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ABSTRACT. We assessed the effectiveness of seismic inversion in estimating the elastic properties of layers whose 
thickness represents a fraction of the wavelength. We used an approach that integrates a quantitative study of inversion 
uncertainties based on the stochastic Bayesian method and sensitivity analysis, considering the full waveform seismic 
response of the layer model. Three inversion input data combinations PP, PS, and joint PP-PS reflections provide 
comprehensive information for the analysis. Estimates of Vp, Vs, and the density of thin layers are sensitive to the intensity 
of the elastic property contrasts and incidence angle coverage. Results show that the elastic parameters of layers as thin as 
1/16 of the peak wavelength can be estimated with low uncertainty if the input data contain incidence angles up to 40 degrees 
for the PP-PS case and up to 55 degrees for the PP case, when the elastic property contrast is not small. 

Keywords: stochastic inversion; reflectivity method; sensitivity analysis. 

 

RESUMO. Nós avaliamos a eficácia da inversão sísmica na estimativa das propriedades elásticas de camadas cuja 
espessura representa uma fração do comprimento de onda. Utilizamos uma abordagem que integra um estudo quantitativo 
de incertezas de inversão baseado no método estocástico Bayesiano e análise de sensibilidade, considerando a resposta 
sísmica completa da forma de onda do modelo de camadas. As análises foram realizadas em três combinações de dados 
de entrada para inversão: PP, PS e reflexões PP-PS conjuntas. As estimativas de Vp, Vs e densidade de camadas finas são 
sensíveis à intensidade dos contrastes de propriedades elásticas e à cobertura do ângulo de incidência. Os resultados 
mostram que os parâmetros elásticos de camadas tão finas quanto 1/16 do comprimento de onda de pico podem ser 
estimados com baixa incerteza se os dados de entrada contiverem ângulos de incidência de até 40 graus para o caso PP-
PS e até 55 graus para o caso PP, quando o contraste da propriedade elástica não é pequeno. 
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INTRODUCTION 
Many oil and natural gas reserves occur in 
geological layers whose thicknesses are below the 
limit of seismic resolution, making it impossible for 
the interpreter to discern the top and bottom of 
such layers. There has been a large amount of 
effort in establishing the limit of seismic resolution 
of thin layers (see, e.g., Widess, 1973, 1982; 
Koefoed, 1981; Kallweit and Wood, 1982; Zeng, 
2009).  This limit is generally accepted as a quarter 
of the dominant wavelength in the layer and 
applies to seismic sections that have undergone 
conventional processing to approximate zero-
offset sections (Kallweit and Wood, 1982). Widess 
(1973) studies the tuning effect to establish a 
thickness of one-eighth as the limit of seismic 
resolution corresponding to the point that top and 
bottom reflections are completely combined.  

The characterization of reservoirs that are 
below tuning thickness is a challenging task. In 
particular, the question of how thin a layer can be, 
and if a person can still reasonably estimate its 
property by seismic inversion, is not well 
understood, especially in the case of the elastic 
inversion of prestack data. This issue becomes 
complex since it depends on factors such as the 
noise level in the data and the accuracy of the 
estimated seismic wavelet. 

The elastic seismic response of thin layer 
reservoirs has been addressed in many studies in 
the context of AVO analysis, such as Simmons and 
Backus (1994), Widmaier et al. (1996), Liu and 
Schmitt (2003) and Rubino & Velis (2011). These 
works demonstrate that the convolutional model 
based on primary reflections alone and 
approximations for the reflection coefficient is 
unsuitable for studying thin layers. In this case, other 
modes of propagation that appear in the layer, 
notably the locally converted waves, can have a first-
order influence on the amplitude of the recorded 
signal, if the incidence angle is not small. This 
conclusion is confirmed in a physical seismic 
modeling work by Assis et al. (2017). Although the 
above referenced works are essentially devoted to 
modeling the seismic response of thin layers, there 
are only a few examples when the topic is seismic 
inversion of thin layers. Rubino and Velis (2009) 

propose a specially developed elastic inversion 
method for thin layers. Their work presents a non-
linear inversion in the frequency versus angle 
domain using simulated annealing, which in addition 
to primary wave velocity Vp, secondary wave velocity 
Vs, and density ρ also determines the layer 
thickness. The authors reported success in resolving 
sub-tuning layer thicknesses. In another example, 
Pan et al. (1994) present a target-oriented elastic 
inversion that under favorable conditions can 
estimate elastic properties of a layer with thickness 
down to one-tenth of the wavelength. Such articles 
are more focused on the inversion algorithm itself 
than on the understanding of the limitations of 
seismic elastic inversion related to thin layers. 

The seismic data are band-limited, have a 
limited angle coverage, and are contaminated by 
noise. As a result, seismic inversion is an ill-posed 
problem, considering that many different models 
may explain the data within the error bounds. The 
linear inversion approach offers an elegant and 
convenient way to analyze these effects in elastic 
inversion, since a covariance matrix can be readily 
obtained by means, for example, of SVD 
technique (De Haas and Berkhout, 1988; Van 
Rijssen and Herman, 1991; Jing and Rape, 2004; 
Khare and Rape, 2007).  Another way to deal with 
ill-posed inverse problems is to use stochastic 
methods that perform an extensive random or 
pseudo-random exploration of the model space to 
test many possible solutions (Sambridge and 
Mosegaard, 2002). In a stochastic inversion, the 
model parameters are treated as random 
variables, and the solution is given by a probability 
density function (Tarantola, 1987). The 
advantages of this approach are the nonnecessity 
to assume a linear relationship between data and 
model parameters and the possibility of calculation 
of uncertainty associated with the estimates 
(Gouveia and Scales, 1997, 1998).  

In this work, besides the stochastic inversion 
approach based on a Bayesian formulation, we use 
the classical Metropolis algorithm from Monte Carlo 
Markov Chain (MCMC) methods to sample the 
posterior probability density function. From these 
sample values, we get estimators for the elastic 
parameters, like mean, and measures of uncertainty, 
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like standard deviations and correlations between 
the estimated elastic parameters. 

We begin this paper describing the modeling 
procedure used to calculate prestack data (angle 
gathers) of a thin layer using the reflectivity 
method. The strategy adopted here consists of 
analyzing the estimated elastic parameters and 
uncertainties resulted from several numerical 
inversion experiments with varying degrees of 
elastic property contrast, layer thickness, 
incidence angle coverage, and input data (PP, PS, 
and PP-PS). We parameterized our inversion 
model, for all input data, in terms of Vp, Vs, and ρ. 
We conducted a sensitivity study to analyze how a 
change in each of these layer parameters 
influences the seismic response. This analysis 
provides fundamental information to understand 
the behavior of the uncertainties. 

METHODS 
Modeling of the elastic thin layer  
seismic response 
The practical elastic modeling and inversion 
methods commonly used in the E&P industry 
assume the subsurface is locally 1D and are 
based on the convolutional model of only primary 
reflections that uses approximations for the 
reflection coefficients in order to explain the 
amplitudes of the prestack seismic data. 
However, these approximations assume small 
contrasts in elastic properties between layers and 
are not valid for post-critical angles of incidence 
(Aki & Richards, 2002). Besides this, 
convolutional elastic modeling also assumes that 
the seismic response of the Earth contains only 
primary reflections. For these reasons, AVO 
analyses based in such approximations should 
be restricted to angles not greater than 30 
degrees, as shown, for example, in the study of 
Mallick (2007), that compares the prestack wave-
equation modeling with the convolutional 
modeling using exactly Zoeppritz and Aki & 
Richards approximation. The influence of the 
local PS converted waves in elastic modeling and 
inversion for layered media can be found in 
Hounie & Oliveira (2014). 

Here we consider the upgoing P waves and S 
waves generated by downgoing transient elastic 
plane P wave at different angles of reflection on a 
thin layer.  These waves are referred to as PP and 
PS waves (see Fig. 1). In this case, it is important 
to consider all events generated in the layer, like 
multiples, transmission effects, and mode 
conversions of all types, not only primary reflections 
(see Fig. 2). This occurs because the traveltime 
difference between these different wave modes is 
very small in a thin layer case, making the 
corresponding waveforms indistinguishable from 
each other for a band-limited seismic pulse and 
making it impossible to separate them from the 
primary reflections. The influence of these events in 
the AVO response becomes more evident as layer 
thickness decreases, elastic property contrast 
increases, and incidence angle grows wider, as 
noted by Simmons and Backus (1994) and more 
recently by Assis et al. (2017) in a reduced scale 
physical modeling study. 
 

 

 

 

 Figure 1 - (a) The single layer model used in 
the inversion tests (b) the PP angle gather (c) 
The PS angle gather, both generated for 
medium contrasts and h = λ/2. 

 

 

The reflectivity method (Muller 1985) is used 
for modeling the seismic response of the thin layer 
model. Some details about this modeling procedure 
are given in the appendix. The PP and PS plane 
wave responses can be given as a function of the 
ray parameter p=sinθ/α0 and the vertical two-way 
travel time τ  by the following inverse Fourier 
transforms:
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 Figure 2 - Representation of PP (a) and PS (e) primaries and some of the expected events 
that occurs in a single thin layer, like Internal multiple (b, f) and local conversions of PP (c, d) 
and PS (g, h) waves. These events can influence the response predicted by the conventional 
AVA inversion that considers only primaries (a, e). 
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Where z1 is the depth of the top interface, α0 
and β0 are respectively the P wave and S wave 
velocity of the upper semi space. The frequency 
domain function of the seismic pulse is F(ω);  is 
the PP reflectivity; and  is the PS reflectivity. 
They are elements of the reflectivity matrix (A2) 
that can be obtained by equation (A5). The vertical 
wavenumbers for P and S waves in the upper semi 
space are, respectively ; and 

. 

In practical applications, the input seismic 
data for prestack inversion are sorted by offset or 
incidence angle. Due to this, the PP and PS plane 
wave seismograms are submitted to τ-p NMO 
correction (Diebold and Stoffa, 1981) and then 
transformed from ray parameter domain to 
incidence angle domain using a simple mapping 
procedure based on Snell low for elastic waves: 

, where θpp=θ  is the 
PP reflection angle and θps is the PS conversion 
angle. This kind of data is known as angle gather 
seismogram. The data in Figures 1b and 1c 
represent PP and PS angle gathers (respectively) 
computed using a single layer model with 
moderate contrast in elastic properties (see Table 
1). For the computation of the seismic data, we 
use the second derivative of the Gaussian function 

as the seismic pulse, and the layer thickness of 25 
meters, which corresponds to 1/4λ, where λ is the 
wavelength related to the peak frequency of P 
wave in the layer. Note that the seismic response 
results from the summation of all wave modes 
represented in Figure (2a-d) for PP waves and in 
Figure (2e-h) for PS waves. 

Bayesian Inversion by MCMC 
The goal of the Bayesian inversion is to obtain the 
probability density function that describes the 
parameters of the medium. This function is known 
as the posterior probability distribution, which is 
represented by 
 

𝑃𝑃(𝒎𝒎|𝒅𝒅) = 𝑘𝑘𝑃𝑃(𝒅𝒅|𝒎𝒎)𝑃𝑃(𝒎𝒎) (3) 
 

where P (d|m) is the distribution of the observed 
data d given a model m, also known as the 
likelihood function. P (m) is the prior distribution of 
m and k is a normalization constant that ensures 
that ∫𝑃𝑃(𝒎𝒎|𝒅𝒅)𝒅𝒅𝒎𝒎 = 1. For the likelihood we chose 
a Gaussian distribution, given by 
 

11 1( | ) exp ( ( )) ( ) ( ( ))
2(2 ) | det( ) |

T
eN

e

P G G
π

− = − − −  
d m d m C d m

C

 (4) 

 

where, for the PP case, d = [dpp]; for the PS case, 
d = [dps]; for the PP-PS case, d = [dpp, dps]; and 
dpp and dps represent the vectors of PP and PS 
data, respectively. The model parameter is 
represented by m, G is the forward modeling 
operator and Ce is the covariance matrix of the 
error between the observed and modeled data 
e = d – G(m), in which, in our case, is a simple 
diagonal matrix that represents the variance of a 
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white noise. We choose a joint uniform density 
function for the prior distribution. This means that 
for a given parameter mj we have that 
 

1 ˆif | |
2

( ) , for 1, ,

ˆ0 if | |
2

j
j j

j
j

j
j j

m
m m

m
P m j M

m
m m

∆
− ≤∆= =

∆ − >


 (5) 

 

The central interval value is and is 
, the difference between maximum 

and minimum parameter values. Assuming that 
the parameters are independent, the joint prior 
distribution can be written as 
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P(m) implies little prior information about the 
model parameters, except for the interval that the 
model parameters can vary. This form is suitable 
to let the inversion results rely on the seismic data 
alone. Due to the nonlinearity of G(m), the 
posterior is generally non-Gaussian. However, if 
the degree of nonlinearity of the problem is not 
very high, this probability function is not far from 
a truncated Gaussian. 

We use the classical Metropolis algorithm 
(Metropolis et al., 1953; Hastings, 1970) from 
MCMC methods to sample the posterior 
distribution. This method can be summarized by 
two cycles; the first is the exploration step when 
a proposed model mp is drawn from a current 
model mc using a proposal distribution. In the 
second step, this proposed model is accepted or 
rejected according to the following rule: 

• Accept mp if P(d|mp) ≥ P(d|mc). 

• If P(d|mp) < P(d|mc) accept mp, with 

probability 
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P
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p
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It can be shown that after many cycles, the 
statistics of the accepted model set corresponds 
to that of the posterior distribution. Consequently, 
the mean of the jth model parameter can be 
calculated by 
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where  corresponds to the jth model parameter 
generated at the nth simulation. The correlations 
between two parameters can be obtained using 
the Pearson formula 
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where cij is the correlation between mi and mj. The 
values for this coefficient vary between -1 and 1. 
To facilitate our analysis, we assume that |c ij| > 0.7 
indicates a strong linear correlation between mi 
and mj, 0.5< |cij|< 0.7 indicates a moderate linear 
correlation and |cij| < 0.5 indicates a weak 
correlation. It can be demonstrated that 
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where cov(mi,mj) is the covariance between mi and 
mj. A parameter is well estimated when its 
standard deviation and also its correlations to 
others parameters are small. A high correlation 
between two parameters means that the posterior 
probability function sees them as having some 
degree of linear dependence that can give rise to 
parameter crosstalk, influencing estimation and 
uncertainty analysis of each other. 

RESULTS 
Thin-Layer Uncertainties Estimation 
Experiment 
The first inversion experiment is related to the 
single-layer model schematically represented in 
Figure 1. We assume that the parameters of the 
background media are known, making this as a 
problem of only three parameters: P wave velocity 
Vp, S wave velocity Vs, and density ρ. This 
experiment investigates the PP, PS, and PP-PS 
inversion sensitivity to the contrast degree 
between the elastic parameters of the layer and 

ˆ jm jm∆
max min
j jm m−

n
jm
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the background media and the thickness of the 
layer. The inversions are also tested for the 
angle range of the input data. 

The target data for the tests are generated 
by keeping the layer parameters constant while 
letting the background medium vary to create 
the low, medium, and strong contrast cases 
(see Table 1). Layer thickness is set to different 
values of h =λ /2, h = λ /4, h = λ /8 and h =λ /16, 
according to the wavelength λ of the P wave 
with peak frequency fp = 25 Hz, so that λ=α1/fp 
with α1 representing the P wave velocity of the 
layer (see Fig. 1). We choose to set the model 
parameter values that are representative of a 
reservoir with positive impedance contrast. 
Inversion is performed considering the use of 
three alternative incidence angle ranges of 0-
25°, 0-40° and 0-55°. Each inversion test 
estimates the P wave velocity, S wave velocity, 
the density of the layer (using the mean as 
estimator), and its associated standard 
deviations and correlations.  

The wavelet estimation is a well-covered 
subject in the literature, with approaches that 
go from a Bayesian estimation (Buland & Omre, 
2003) through a spectral method like the 
spectrum-shaping proposed by Rosa & Ulrych 
(1991) or the log-spectrum-averaging method 
proposed by Van der Baan (2008). Since our 
analysis is based on synthetic data, we assume 
that the seismic wavelet and the layer thickness 
are known parameters. 

Table 1 – The layer parameters for weak, medium, and 
high contrast cases. 

Parameters Vp 
(m/s) 

Vs 
 (m/s) 

ρ 
(kg/m3) 

Layer 3500 1750 2450 

Background Media 
(low contrast) 3200 1600 2400 

Background Media 
(medium contrast) 2800 1400 2350 

Background Media 
(strong contrast) 2300 1150 2300 

Figure 3 shows two plots of the RMS error 
between observed and calculated data versus 
the iteration number for four different runs of the 
MCMC inversion using respectively (a) PP and 
(b) PS data. The number of iterations is set to 
2000, but the statistics of the posterior 
distribution is derived from the last 1500 
iterations and considering not one but many 
runs, each one beginning from a different point 
in the model space, as suggested by Gelman et 
al. (2013). The data variance is set to 10% of the 
data maximum amplitude, which represents a 
moderate noise level. The MCMC method 
converged with an average acceptance rate of 
40%. 

The information regarding inversion with PP 
data is summarized in Figure 4. In this plot, the 
height of the rectangles indicates the mean 
obtained for the parameters, while the black 
vertical bars represent its standard deviations. 
The shade of gray of the rectangles indicates the 
thickness of the layer grading from thick (dark 
gray) to thin (white). The dashed horizontal line 
represents the true values for Vp, Vs, and ρ. 
Similar plots are displayed for PS inversion (Fig. 
5) and the joint PP-PS inversion (Fig. 6). 

By observing the results of the PP inversion 
(Fig. 4), we note that the standard deviation 
associated with the estimative of Vp, ρ and Vs 
increases as the layer becomes thinner. The 
standard deviation associated with the estimates 
of Vp and Vs decreases as the input angle range 
increases; however, this tendency is not clear for 
ρ. Among the three parameters, Vp has the 
lowest relative standard deviations and Vs the 
greatest one. Except for the λ/16 layer, Vp and ρ 
are estimated with a standard deviation below 
10% of the true value when varying the angle 
coverage and contrast. It is possible to estimate 
the three parameters of the λ/16 layer with a 
small standard deviation, but it requires an 
incidence angle range of 0-55°. 

The results of PS inversion (Fig. 5) show 
that, among the three parameters, Vs is the one 
with the lowest relative standard deviations. 
Except for the λ/16 layer case, Vs can be  
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Figure 3 - RMS error between observed and calculated data versus the iteration number for 
four different runs of the MCMC inversion using the medium contrast model and input data of 
(a) PP and (b) PS data. The incidence angle range is 0-55° and layer thickness is h=λ/4. 

 

 

 

 

 

 
Figure 4 - Results for all PP inversion tests for the single-layer model. The height of the rectangles 
indicates the mean obtained for the parameters, the black vertical bars represent the corresponding 
standard deviations, the shade of gray of the rectangles indicates the thickness of the layer, and the 
dashed horizontal line represents the true values for Vp, Vs and ρ. 

 

 
estimated with a standard deviation below 10%, 
while Vp and ρ could be well estimated only for 
the cases of medium and high contrast and with 
input angle range exceeding 25°. Note that the 
property contrast degree affects much more the 
PS inversion results than that of the PP 
inversion, especially for Vp and ρ. Interestingly 
in PS inversion, Vp can be well estimated for 
layer thicknesses of λ/2 and λ/4, but not for other 
cases with thinner layers. In the PP-PS joint 

inversion (Fig. 6), we highlight that the standard 
deviations associated with the estimative of the 
three parameters are the smallest for practically 
all cases, and Vs estimates have the most 
remarkable improvements in uncertainty 
(standard deviation) reduction. 

The values found for the correlation 
between the parameters are shown by a color 
scale scheme where dark blue indicates a strong 
negative correlation and dark red indicates a  
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Figure 5 - Results for all PS inversion tests for the single layer model. The height of the rectangles 
indicates the mean obtained for the parameters, the black vertical bars represent its standard 
deviations, the shade of gray of the rectangles indicates the thickness of the layer, and the 
interrupted line represents the true values for Vp, Vs and ρ. 

 

 

 

 

 

 
Figure 6 - Results for all PP-PS inversion tests for the single layer model. The height of the 
rectangles indicates the mean obtained for the parameters, the black vertical bars represent its 
standard deviations, the shade of gray of the rectangles indicates the thickness of the layer and the 
interrupted line represents the true values for Vp, Vs and ρ. 

 

 
strong positive correlation (see Figs. 7, 8, and 9). 
The analysis of these results shows a well-defined 
generalized trend of increasing parameter 
correlation in PP and PP-PS inversions as the 
contrast and layer thickness decrease. 
Concerning the angle range in PP, PS and PP-PS 
inversions, there is no clear correlation tendency. 

For some pairs of parameters, the correlation 
increases (or decreases) when the angle range 
goes from 0-20° to 0-40°, but then, 
correspondingly, decreases (or increases) back 
again when going from 0-40° to 0-55°. For the PS 
inversion, the parameter correlations are more 
erratic than in the previous cases. However, it is  
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Figure 7 - The correlation between elastic 
parameters for the PP inversion of a single 
layer model. The first column refers to Vp X ρ, 
the second to Vs X ρ, and the third to Vp X Vs. 

 

 

 

 

 

 
Figure 8 - The correlation between elastic 
parameters for the PS inversion of a single 
layer model. The first column refers to Vp X ρ, 
the second to Vs X ρ, and the third to Vp X Vs. 

 

possible to note that the parameters are also less 
correlated when the contrast in elastic properties 
is strong. In PP and PP-PS inversions, Vp-ρ are 
highly correlated, whereas in PS inversion, high 
correlations are associated with parameters Vs-ρ. 
Overall, the behavior of the correlations between 
the parameters is essentially the same for the PP 
and PP-PS inversion. 

 
Figure 9 - The correlation between elastic 
parameters for the PP-PS inversion of a single 
layer model. The first column refers to Vp X ρ, 
the second to Vs X ρ, and the third to Vp X Vs. 

AVA sensitivity curves 
This section presents sensitivity AVA curves 
based on differential seismograms obtained by 
perturbing the parameter values in the thin layer. 
This numerical approach is motivated by the 
complexity of the problem that makes rigorous 
mathematical analysis difficult to interpret unless 
severe simplifications are introduced in wave 
propagation formulation. The differential 
seismograms make it possible to visualize how 
data sensitivity to changes in a given parameter 
vary as a function of the angle of incidence. 
Following the approach of Oliveira et al. (2018), we 
can compute the differential seismogram for Vp, 
which using first-order approximation is given by 
 

 (11) 
 

The PP and PS differential seismograms 
obtained for the single-layer model with medium 
contrasts and h=λ/4 are shown in Figures 10 and 
11, respectively. An AVA sensitivity curve can be 
derived by picking the amplitudes along the two-
way travel time of the top interface of the layer 
(dashed lines). Each curve represents the rate 
of change of the amplitude to parameter  
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 Figure 10 - The PP differential seismograms obtained for the single layer model with medium 
contrasts and h = λ/4 for perturbation of (a) Vp (b) Vs, and (c) ρ. 

 

 
 

 

 

 

 Figure 11 - The PS differential seismograms obtained for the single-layer model with medium 
contrasts and h = λ/4 for perturbation of (a) Vp (b) Vs, and (c) ρ. 

 

 
perturbations as a function of angle, as exhibited in 
Figure 12 for the PP data and Figure 13 for the PS 
data. For these examples, we perturb the values of 
the parameters given in Table 1, using ∆Vp =10 m/s, 
∆Vs =10 m/s, and ∆ρ = 10 kg/m3. 

We highlight the following facts from these 
curves: the PP data have very small sensitivity to Vs 
in the 0-25° angle range.  The sensitivity of the PP 
data with respect to density decreases with angle 
and becomes very small for angles beyond 40°. 
The sensitivity of the PP data increases (in absolute 
value) with the angle for Vp and Vs in the low and 
medium contrast cases. The AVA sensitivity curves 
of the PP data with respect to Vp and density are 
very close to each other for small angles. 

The sensitivity of the PS data with respect to 
density always increases with the incidence 
angle. The PS data sensitivity with respect to the 
Vs parameter increases until it reaches the 
maximum value between 30 and 40 degrees, 
then it decreases. The PS data are practically 
insensitive to the variation of the Vp parameter in 
the small contrast case. However, PS data do 
have sensitivity to Vp perturbations for the 

medium and strong contrast cases if the 
incidence angle is greater than 30°. 

DISCUSSION 
The sensitivity analysis proved to be particularly 
useful to provide a qualitative understanding of the 
elastic parameter uncertainties related to input data 
and inversion target features. Overall, the 
magnitude of the sensitivity curve is related to the 
standard deviation of the estimate of a given 
parameter. This connection occurs once the 
inversion manages to estimate parameters whose 
data have small sensitive to it. This fact explains the 
high standard deviations associated with Vs 
estimates in the PP inversion and Vp estimates in 
the PS inversion when the input angle range is 
restricted to 0-25°. Low sensitivity also explains 
why, in the PP inversion, the standard deviation 
associated with density does not decrease as the 
incidence angle increases because the density 
sensitivity curve decreases with the incidence 
angle, thus adding little additional information at 
higher angles (see Fig. 12). 
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Figure 12 - AVA sensitivity curves derived from PP differential seismograms that were calculated 
using different thicknesses for the target layer (from λ/2 to λ/16) and different contrasts, varying the 
angle coverage from 0-55o. 

 

 

 

 

 

 
Figure 13 - AVA sensitivity curves derived from PS differential seismograms that were calculated 
using different thickness for the target layer (from λ/2 to λ/16) and different contrasts, varying the 
angle coverage from 0-55o. 

 

 
The similarity of two parameter sensitivities 

affects the correlation between them. That is, if for 
a given angle range the sensitivities of two 
parameters are close together (same sign and 
magnitude), parameter estimates tend to be 
negatively correlated because decreasing one or 
increasing the other changes the seismic 

response in the same way, as an example of Vp 
and ρ for small angles in the PP case or Vs and ρ 
in the PS case (see Figs. 12 and 13). If such 
curves have similar magnitudes and different 
signals in the given angle range, the estimate of 
the parameters tend to be positively correlated, as 
an example of Vp and Vs in PP case for weak and 
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moderate contrast and input angle range of 0-40° 
and 0-50° (see figures). We observe that the 
sensitivity of the data with all elastic parameters 
decreases as the layer thickness decreases. The 
sensitivity curves of all parameters tend to 
become close to each other as the layer 
thickness decreases. This explains why both the 
standard deviation and correlations increase as 
the layer becomes progressively thinner. 

An interesting fact that deserves attention is 
that the PS data may have a considerable 
sensitivity to Vp changes. This happens in the 
strong contrast case, and incidence angles 
greater than 25o, and also in the medium contrast 
case, and incidence angle greater than 40o, for 
layers with thickness greater than λ/8 (see Fig. 
13). For these particular cases, it is possible to 
estimate Vp from PS data inversion with a small 
standard deviation. Analyses based on linear 
AVA approximations cannot reach the same 
conclusion once the approximated Rps reflection 
coefficient is independent of ∆Vp (Aki and 
Richards, 2002).  We again recall that the linear 
AVA approximations, although widely used in 
practical applications, are valid only for small 
contrasts between elastic parameters and, since 
the wave conversion modes influence the primary 
response for thin layers, these approximations 
are also only valid for thick layers, which is 
consistent with our findings described above (see 
for example, Jing and Rape, 2004).  In general 
case, the PS inversion produces estimates with a 
very high standard deviation for Vp and ρ, which 
makes this data inappropriate to be used for 
elastic inversion of thin layers. However, our 
analyses demonstrated that the inclusion of PS 
data in the joint PP-PS inversion for thin layers 
has a clear impact on decreasing the standard 
deviations of the estimates of all parameters, 
especially for Vs that presents a remarkable 
improvement. The PS data are important to cover 
the lack of sensitivity of the PP data with respect 
to Vs, at short angles, and with respect to density, 
for higher angles.  

As we showed in our results, we can resolve 
parameters corresponding to ultra-thin layers 
whose thicknesses are below the usual seismic 

resolution of λ/4 dictated by the Rayleigh criteria 
and even by the Widess criteria of λ/8. Indeed, the 
resolution gain obtained by seismic inversion is well 
known in the literature, as demonstrated by Hill 
(2005) and Penna & Lupinacci (2021) that exposed 
the seismic inversion to impedance can provide 
accurate estimate of thickness below the tuning 
effect. In our results, we show that the resolution 
gain provided by an elastic inversion is also 
influenced by the angle coverage of the input data. 

CONCLUSIONS 
This article corroborates the conclusions of 
previous studies of Pan et al. (1994) and Rubino 
and Velis (2009) which established that it is 
possible to estimate the elastic properties of very 
thin layers via elastic inversion. However, a 
detailed investigation was made here to know 
under what conditions a given elastic parameter 
of a thin layer can be reliably estimated, taking 
into consideration factors as angle coverage of 
the input data, contrast between elastic 
parameters and data type (PP, PS and PP-PS). 
The conclusions reached here were based on the 
uncertainties of the estimates of the elastic 
parameters using the stochastic Bayesian MCMC 
approach for inversion, where the full waveform 
response of the thin layer was considered, and 
also on a sensitivity analysis. The main results of 
this work are summarized below.  

To invert Vp, Vs and density for thin layers 
with thickness between λ/2 and λ/4 using 
conventional PP data, higher angles are essential 
to decouple Vp from density and to resolve for Vs, 
in view of the low data sensitivity at small angles. 
So, it is recommended to use angles up to 40 
degrees. For that same thickness range, the 
elastic parameters can be inverted with low 
standard deviation from PP-PS data using only 
angles up to 25 degrees. However, the 
correlation between Vp and density is still high for 
small angles in the PP-PS data, especially for thin 
layers with low contrasts. The uncertainty 
(especially the correlation between parameters) 
becomes smaller for both PP and PP-PS cases 
as the elastic contrast between the thin layer and 
the background media increases.  
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Inversion of Vp, Vs and density for thin layers 
with thickness between λ/8 and λ/16 using P wave 
data is possible using angles up to 50 degrees. For 
the PP-PS data, elastic parameters of these thin 
layers can be inverted using angles up to 40 
degrees. For both cases, the uncertainty (especially 
the correlation between parameters) also becomes 
smaller as the elastic contrast between the thin 
layer and the background media increases.  

In this paper, we analyzed a thin layer model 
with higher Vp, Vs and density than the background 
media; however, the same approach proposed 
here can be used to other thin layer models and 
other elastic parameters, such as impedance, 
Poison ratio, and compressibility. 

APPENDIX A 
The reflectivity of an elastic thin layer 
The term reflectivity refers to a generalized 
reflection coefficient that encompasses every 
event generated by the incidence of a plane 
harmonic wave on a layered elastic medium. 
Differently from a single interface reflection 
coefficient, a reflectivity is a frequency dependent 
function. The  reflectivity responds to all 
ascendant P waves generated in the layered 
elastic medium as the result of incidence of a P 
wave, and the  reflectivity responds to all 
ascendant S waves generated in the layered 
elastic medium as the result of an incidence of a 
P wave. These reflectivities can be obtained by a 
recursive matrix equation (Muller, 1985); 
 

 (A1) 
 

where  is the reflectivity matrix defined for the 
bottom of the nth layer number; 
 

 (A2) 

 

The matrix  and  contains the 
upgoing and downgoing reflection and 
transmission coefficients for the interface at z=zn; 
 

, .  

 

These coefficients should be obtained 
through the solution of the Zoeppritz equation 
(see Aki & Richards for example). The symbol 

 means the reflectivity matrix for the top of 
the nth layer. The relationship between   and 

 is solely due to phase shifting and can be 
written as 
 

 (A3) 
 

where Fn is the matrix that introduces the phase 
shift due the travel time of the waves in the nth 
layer: 
 

. (A4) 

 

The vertical wave numbers for P and S 
waves in the nth layer are, respectively; 

 and  and 
hn is the thickness of the layer. Note that there is 
no upgoing waves in the last layer, so we can 
start the iteration with , what implies, by 
means of (A1), that . At each iteration 
of equation (A1), the transmission effects, 
internal multiples, and converted waves that 
occur in each layer are added to the solution 
until it reaches the top layer and the complete 
medium response will be contained in . For 
the single layer example presented in the main 
text (see Fig. 1), the reflectivity may be explicit 
given by: 
 

 (A5) 
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