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ABSTRACT. Several authors have proposed new techniques using multi-attribute analysis and machine
learning. Studying the influence of different data treatments on such techniques is essential. We analyze the
results by applying two clustering techniques, Crossplotting, and k-means, in filtered data. In particular, we
use structure-oriented filtered seismic data before calculating seismic attributes. We use a migrated section of
the Buzios field from the Brazilian pre-salt in the Santos Basin. We find that combining filtering and clustering
techniques can improve salt identification.
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INTRODUCTION

Seismic interpretation goes beyond the identification
of oil or gas accumulations. The extrapolation of such
data to find where the accumulations are formed and
can be trapped, or where the oil flow may be inter-
rupted by a fault are complex tasks and require the
experience of human interpreters. According to Zhao
et al. (2015), skilled professionals can classify some
patterns emerging from original data without com-
puter help. Nevertheless, as mentioned by Chopra
and Marfurt (2018), the increasing size of the seis-
mic surveys poses a challenge that requires not only
human knowledge and skill but also technology.

Seismic attributes are used to emphasize differ-
ent aspects of seismic data that may not be visible in
the original data. Attributes like amplitude, phase,
frequency and continuity, among several others, are
widely used in the industry, as pointed out by Sub-
rahmanyam and Rao (2008). In addition, recently
automatized methods based on machine learning have
been proposed in order to classify seismic facies. Such
methods can process a large amount of data, pro-
viding information necessary so that the human in-
terpreter can propose the regional geological model.
Most of the machine learning techniques rely on seis-
mic attributes, but, according to Chopra and Marfurt

(2018), some recent deep learning techniques propose
to eliminate this intermediate step by the introduc-
tion of hidden layers in the algorithm. Teaching a
computer to identify facies like an interpreter requires
an adequate treatment of the data, as explained by
Qi et al. (2016).

A key task in subsurface interpretation where ma-
chine learning has found widespread application is
the identification of salt diapirs. Among the methods
proposed it is frequent the use of texture attributes,
as Berthelot et al. (2011), image segmentation, as
Halpert et al. (2014) and edge detection, as Asjad
and Mohamed (2015). Some other methods use com-
binations of attribute analysis and techniques such as
map delineation, proposed by Farrokhnia et al. (2018)
and edge detection, as Amin and Deriche (2015). In
some cases this classification process can be challeng-
ing. For instance, differentiating salt domes from
mass transport complexes (MTCs) may be easy for
a trained human interpreter, but a machine learning
algorithm requires a specialized treatment. The use
of filters prior to the classification process can im-
prove the effectiveness, as already shown by Qi et al.
(2016). In their work, the proposed workflow involves
the application of the Kuwahara filter on each seismic
attribute, which may be a time-consuming procedure.
Choosing a filter that can be used on the original data
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before the generation of attributes without destroying
their properties can lead to a competitive advantage
as it can reduce computation time.

This work aims to study the effect of the structure-
oriented filtering in two simple clustering techniques,
namely Crossplotting and k-means. In this work, we
use a 3D depth migrated seismic crossline from Buzios
field in Brazil. We select an area with a visible salt
diapir, as shown in Figure 1.

Figure 1: Seismic amplitude for a vertical slice of the
original seismic data from Buzios field. In the center,
there is a well-pronounced salt diapir. On the left,
there is an MTC facies.

UNSUPERVISED MACHINE LEARNING

According to Kubat (2017), supervised learning uses
pre-classified (tagged) data as training data. This
training data can be obtained from several sources,
such as well control, human experience, and others.
After this training, the model builds a mathemat-
ical relation capable to predict the classification of
new data based on their attributes, as described by
Chopra and Marfurt (2018). The influence of hu-
man interpreters is key to selecting and classifying
the training data, and different training methods can
lead to different results.

On the other hand, unsupervised learning meth-
ods do not use tagged data in order to perform a clus-
tering scheme, in which the data is only separated
into different groups (clusters). These methods can
use the attributes themselves as training data. An
advantage of these methods pointed by Coléou et al.
(2012), is the fact that these methods are not biased
by the desired output. The efficiency of these meth-
ods will depend on the capacity to identify clusters of
data. Below we introduce two clustering schemes used
in geophysics, namely Crossplotting and k-means.

Although these clustering schemes can be extended
to use more attributes, they can be better visual-
ized with a reduced number. In this work, we use
only Semblance and Grey Level Co-occurrence Matrix
(GLCM) Dissimilarity. The choice of the attributes is
based on the work by Qi et al. (2016), where the au-
thors use five attributes in order to distinguish MTC
from salt. GLCM Dissimilarity presents a high re-
sponse to salt and MTC and helps to distinguish
different kinds of chaotic textures. Semblance can
distinguish salt and MTCs from sediment. The at-
tributes obtained from our seismic data are shown in
Figure 2.

Figure 2: Attributes obtained from original data. a)
Semblance. b) GLCM Dissimilarity.
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Crossplotting

Crossplotting is perhaps the most common clustering
technique, as stated by Zhao et al. (2015). It is an
interactive technique used by interpreters in the in-
dustry for a long time, as reported by Chopra and
Marfurt (2018). In its most simple form, the method
consists in selecting two (or more attributes) and pro-
ducing a histogram of them. This histogram might
present different regions indicating a higher correla-
tion of certain values for the selected attributes. If
the different attributes are sensitive to the same fea-
ture, the selected regions from the histogram can be
used to highlight the structures in the seismic data.

Figure 3a shows a histogram generated from Co-
herence and GLCM Dissimilarity attributes for the
seismic section. The region of maximum correlation
is obtained visually from the data and is marked with
a blue rectangle, including values up to 2000. In Fig-
ure 3b, the region of maximum correlation in the his-
togram is used to highlight the seismic section. Note
that the maximum correlation region highlights the
salt, but also some other structures, such as MTC.

Figure 3: a) Histogram of Coherence and GLCM Dis-
similarity attributes from the original seismic section.
b) Original seismic data and highlighted regions ac-
cording to the region of maximum correlation in the
histogram of Semblance and GLCM Dissimilarity at-
tributes.

One of the main drawbacks of Crossplotting lies
in the number of attributes that can be used to com-
pose the histograms, as it is unpractical to work with
more than two attributes. Interesting geological fea-
tures may be only identifiable with a larger number
of attributes. In this case, Crossplotting should be
substituted or complemented by other techniques.

k-means

The k-means concept was proposed by Steinhaus
(1957), and the first standard algorithm was pro-
posed by Lloyd (1982). In essence, the goal of the
method is to perform a partition of the data into k
clusters. Each point is classified according to the clus-
ter to which it is closest in average. In Figure 4a, we
show a Voronoi diagram generated from Semblance
and GLCM attributes. The partition is obtained from
k-means with five clusters. The color code in the di-
agram is used to identify the same partition on the
seismic image in Figure 4b.

Figure 4: a) Voronoi diagram obtained from k-means
applied on semblance and GLCM dissimilarity at-
tributes from original data. The multiplication signs
represent the center of each cluster. b) k-means
mapped in the original data. Note that similar facies,
such as the salt diapir, appear with different colors
that have no relationship with each other.
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The k-means method represents an improvement
in comparison to Crossplotting, as it provides an au-
tomatized clustering method. The user must only se-
lect the two attributes to be used and provide the
number of clusters to be used in clusterization. The
optimal number of clusters is commonly determined
using the elbow method, as proposed by Thorndike
(1953). This is an heuristic method, and such an “el-
bow” may never appear, as pointed by Ketchen Jr.
and Shook (1996). Nevertheless, we use the elbow
method to determine the optimal number of clusters,
as can be seen in Figure 5. It is possible to see that
the defining feature for determining the number of
clusters, the “elbow” is very subtle. We chose 5 clus-
ters, as this configuration is the best choice in order
to identify salt and MTC.

Fast and easy to implement, it is possible to use
k-means in multi-dimensional data. An important
downside, as pointed by Zhao et al. (2015), is the lack
of structure leading to a relationship between cluster
identification and proximity between clusters, caus-
ing similar facies to appear in totally different colors.
In this work, we use Python implementation of k-
means from the package scikit-learn implemented by
Pedregosa et al. (2011).

Figure 5: Elbow method used to determine the num-
ber of clusters in k-means. The “elbow” is very subtle,
as the curve does not have any great variations as the
number of clusters is increased. We chose five clus-
ters, with the point marked with a red circle.

STRUCTURE-ORIENTED FILTERING

As pointed by Hale (2009), the structure-oriented fil-
tering is an adaptation of the coherency-enhancing
anisotropic diffusion filters proposed by Fehmers and
Höcker (2003). The filter works as a simulated
anisotropic diffusion process (low-pass filter) that dif-
fuses the seismic amplitude parallel to the reflections.
The basic formula is given by

∂u

∂τ
= ∇ (D∇u) , (1)

where u = u(x, y, t) is the seismic data, τ is a param-
eter called diffusion time (not to be confused with the

time t) and D is the diffusion tensor. The diffusion
tensor is very important in structure-oriented filter-
ing, as it introduces the anisotropy to the diffusion
by allowing the flow in some directions and inhibit-
ing in others. This tensor must be constructed in
such a manner that its eigenvectors are aligned with
the structure of the seismic data. A proper way to
achieve this is to use the structural tensor S given by

S = ∇u(∇u)T , (2)

where the superscript T means the transpose. By
choosing an scale parameter σ corresponding to the
radius of the smoothing filter we obtain an average of
this tensor, denoted by Sσ. The spectral decomposi-
tion of this average tensor is given by

Sσ =

d∑
i=1

λiviv
T
i , (3)

where d is the dimension of the data, λi are the posi-
tive eigenvalues given in descending order and vi are
the associated eigenvectors, which form an orthonor-
mal basis. The diffusion tensor is defined by

D =

d∑
i=2

viv
T
i . (4)

Note that the eigenvector v1 corresponding to
the largest eigenvector is excluded from the sum. It
means that the flow is obstructed in the direction cor-
responding to largest data variation, normally orthog-
onal to the seismic horizons. By construction the dif-
fusion flow occurs only on the other directions, paral-
lel to the horizons and other prominent structures.

The use of the average of the structure tensor can
be problematic as a more severe filtering can elimi-
nate not only noise, but also some important features
in the data, like faults. The remedy to this situation
is to introduce a continuity factor ε in Equation 1,
that now reads

∂u

∂τ
= ∇ (εD∇u) . (5)

The continuity factor ε can be obtained by some
measure of the continuity, as the coherence attribute.

The structure-oriented filter has three important
ingredients: orientation analysis, edge detection, and
edge-preserving smoothing. It is advantageous to
highlight structures such as salt diapirs, where we
are mainly interested in the edges. The impact on
a machine learning process must consider how severe
is the filtering process. The structure-oriented filter
depends on the total diffusion time τ and the scale
factor σ. The influence of τ is illustrated in Figure 6
and of σ are given in and Figure 7. The following
sections compare how these different parameters can
impact the clustering process.
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Figure 6: Structure-oriented filtering of the data with
σ = 1. a) Data filtered until τ = 100. b) Data fil-
tered until τ = 1000. As τ increases the reflections
become more continuous and incoherent noise is re-
moved, but some artificial structures are generated in
chaotic regions, such as salt and MTC.

CLUSTERING OF FILTERED DATA

Structure-oriented filtering has visible effects on noise
reduction and smoothing of seismic data, as can be
seen in Figures 6 and 7. In Figure 6, as the diffusion
time τ increases, the seismic reflections become more
smooth and continuous, and incoherent noise is re-
moved. Chaotic regions, such as salt or MTC, are also
affected by the smoothing process, and some artificial
structures are generated in the process. In Figure 7,
on the other hand, as σ increases, the chaotic regions
are smoothed without creating new structures, but
the elimination of noise is less effective. Hale (2009)
combines this filter with semblance attributes to high-
light discontinuities. Nevertheless, the combination
of the structure-oriented filter and other attributes
is also possible. The resulting combinations can be
used in clustering techniques to verify if there is an
improvement on clustering.

Figure 7: Structure-oriented filtering of the data with
τ = 100. a) σ = 1. b) σ = 20. As σ increases, there
is no generation of artificial structures, but less noise
is removed.

It is important to stress that we apply the filter
to the original data before attribute extraction in this
work. One could argue that the filter may wash away
important features of the data before attribute ex-
traction. In Figures 8 and 9, we show a comparison
between attributes when the filtering is performed on
the original data and directly on the attributes. It is
possible to see some minor differences between these
cases. In Figure 8a, there is a much-reduced noise
when compared to Figure 8b. Figure 9a has a brighter
central core when compared to Figure 9b, where the
salt diapir has a more greyish and noise color. In
the bottom left of Figure 9a filtering of the attribute
leads to horizontal noise streaks. There is a very sim-
ilar range of bright white values in the central diapir
and outside, where is the MTC, whereas, on the right
image, the center of the diapir and the outer MTC
have different value ranges. Despite those differences,
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filtering before or after the attribute calculation have
little impact on the clustering process. We shall ex-
plore this subject in more detail in future work. Nev-
ertheless, filtering before may provide a competitive
advantage concerning computational time, as the fil-
tering must be applied once in the original data. Nev-
ertheless, this subject demands a more detailed inves-
tigation comprising a broader class of attributes.

Figure 8: Semblance before and after filtering with
σ = 1 and τ = 1000. a) Filtered semblance. b) Sem-
blance on filtered data.

The results obtained from application of Cross-
plotting in the attributes from filtered results are
shown in Figure 10. It is possible to see that the ap-
plication of structure-oriented filtering improves the
separation between MTC and salt, but some areas
are still confounded. The separation between the two
facies is particularly improved when we use larger val-
ues of τ . On the other hand, with higher values of τ ,
other regions near the salt diapir are also highlighted,
so a severe filtering can also be a source of numerical
artifacts in the data.

Figure 9: GLCM Dissimilarity before and after filter-
ing with σ = 1 and τ = 1000. a) Filtered GLCM Dis-
similarity. b) GLCM Dissimilarity on filtered data.

Figure 10: Crossplotting on filtered data. a) σ = 20
and τ = 100. b) σ = 1 and τ = 100. c) σ = 1 and
τ = 1000.
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The results from the application of k-means in fil-
tered data are shown in Figure 11, with the respec-
tive clusters shown in Figure 12. For small τ , the
structure-oriented filtering has little effect consider-
ing Semblance and GLCM Dissimilarity. For a larger
value of τ , on the other hand, the separation between
salt and MTC is improved just like in the Crossplot-
ting case. Nevertheless for such larger values of τ , we
also see some regions that are misclassified near the
salt diapir.

Figure 11: k-means on filtered data. a) σ = 20 and
τ = 100. b) σ = 1 and τ = 100. c) σ = 1 and
τ = 1000.

Figure 12: k-means clusters on filtered data. a)
σ = 20 and τ = 100. b) σ = 1 and τ = 100. c)
σ = 1 and τ = 1000.

CONCLUSION

In this work, we compare the effect of structure-
oriented filtering two clustering methods. The filter
is applied to the original data before extracting the
attribute. The evaluation of filtering on the identi-
fication of facies by machine learning techniques be-
comes relevant because structure-oriented filtering is
often used in the interpretation workflow and can im-
prove unsupervised and semi-supervised classification
process.

Clustering methods that use only two attributes,
as Crossplotting and k-means, may have a good im-
provement from filtering when the parameters τ and
σ are well tuned. It is important to stress that the
tuning of such parameters is performed based on the
knowledge of the geology of the area. The parameters
are obtained for small data and can be extended ac-
cordingly to a larger area. A quantitative method to
find the best values must be established. Severe filter-
ing can improve the differentiation, but can also cause
distortions that can be visually observed on the data.
The parameters used in filtering must be calibrated
to avoid these distortions. The manual calibration
of such parameters can be a time-consuming process
that have an impact on the workflow, but once es-
tablished it can be applied to a large amount of data
without further calibration.

This result may be a consequence from the choice
of attributes showing that these methods have a
strong dependency on the attributes used. On the
other hand, different clustering techniques like SOM
and GTM are more likely to improve facies differen-
tiation between MTC and salt. These techniques will
be explored in a future work.
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