0.0314�
𝑘𝑘
φ𝑒𝑒

 (5) 

 

φ𝑧𝑧 =
φ𝑒𝑒

1 − φ𝑒𝑒
 (6) 

 

where φ𝑒𝑒 is the effective porosity and k the 
permeability (md). Using the FZI, it is possible to 
estimate the permeability (md) with the following 
equation: 

 

𝑘𝑘 = 1014(𝐹𝐹𝑍𝑍𝐹𝐹𝑛𝑛)2
∅𝑒𝑒

3

(1 − ∅𝑒𝑒)2
 (7) 

 

where FZIn is the n-th FZI mean of the n-th HFU. 
To determine the petrofacies, the pore throat 
radii were calculated by Winland (1972) for the 
accumulated saturation of 35 % of mercury 
injection capillary pressure (R35), to represent 
the curves capable of distinguishing different 
energies in the depositional environments. The 
proposed equation considers the pore throat 
radius (r), the laboratory permeability (k) and the 
laboratory porosity (φ): 

 

log(𝑟𝑟) = 𝐴𝐴 ∗ log(𝑘𝑘) + 𝐵𝐵 ∗ log(φ) + C, (8) 
 

where r is the radius of the pore throat; A = 0.59 
and B=-0.86 are respectively the permeability 
and porosity coefficients; and C (-0.73) is the 
intercept with the y-axis. He obtained an 
accumulated saturation of the Pearson´s 
correlation coefficient R² > 0.90.



CARRASQUILLA A & MUREB P 265 

Braz. J. Geophys., 39(2), 2021 

To reach the objectives of this work, along 
with these previously described approaches, it was 
utilized data from gamma ray (GR), sonic (DT), 
neutron porosity (PHIN), density (RHOC), deep 
resistivity (RT) and micro resistivity (RXO) logs and 
plug experimental laboratory data (porosity and 
permeability) from Wells A10 and A3. All models 
were built in Well A10, that has more laboratory 
data, and to validate the results, a blind test was 
performed in Well A3. In the building model, firstly, 
the Well A10 was zoned in EF using PCA and CA. 
Then, MLR and ACE models were built for each 
EF and for the whole well. The next step was to 
make MLR to identify and characterize the HFU. 
After that, the HFUs were calculated and the k 
models for each HFU were built. Finally, a 
Discriminant Analysis (DA) was made, linking well 
logs to the EF and HFU classifications. In the blind 
test for Well A3, the DA was used to classify the 
well in EF and HFU. Then, MLR and ACE models 
were applied on each EF and the FZI model in 
each HFU. MLR and ACE models for the whole 
well were utilized too. 

In this work, the Microsoft Excel software 
(Microsoft, 2021) was used to organize, filter, and 
convert the output data from Interactive 
Petrophysics - IP software to be used in Python 
and vice versa. In Python, discriminant function 
analysis, error calculation (Sklearn library) and 
regression with ACE (The ACE Package) were 
performed. In addition to these libraries, NumPy, 
Matplotlib and Pandas were used (McKinney, 
2010; Hunter, 2007; Walt et al., 2011; Pedregosa 
et al., 2011; Touran, 2012). The IP was used for 
other analyses, such as principal component 
analysis, cluster analysis, multiple linear 
regression, hydraulic flow zones and also for 
interpretation and graphing of the results (LR 
Senergy, 2021). 

To verify the quality of the estimates or the 
goodness of fit, the Mean Absolut Error (MAE) 
and the Pearson´s coefficient of determination 
(R2) were utilized. MAE measures the absolute 
differences between prediction and observation, 
where all individual differences have equal 
weight. R2, on the other hand, is a measurement 
used to explain how much variability of an 

estimate can be caused by its relationship to 
observations. The more MAE and R2 approach 0 
and 1, respectively, the better the estimate is 
considered. (Harrel, 2015; Williams, 1978; 
Lindley, 1987). 

DISCUSSIONS AND RESULTS 
According to Carrasquilla & Silva (2019), from 
the data in the logs it is possible to correlate the 
wells. The correlation is shown in Figure 5, 
considering the logs in the interest zone. 
Presenting the records at the same scale, it is 
possible to conclude that the interest zone in 
Well A10 is around 10 m deeper than in Well A3. 
In this figure, four of the main intervals with 
similar characteristics between the logs are 
identified: 

1) high RT, RHOB log to the left of the NPHI 
curve and higher DT values. These features 
point to the presence of hydrocarbons; 

2) the values of RT log and the falling of DT 
log, indicating a transition zone; 

3) RT log and the distance between RHOB 
and NPHI logs, indicating a water zone; 

4) a small RT peak indicating a second zone 
with hydrocarbons, but other logs indicating 
low porosity and permeability 

Still following Carrasquilla & Silva (2019), the 
laboratory data are shown in Figure 6, having a 
strong linear dependence between permeability 
(kLAB) and porosity (φLAB), with R2 = 0.81 
(Pearson´s determination coefficient) and a 
linear relationship equation in the form log 
(kLAB) = -1.4142 + 7.2875φLAB between these two 
parameters. The light and dark blue dots indicate 
oil and water, respectively. φLAB range between 
0.7% and 35%, with values concentrating 
between 20% and 24%. In the identified oil 
section, φLAB is found between 24% and 28%, 
while in the identified piece of water φLAB is 
localized between 12% to 16% and 20% to 24%. 
kLAB values are concentrated between 1.6 mD to 
1.8 mD and range between 0.1 mD and 40 mD. 
In the identified hydrocarbon portion, permeability 
is focused between 1.6 and 1.8 mD.
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Figure 5 - Correlation between GR, RT, RHOB, NPHI and DT logs to the Wells A10 (left) and A3 (right) of Oilfield A in 
Campos Basin. The red numbers 1 to 4 indicate areas with similar characteristics (after Carrasquilla & Silva, 2019). 

 
 

 
Figure 6 - Porosity (phiLAB) and permeability (kLAB) laboratory data crossplot 
for Well A10 showing a strong direct relationship, with dark blue indicating the 
hydrocarbon zone and light blue the aquifer (after Carrasquilla & Silva, 2019).. 

 
In the case of Well A10, the model was built 

first utilizing the PCA, aiming to eliminate noise 
from the data. The technique was applied in all 
logs, so it was obtained four principal 
components with 60.24 %, 25.06 %, 9.98 % and 
4.73 % of the variance. Then, the last PC was 
discarded because the first three explain 95.28 
% of the information. 

Reservoirs in Wells A10 and A3 were 
classified in five lithofacies (Petrobras, 2012), 
using a supervised classification in the plug 
analysis. They are: grainstone, cemented 

grainstone, packstone, cemented packstone, 
and wackestone. Therefore, for this reason, it 
was decided to make the CA with five EF. Figure 
7 shows the cross plot of PC 1 and PC 2 
(Principal Components), with the lithofacies in 
the color bar, showing that where it is clear there 
is an overlap between EF 1 and EF 2, like in EF 
3 and EF 4. Thus, as shown in this figure, the 
algorithm fails to distinguish between high 
energy (grainstone and cemented grainstone) 
and moderate energy (packstone and cemented 
packstone) lithologies.
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Figure 7 - Cross plot of CPs 1 and 2 with the lithotypes classification in the color bar 

 
Similar results are shown in Figure 8 (track 

6), where there is an overlap between the red dots 
(estimate) and, the black dots (Petrobras 
classification). So, it can be said that the CA, in 
Well A10, did not perform well, using the 
Petrobras (2013) lithofacies classification of EF 
as model. The explanation for this, as shown 
above, is because the algorithm does not 
distinguish the different EF with the same level in 
the energy. 

Then, the MLP was plotted to zone the Well 
A10 in HFU and to characterize them (Fig. 9). As 
seen in this figure, the HFU 5, 6, 7, 8 and 9, where 
the curve has the highest slope, are considered 
as speed zones. The HFU 1, 2, 3 and 4, where 
the curve is more horizontal, are barrier zones. 
After that, FZI was calculated, and the average 
FZI for each HFU was obtained (Table 1). An 
upward trend is observed between the means of 
FZI 1 (0.25) and FZI 9 (17.62). On the other hand, 
Figure 8 shows the Winland (1972) porosity vs 
permeability cross plot, and Figure 9 shows the φz 
(Phi Z) vs RQI cross plot. Both figures show a 
good separation of the HFU, being clear that there 
is no overlap. Next, the permeability was then 
estimated, using the estimated FZI. 

Thus, Figure 10 highlights the barrier zones 
in pink, and the speed zones in blue. This figure 
shows, at the same time, the GR (track 2), DT 
(track 3), RT/ RXO (track 4) and PHIN/RHOC 
(track 5) logs, the HFU permeability model (track 
6), the joint graph between the FZI permeability 
model and the laboratory permeability (track 7), 

and the laboratory porosity (track 8). To perform 
the blind test in Well A3, the DA was performed to 
make the EF and HFU classifications. Thus, the 
EF discriminant function was estimated using the 
logs, with mean accurate of 94 %, five EF (track 
6, Fig. 11). Unlike Well A10, this classification 
worked well. For the HFU, the DA was resulted in 
an average accurate of 59 % and DA classified 
five HFU (1, 2, 3, 6 and 9), less than the nine 
existing in Well A10 (track 3, Fig. 12). 

Finally, the models of permeability were 
applied with EF for both wells (MLR EF and ACE 
EF) and without EF (MLR, ACE and HFU) for the 
whole well (Fig. 13). Based on the lowest MAE 
values, Table 2 shows that the best zoning 
techniques to Well A10 are: HFU, MLR EF, ACE, 
MLR and ACE EF, in order. In other words, there 
is no clear distinction between the use or not of 
zoning. For Well A3, meanwhile, the best zoning 
techniques were those without EF zoning: ACE, 
MLR and HFU, in order. The worst were those 
that used zoning: MLR EF and ACE MLR, in 
order. When analyzing without zoning, the ACE 
was the best estimate for the Well A3 and the 
third for the Well A10 (Table 2). The explanation 
for this is because, in this condition, the number 
of data used to construct the permeability 
estimate is larger with 372 data points. Thus, 
there is only one EF with more than 100 
observations to do the zoning. In accord to 
Breiman (1993) and Harrell (2015), dataset with 
less than 100 observations hinders the estimate 
of all transformations in ACE.
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Figure 8 - CA classification compared with Petrobras classification of EF. 

 

 
Figure 9 - MLP showing the nine HFUs. 

 
Table 1 - HFU statistical characterization. 

HFU FZI range (µm) Mean FZI (µm) RMSE (mD) MAE (mD) Number of data 

1 0.081 - 0.470 0.25 0.48 0.39 170 

2 0.470 - 1.249 0.73 0.56 0.42 49 

3 1.249 – 2.339 1.65 0.33 0.26 34 

4 2.339 – 4.131 3.00 0.30 0.23 30 

5 4.131 – 6.263 4.96 0.26 0.22 28 

6 6.263 – 9.104 7.25 0.27 0.22 25 

7 9.104 – 11.664 10.27 0.21 0.17 12 

8 11.664 – 15.574 13.30 0.20 0.20 13 

9 15.574 – 40.907 17.62 0.29 0.24 11 
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Figure 10 - Cross plot of plug permeability and porosity with the HFUs in the color bar. 

 

 
Figure 11 - Cross plot of RQI and φZ with the HFUs in the color bar. 

 

 
Figure 12 - Graph of the UFH, the basic well logs, the permeability and porosity of the plugs and the estimated 
permeability. In blue and pink, the velocity and barrier zones, respectively. 
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Figure 13 - EF classification through DA. 

 
Table 2 - Errors of all used permeability estimation methods. 

 
 
 
 
 
 
 
 
 

 
For Well A3, the best estimate for permeability 

is presented by the high energy region, that can be 
explained by the predominance of grainstone, 
which is a more homogeneous facies, when 
compared to the other lithologies found in the 
reservoir (red dots in Fig. 14). The best correlations 
in this high energy region were obtained by ACE 
without zoning (R2 = 0.47), which can be 
considered low (red dots in Fig. 15). 

The HFU technique was a promising model, 
placing first on the permeability estimate for Well 
A10 and third for Well A3. This can be explained 
by the fact that Well A10 has a greater permeability 
range than Well A3 (Almeida, 2015). In accord with 
Lichotti (2016), Well A10 has FZI values ranging 
from 0.081 to 40.907 µm, while Well A3 ranges 
from 0.1405 to 21.1688 µm. Thus, Well A3 may not 
have the same number of HFU obtained in Well 
A10, or, the HFU has a quite different FZI range. 
This produced a wrong HFU classification of Well 
A3 and, therefore, provided a bad permeability 
estimation. 

CONCLUSIONS 
In this work, geological information, geophysical 
well logs and experimental laboratory data in 
samples were used to make a comparison 
between different permeability estimates. The data 
came from Wells A3 and A10 of a carbonate 
reservoir in Oilfield A, Campos Basin, 
Southeastern Brazil. The multivariate statistical 
techniques Multiple Linear Regression (MLR) and 
Alternating Conditional Expectations (ACE) were 
used, besides reservoir zoning in Hydraulic Flow 
Units (HFU) and Electrofacies (EF). MLR and ACE 
models were built with and without EF zoning, and 
together with HFU methodology, were all initially 
applied in the reference Well A10. After this, a blind 
test in Well A3 was made, and the errors were 
calculated for comparison. The Component 
Analysis (CA) in both wells did not perform well, 
when Petrobras lithofacies classification was used 
as comparison, because the algorithm failed to 
distinguish between EF, in the same energy zone. 
This is reflected in a poor permeability estimate,  

METHOD FOR K ESTIMATE 
WELL A10 (reference) WELL A3 (blind test) 

MAE (mD) Ranking MAE (mD) Ranking 

MLR EF 0.59 2 0.92 4 

ACE EF 0.99 5 0.99 5 

MLR 0.77 4 0.81 2 

ACE 0.61 3 0.79 1 

HFU 0.33 1 0.95 3 
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Figure 14 - Well A3 classification in HFUs. 

 

 
Figure 15 - In red all the estimated permeability and in black the plug permeability. 

 

with MLR and ACE. When no zoning is used, MLR 
and ACE performed better, with ACE being the 
best technique. Besides the fact that there was no 
bad classification impairing this technique, the 
ACE method had a bigger number of data to 
perform the regression, 372 data points against 
122 data points of the EF. The dataset with less 
than 100 observations hinders the estimative of all 

transformation of the ACE. When Well A10 was 
zoning in HFU, it was obtained nine units, with the 
5, 6, 7, 8 and 9 HFU characterized as speed 
zones, or flux zones, and the 1, 2, 3 and 4 HFU 
characterized as barrier zones. The cross plots 
approach showed a good performance in zoning, 
because it does not result in data overlap. The 
HFU technique was the promising model on the  



272  PERMEABILITY ESTIMATES IN A CARBONATE RESERVOIR OF CAMPOS BASIN USING EMPIRICAL AND MATHEMATICAL APPROACHES 

Braz. J. Geophys., 39(2), 2021 

permeability estimate, placing first in Well A10 and 
third in Well A3. This is explained by the larger 
range of permeability in Well A10 than Well A3. 
This resulted in a wrong HFU classification of Well 
A3 and, therefore, it provided a bad permeability 
estimate. It is concluded that the three utilized 
methods are useful in the permeability estimate. 
The zoning process, when applied, should be used 
with caution, because a poor classification may 
lead to an imprecise permeability estimate. The 
results of this article were good to estimate 
permeability, using statistics and deterministic 
approaches. Further research in petrophysical 
parameter estimates indicates that time should be 
invested in a better selection of input parameters 
for these estimates, using data mining and pattern 
recognition. The use of artificial intelligence 
techniques and stochastic methods can also 
improve the petrophysical assessments. 
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