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ABSTRACT. We present a time-frequency decomposition method to represent a time signal into a 2D (time
× frequency) image, which describes how the frequency content varies along the time. This is done in two steps:
firstly, by filtering the signal to obtain time-components; and secondly, by computing the average instantaneous
frequency (AIF), which is used for moving the data components to the time-frequency plane. For the filtering
process, we present an algorithm to generate a suite of symmetric filters that are computed recursively, starting
with the high-frequency content of the signal, going down in frequency and leaving the lowest frequencies in the
last filter component. This can be further decomposed by continuing the procedure. The symmetric impulse
responses are zero-phase with positive frequency response, and they add up to a spike at the origin with a
unit frequency response. The filtering procedure gives an exact decomposition of the signal and the traveltimes
are preserved. Next, the analytic signal of each component is used for computing the AIF in sliding time
windows, so that for each time sample, we have an associated AIF value. The 2D time-frequency plane is
obtained by distributing and adding the data components along the frequency variable. Finally, by using the
time × frequency distribution, a time-frequency filtering may be performed by stacking data of sub-domains
with similar features. The new technique has been applied to two synthetic signals which have previously been
analyzed by many authors using a variety of algorithms. The new signal decomposition algorithm and the AIF
computation are simple and produce effective results on the synthetic data.
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INTRODUCTION

Signal decomposition and time-frequency representa-
tion have numerous applications in geophysics (Chen
et al., 2001; Lesage et al., 2002; Castagna et al., 2003;
Lesage, 2008; Oropeza and Sacchi, 2011; Fomel, 2013;
Han and van der Baan, 2013; Tary et al., 2013; Her-
rera et al., 2014; Mitrofanov and Priimenko, 2015;
Liu et al., 2015, 2016; Cheng and Sacchi, 2016; Ursin
and Porsani, 2021), biomedical signal analysis (An-
gelsen, 1981; Colominas et al., 2014; Wu et al., 2016;
Hu et al., 2017), and in other fields. Discussions of
different methods are given by Marple (1987), Cohen
(1989), Mallat (2008), Auger et al. (2013), Tary et al.
(2014, 2018), Iatsenko et al. (2015), and Fourer et al.
(2017).

Three popular methods for signal decomposition
are: empirical mode decomposition (EMD), vari-
ational mode decomposition (VMD), and singular
spectrum analysis (SSA). EMD and its extensions
(Huang et al., 1998, 1999; Torres et al., 2011; Han
and van der Baan, 2013; Colominas et al., 2014) com-
pute the modes recursively, starting with the most
oscillatory one. The limitations are mode mixing
and splitting, aliasing, end-point artifacts, and sen-
sitivity to noise. VMD is more robust; the signal
is decomposed into narrow-band modes with slowly
varying amplitudes (Dragomiretskiy and Zosso, 2014;
Liu et al., 2016). The center frequencies and ampli-
tude functions of the intrinsic modes are estimated
directly from the input signal.
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6 SIGNAL DECOMPOSITION AND TIME-FREQUENCY REPRESENTATION

Singular spectrum analysis (SSA) (Harris and
Yuan, 2010; Oropeza and Sacchi, 2011; Cheng and
Sacchi, 2016; Hu et al., 2017; Rodrigues et al., 2018;
Golyandina and Zhigljavsky, 2020) is based on the
singular value decomposition (SVD), (Golub and
Loan, 1996) of the so-called trajectory matrix, which
is equal to the filter matrix used in digital filter-
ing (Robinson and Treitel, 2000). Harris and Yuan
(2010) showed that the signal components are equal
to the original data filtered with the autocorrelation
functions of the eigenvectors of the covariance ma-
trix. Since the autocorrelation function is symmetric,
the signal phase is preserved in each component.

Porsani et al. (2019) extended the classical SSA
by recursively computing the components of the sig-
nal using iterations in the dimension of the covariance
matrix and, in each iteration, filtering with the auto-
correlation of the first eigenvector. After a certain
number of iterations, the result is a new signal com-
ponent, which is subtracted from the signal, and the
process is repeated. This process, termed recursive-
iterative SSA (RI-SSA), is simplified here by assum-
ing that the signal covariance matrix is a positive con-
stant times an identity matrix, corresponding to a
random signal. For the eigenvectors of the covariance
matrix, we use a normalized vector with equal posi-
tive components. This is used recursively to compute
filters that are applied in an iterative loop to com-
pute a new signal component. The process is repeated
for the remaining signal components, and the final
remainder is the last signal component. The result
is an exact signal decomposition with deterministic,
variable-length symmetric filters which only depend
on the number of iterative convolutions in the recur-
sive signal estimation loop. It is an exact decomposi-
tion of the signal, keeping its phase, starting with the
high-frequency components, going down in frequency
content, and leaving the lowest frequency part in the
residual (the last component). The new method is
much simpler than the RI-SSA method proposed by
Porsani et al. (2019), and on synthetic data examples
it provides better results.

We shall consider the decomposition of a time sig-
nal into components depending on their frequency
content. For each component, we shall compute a
time-varying amplitude and average instantaneous
frequency (AIF). The average frequency function of
each signal component is computed from its analytic
signal (Gabor, 1946; Taner et al., 1979) in a sliding
time window using a one-step prediction-error opera-
tor (Porsani et al., 2019). Angelsen (1981) has shown
that the average frequency is the average of the in-
stantaneous frequency, which is being computed nor-
mally (Han and van der Baan, 2013; Vesnaver, 2017;
Porsani et al., 2019). The real part of the complex
signal value in the middle of the time window and
the average instantaneous frequency (AIF) give the
time-frequency representation of the signal compo-
nent. The time-frequency distribution of the original

signal is then the sum of these time-varying spectral
components.

The new technique has been applied to two syn-
thetic signals which have previously been analyzed by
many authors using a variety of algorithms. The first
example (Tary et al., 2014) consists of three wavelets
and several signals with variable frequency content.
In the second example (Han and van der Baan, 2013)
the signal consists of three wavelets and four har-
monic components. Finally, a single seismic trace is
analyzed and decomposed. Combining components in
specific areas of the time-frequency domain results in
a new signal-decomposition and filtering procedure.

VARIABLE-LENGTH SYMMETRIC FIL-
TERS

Porsani et al. (2019) proposed a recursive-iterative
scheme for signal decomposition wherein the inner
loop filter derived using SSA was applied to a data
vector. The filter was a scaled version of the autocor-
relation function of the normalized first eigenvector of
the (k+1)× (k+1) data covariance matrix. Now we
let the covariance matrix be a (k + 1)× (k + 1) iden-
tity matrix times a positive constant, corresponding
to a random data vector. A normalized eigenvector
of dimension (k + 1)× 1 is

Vk =
1√
k + 1

(1, . . . , 1)T = (vk(0), . . . , vk(k))
T (1)

The symmetric filter becomes (see Porsani et al.
(2019), equation (5), and the pseudo-code for their
algorithm)

gk =
1

k + 1
vk ⊕ vk (2)

where ⊕ denotes correlation, and then

gk(n) =
k + 1− |n|
(k + 1)2

, n = 0,±1, . . . ,±k . (3)

From this, we may form the (N + 1)× (N + 1) sym-
metric matrix

Gk =


gk(0) . . . gk(k) ON−k

... gk(0)
. . . gk(k)

gk(k)
. . . . . .

...

ON−k gk(k) . . . gk(0)

 (4)

When a vector d(n) of dimension (N + 1)× 1 is mul-
tiplied by this matrix it corresponds to convolution
with the filter gk and setting the components of the
vector equal to zero outside their domain of defini-
tion. In the following we shall denote this operation
by (gk ∗ d)(n).

In the recursive filter loop we shall compute the

Braz. J. Geophys., 40, no. 1, 2022



PORSANI, M., AND B. URSIN 7

filters

fk = gk ∗ fk−1 = gk ∗ gk−1 ∗ . . . ∗ g1 . (5)

Figure 1 illustrates the filters gk, the filters fk in time
and its corresponding frequency response. gk and fk
were normalized before plotting. The signal is con-
volved J times with the filter (δ − fk) corresponding
to the effective filter

ck = [∗ (δ − fk)]
J (6)

where δ is the unit convolutional operator.
In the component recursive loop, the data remain-

der is convolved with this filter to obtain a new com-
ponent. This is removed from the data remainder,
and the process is repeated with a new filter. The
filters do not depend on the data, so they can be
computed in a separate recursive scheme.

Figure 1: The normalized filters gk and fk in (a) and
(b), respectively, and the frequency responses of fk in
(c).

The result is the pseudo-code to compute the sig-
nal components:

• Initial values: d1 = d , f0 = δ

• DO k = 1, . . . ,K

– fk = gk ∗ fk−1 Filter loop

– ck = [∗ (δ − fk)]
J

– xk = ck ∗ dk Component loop

– dk+1 = dk − xk = (δ − ck) ∗ dk

• END DO

• xK+1 = dK+1

The signal decomposition is

d =

K∑
k=1

xk + dK+1 =

K∑
k=1

hk ∗ d+ hK+1 ∗ d . (7)

The last term, dK+1, is the signal residual which
may be further decomposed by applying filters cK+1

and higher-order. The filters hk represent the total
impulse responses of the system, given by

h1 = c1 ,

hk = ck ∗ (δ − ck−1) ∗ . . . ∗ (δ − c1) k = 2, 3, . . .

(8)

and

hK+1 = δ −
K∑

k=1

hk . (9)

In the algorithm we compute xk = ck∗dk equivalent to
multiplication with a matrix as defined in Equation 4.
Both dk and xk are of length N + 1, and ck is cut off
to length about N/2. The filters ck are independent
of the data, and further filters may be computed to
obtain more signal components with lower frequency
content. All filters ck depend on J , the number of
factors in the convolutional product in Equation 6.

In Appendix A we have further analyzed the im-
pulse responses. The results are:

1. The signal decomposition starts with the high-
frequency parts and low-frequency components
may be added by computing higher-order com-
ponents that are independent of the previous
ones.

2. The filters are symmetric, zero-phase and the
sum of the impulse response elements is a unit
delta function (see Equation A19).

3. The Fourier spectra are positive and less than
one, and their sum is one.

This means that the signal is exactly represented by
the decomposition and that the signal phase is pre-
served in each component. We may decompose a sig-
nal into a large number of components and, after that,
we sum the components with similar characteristics to
obtain a smaller number of components. A classifica-
tion algorithm, based on the SSA method, to provide
a fully automatic component extraction is presented
by Harmouche et al. (2018).

In order to investigate the influence of the num-
ber of convolutional factors, J , we have computed the
impulse responses hk which we normally do not com-
pute because they become very long (see Appendix
A). They are shown in Figures 2 to 6 for K=9 com-
ponents, and J = 1, 15, 30, 50 and 100 convolutions
in the filter loop. For J = 1 there is large overlap
between the different frequency responses, and the
low-frequency response is narrow. At J = 15, there
is already improved frequency separation, and uni-
form low-frequency response (it can be further decom-
posed by adding more components). For J = 30, 50
and 100, the responses at medium frequencies become
narrower; however, there is mode mixing between the
first three high-frequency components.

It is seen that the convolutional product is neces-
sary to separate different frequency components of the
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signal. Large J gives a longer impulse response, but
the frequency response does not change significantly.

J and K are user-defined parameters where J does
not need to be very large and K should be such that
the meaningful signal components appear between 1
and K. If there are still separate low-frequency com-
ponents in the remaining part, K+1, K may be in-
creased to compute further components.

Figure 2: Filter impulse responses for K=9 and J=1
(one single convolution). (a) and (b) time responses,
(c) frequency responses.

Figure 3: Filter impulse responses for K = 9 and
J = 15 (filter convolutions). (a) and (b) time re-
sponses, (c) frequency responses.

Figure 4: Filter impulse responses for K = 9 and
J=30 filter convolutions. (a) and (b) time responses,
(c) frequency responses.

Figure 5: Filter impulse responses for K = 9 and
J=50 filter convolutions. (a) and (b) time responses,
(c) frequency responses.

Figure 6: Filter impulse responses for K = 9 and
J = 100 filter convolutions. (a) and (b) time re-
sponses, (c) frequency responses.

TIME-FREQUENCY DECOMPOSITION

In this section, we present the equation used to com-
pute the average instantaneous frequency (AIF) for
the signal components, and we show how to obtain a
time-frequency matrix representation for the original
signal.

From each estimated signal component xk(t) we
form the analytic signal

zk(t) = xk(t) + iyk(t) = Ak(t)e
iϕk(t) (10)

where yk(t) is the Hilbert transform of xk(t), and for
each complex component we consider a time window,
zk(t + j), j=−L, . . . , L, of length 2L+1 centered at
t. The instantaneous frequency, which is often used
to characterize a signal, is given by

fk(t) =
1

2π
ϕ′
k(t) . (11)

Computing this time derivative, as shown in Ap-
pendix B, is an unstable operation, and Porsani et al.
(2019) used a local averaging procedure to stabilize
the estimate of the instantaneous frequency.

Here we compute the AIF for each signal compo-
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nent k (see Appendix B),

f̄k(t) =
1

π∆t
Im{log [1 + rk(t)]}

=
1

π∆t
arctan

{
Im{rk(t)}

1 + Re{rk(t)}

}
(12)

where ∆t is the time-sample interval, and rk(t) is the
reflection coefficient associated with the prediction er-
ror operator (PEO) of order 1 (Burg, 1975).

The AIF value computed using Equation 12 is at-
tributed to the complex data, zk(t), at the center of
the time window. By computing the AIF for every
signal component and for all time sample we obtain
the time-frequency distribution,

{
b
[
t,f̄k(1)

]
, . . . , b

[
t,f̄k(K)

]}
=

K∑
k=1

zk(t)δ[f − f̄k(t)]

(13)
To obtain a matrix representation from Equation 13
we may discretize the AIF values by using a
frequency-sample interval, ∆f ,

b
[
t, f̄k(t)

]
≈b [t, jk(t)∆f ] = zk(t)δ {[j − jk(t)]∆f}

(14)
where,

jk(t) = int

{
|f̄k(t)|
∆f

}
(15)

is a integer positive number, 0 ≤ jk(t) ≤ fNy/∆f ,
(fNy = 1/2∆t, the Nyquist frequency).

For each signal component we use Equation 14 and
Equation 15 to compute the elements b[t, jk(t)∆f ],
{t = 0, . . . , N} and {jk(t) = 0, . . . , fNy/∆f}, to form
a time-frequency matrix, Bk. By adding these matri-
ces we obtain the time-frequency matrix representa-
tion of the original signal,

B =

K∑
k=1

Bk. (16)

From Equation 13 and Equation 14 we note that,

z(t) =

K∑
k=1

b[t, f̄k(t)] =

K∑
k=1

b[t, jk(t)∆t] =

K∑
k=1

Bk(t).

(17)

Bk(t) is a frequency slice of the time-frequency matrix
Bk. Equation 17 provides an exact time-frequency
decomposition of the original signal. Adding all fre-
quency components for a given time, the original sig-
nal will be recovered. Also, it is possible to use the
method as a 2D (time × frequency) filtering pro-
cedure, by adding groups of components with simi-
lar features in subdomains of the 2D time-frequency
plane, to obtain fewer components with cleaner char-
acteristics.

A pseudo-code for the time-frequency decomposi-

tion is:
Initial parameters:
2L+ 1: window length to compute AIF values,
K: number of components,
∆f : frequency sample interval

• DO k = 1, ...,K (Component loop)

– obtain component, xk(t), using the previ-
ous algorithm

– obtain the complex component, zk(t),
(eq. 10),

∗ DO t = 0, . . . , N

· compute the AIF, f̄k(t), (eq. 12)
· compute the frequency index,
jk(t), (eq. 15),

· add component, zk(t), to the time-
frequency matrix (eq. 17)

∗ END DO

• END DO

We remark that the length of the time window to
compute the AIF values may be adjusted to adapt to
the frequency variation in the signal. In the numeri-
cal examples we have chosen 2L+1=k(k+1)+1, equal
to the length of the filter fk (eq. A-9), where k is the
index of the component being analyzed.

APPLICATIONS

To test the proposed algorithms we analyze two
noise-free synthetic signals. Tary et al. (2014)
defined a composite signal consisting of a Morlet
wavelet and several components with varying fre-
quency. They used 8 different methods to compute
the time-frequency representation of this signal, and
Andrade et al. (2018) used complex auto-regressive
time-frequency analysis. Porsani et al. (2019) showed
both a signal decomposition and the corresponding
time-frequency representation, including amplitude
information.

In the second synthetic data example we decom-
pose a signal analyzed by Han and van der Baan
(2013), consisting of a Morlet wavelet, two Ricker
wavelets, and several harmonic components, using a
short-time Fourier transform (STFT), the continu-
ous wavelet transform (CWT) and several EMD al-
gorithms. It has also been analyzed by Herrera et al.
(2014) using the CWT, and EMD algorithms and the
synchrosqueezing transform (SST). It was also ana-
lyzed by Liu et al. (2016) using two EMD algorithms
and VMD. Furthermore, Andrade et al. (2018) and
Porsani et al. (2019) also produced time-frequency
representation for this signal.

Synthetic signal I

The first synthetic signal we analyse is a sum of five
elements (Tary et al., 2014):

Braz. J. Geophys., 40, no. 1, 2022
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s1(t) = 3 e−1250(t−2)2 cos[710(t− 2)] 0 s ≤ t ≤ 10 s

s2(t) = sin{ 8π100t/8

log(100) } 6 s ≤ t ≤ 10 s

s3(t) = 0.7 cos(130πt) + 5 sin(2πt) 4 s ≤ t ≤ 8 s

s4(t) = 0.6 cos(70πt) 0 s ≤ t ≤ 6 s

s5(t) = 0.8 cos(30πt) 0 s ≤ t ≤ 6 s

It is composed of two harmonic components with
frequencies of 15 and 35 Hz, a frequency-modulated
harmonic around 65 Hz, a sliding harmonic from 35
to 158 Hz, and a Morlet wavelet with a central fre-
quency of approximately 113 Hz.

Figure 7 shows the 5 components and the syn-
thetic signal at the top. Its corresponding time-
frequency representations are shown in Figure 8.

The signal was analyzed with our algorithm with
K = 9 and J = 50 filter convolution. The composite
signal is shown at the top of Figure 9, and its 10 com-
ponents are shown below. The time-frequency rep-
resentations of the first 10 components are shown in
Figure 10, and their sum, a composite time-frequency
representation of the signal, is shown on the top to the
left. These 10 components are summed in groups to
form four signal components as shown in Figure 11,
and the time-frequency representations of these sig-
nals are shown in Figure 12.

These results are slightly better than the ones ob-
tained by Porsani et al. (2019) with a more compli-
cated algorithm. Our composite time-frequency rep-
resentation in Figure 12 can also be compared to the
results in Figure 3 in Tary et al. (2014), and Figure 2
in Andrade et al. (2018). In both cases, the authors
provide time-frequency representations of the same
signal using various algorithms.

Tary et al. (2014) obtained the best result with
basis pursuit, Chen et al. (2001) used a decomposi-
tion of Morlet wavelets, and Andrade et al. (2018) ob-
tained the best result with complex short-term auto-
regressive modeling using the Marple (1980) or Morf
et al. (1977) algorithm for computing the complex
prediction error operator.

In the latter time-frequency representation, there
are blanks in the representations of the 15 Hz and 35
Hz signals at 2 s due to the influence of the Morlet
wavelet. Only the basis pursuit algorithm produces
better time-frequency representation than our new al-
gorithm, but there is no decomposition into signal
components.

Synthetic signal II

The second synthetic signal is taken from Han and
van der Baan (2013). It is composed of an initial 20
Hz cosine wave, a 100 Hz Morlet wavelet at 0.3 s, two
30 Hz Ricker wavelets at 1.07 s and 1.1 s, and three
different frequency components between 1.3 s and 1.7

s of 7, 30 and 40 Hz, respectively. The 7 Hz com-
ponent is not continuous and has three separate less
than one-period portions which appear at 1.37, 1.51,
and 1.65 s.

Figure 7: The 5 signal components and the synthetic
signal (Tary et al., 2014) at the top.

Figure 8: The time-frequency representation of the
signal components in Figure 7.

Figure 9: Decomposition of the original signal (Tary
et al., 2014) shown on the top. K=9 and J =50 fil-
ter convolutions.

The composite signal is shown in Figure 17a. It
has been decomposed into 25 components and 4 dif-
ferent values J . In Figure 13 is shown the results
for J = 1, in (a), J = 5, in (b), J = 15, in (c),
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Figure 10: Time-frequency representation (K=9, J=50) of the first 10 components of the signal shown in Fig-
ure 7. The composite time-frequency representation is shown on the top left.

and J = 50 in (d). As shown in the previous exam-
ple, by increasing the number J , of convolution, the
meaningful features of the components move to the
components of higher-order.

Figure 14 shows the time-frequency representation
for the components in Figure 13c. The boxes indicate
areas where the time-frequency components will be
extracted. The resulting six modes are shown in Fig-
ure 15 and the composite time-frequency represen-
tation is shown in Figure 16. The resulting signal
decomposition (Figure 15) is very clean with well-
separated components. They are summed to form
the composite signal in Figure 17b. It is very simi-
lar to the original in Figure 17a, however there is a
small error signal as shown in Figure 17c. We do not
have access to the individual components of the in-
put signal but from Figure 17c we can see that there
is a small end effect for the three parts of the 20 Hz
signal. The two Ricker wavelets are almost perfectly
recovered.

Figure 11: Decomposition of the signal in Figure 7 by
combining the elements in Figure 9 in common signal
groups.

Braz. J. Geophys., 40, no. 1, 2022



12 SIGNAL DECOMPOSITION AND TIME-FREQUENCY REPRESENTATION

Figure 12: Time-frequency representation of the sig-
nal components shown in Figure 11.

Figure 13: Decomposition of the original signal (Han
and van der Baan, 2013) shown in Figure 17a. K=24
and convolutions varying from J =1 in (a), J =5 in
(b), J=15 in (c) and J=50 in (d).

This signal has also been analyzed previously by
Han and van der Baan (2013), Herrera et al. (2014),
Liu et al. (2016), Andrade et al. (2018), and Por-
sani et al. (2019) using a large variety of methods.
Our overall impression is that VMD (Liu et al., 2016)
gives the best-combined mode separation and time-
frequency representation. For signal decomposition
we can compare our Figs. 15 and 16 to Fig. 8c in Liu
et al. (2016). Our mode separation is much cleaner
than the one obtained with VMD. In particular, the
two Ricker wavelets are very well represented in Fig-
ure 15. The time-frequency representation obtained
with VMD is shown in Fig. 8c in Liu et al. (2016).
When this is compared to our Figure 15, we believe
that our result is slightly better, having fewer varia-
tions in the constant-frequency parts of the signal.

Analysis of a seismic trace

The seismic trace shown in Figure 20a is decomposed
in 20 components with K = 19 and J = 15 as shown
in Figure 18. The time-frequency representation is
shown in Figure 19 where it is also shown two zones
in which the signal will be decomposed. Adding the
components in these two zones results in the two com-
ponents shown in Figure 20b and Figure 20c. It is
clearly seen that the high-frequency noise is separated
from the low-frequency signal. The average amplitude
spectra are shown in Figure 21.

Figure 14: The time-frequency representation for the
(Han and van der Baan, 2013) signal, shown in Fig-
ure 17a, for K=24 components and J=15 filter con-
volution. The boxes indicate areas from where the
time-frequency data will be summed.
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Figure 15: Signal components obtained by stacking
time-frequency data inside the boxes in Figure 14.

Figure 16: Absolute value of the time-frequency dis-
tribution of the signal components in Figure 15.

Figure 17: The original synthetic signal (Han and van
der Baan, 2013) in (a), the reconstructed signal in (b)
and the difference in (c).

Figure 18: Decomposition of the seismic signal shown
in Figure 20a, for K = 19 and J = 15 filter convolu-
tions.

Figure 19: The time-frequency representation for the
signal shown in Figure 20a, for K=19 and J=15 fil-
ter convolution. The two zones indicate areas from
where the time-frequency data will be added.

Braz. J. Geophys., 40, no. 1, 2022



14 SIGNAL DECOMPOSITION AND TIME-FREQUENCY REPRESENTATION

Figure 20: The original seismic signal in (a), the
residue component in (b), obtained by adding the
data into the area (1) of Figure 19, and the differ-
ence (filtered signal) in (c), associated with data in
area (2) of Figure 19.

Figure 21: Average amplitude spectra of the signals
in Figure 20a, Figure 20b and Figure 20c.

CONCLUSION

The new recursive method for signal decomposition
does not depend on the data, only on the number of
the components to be obtained and the number of
filter convolutions in the recursive loop. The recur-
sive signal decomposition method is exact and phase-
preserving, but non-unique. It starts with the high-
frequency component, then providing new compo-
nents with lower frequency, and the final residual con-
sisting of the lowest frequency content of the signal.
Further low-frequency components may be obtained
by applying higher-order filters to the residual from
the initial decomposition. This procedure provides an
exact decomposition of the signal with filters which
are zero-phase with positive frequency response, thus
preserving arrival time information in the signal. A
stable method for time-frequency analysis is obtained
using a first-order prediction error operator to com-
pute the average instantaneous frequency in sliding
time windows. Applying this to each signal compo-
nent gives a time-frequency representation of the in-
put signal. The number of signal components may be
reduced by summing similar modes, again resulting in
an exact representation of the input signal. An alter-

native method is to sum components in an area in the
time-frequency domain, resulting in a cleaner, but not
exact, representation of the input signal. The results
for two synthetic signals demonstrate that the time-
frequency decomposition method is very effective to
reproduce the data, even though the decomposition
does not exactly reproduce the input signal.
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APPENDIX A. PROPERTIES OF THE
FILTER IMPULSE RE-
SPONSES

In order to analyze the impulse responses of the sym-
metric filters in the proposed algorithm, we shall use
two properties of the convolution, c = a ∗ b, of two
symmetric filters of length or dimension 2k + 1 and
2σ + 1, respectively. They are

dim{c} = 2(k + σ) + 1 (A1)

and

σ+k∑
n=−σ−k

c(n) =

k∑
n=−k

a(n)

σ∑
n=−σ

b(n) (A2)

The starting point for the algorithm is the normalized
vector

vk(n) =


1√
k + 1

, n = 0, 1, . . . , k

0, otherwise
(A3)

of length k + 1, with

k∑
n=0

vk(n) =
√
k + 1 (A4)

The Fourier transform is

Vk(f) =
1√
k + 1

k∑
n=0

e−2πifn∆t

=
1√
k + 1

1− e−2πif(k+1)∆t

1− e−2πif∆t

(A5)

where ∆t is the sampling interval of the time series.
The first filter is

gk =
1

k + 1
vk ⊕ vk (A6)

where ⊕ denotes correlation. The filter coefficients
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are

gk(n) =


k + 1− |n|
(k + 1)2

n = 0,±1, . . . ,±k

0, otherwise
(A7)

and

dim{gk} = 2k + 1 ,

gk(n) > 0 ,

k∑
n=−k

gk(n) = 1 ,

Gk(f) =
1

k + 1
|Vk(f)|2 ,

0 < Gk(f) ≤ 1 , Gk(0) = 1

(A8)

The next filter is

fk = gk ∗ . . . ∗ g1 = gk ∗ fk−1 (A9)

with properties

dim{fk} = 2

k∑
k=1

k + 1 = k(k + 1) + 1 ,

fk(n) > 0 ,∑
n

fk(n) = 1 ,

Fk(f) =
1

(k + 1)!

k∏
k=1

|Vk(f)|2 ,

0 <Fk(f) ≤ 1 , Fk(0) = 1

(A10)

The filter
ak = δ − fk (A11)

has properties

dim{ak} = dim{fk} ,
ak(0) > 0 ,

ak(n) < 0 k ̸= 0 ,∑
n

ak(n) = 0 ,

Ak(f) = 1− Fk(f) ,

0 ≤ Ak(f) < 1 , Ak(0) = 0

(A12)

From this we define the convolution product

ck = (∗ak)J = [∗(δ − fk)]
J (A13)

of J equal factors. Then

dim{ck} = J dim{fk} = Jk(k + 1) + 1 ,∑
n

ck(n) = 0 ,

Ck(f) = Ak(f)
J = [1− Fk(f)]

J ,

0 ≤ Ck(f) < 1 , Ck(0) = 0

(A14)

The impulse response filter is, for J ≥ 2,

h1 = c1 ,

hk = ck ∗ (δ − ck−1) ∗ . . . ∗ (δ − c1) , k = 2, 3, . . .

(A15)

with

dim{hk} = J

k∑
j=1

j(j + 1) + 1

= J
k(k + 1)(k + 2)

3
+ 1

∑
n

hk(n) = 0 (A16)

and

H1(f) = C1(f) ,

Hk(f) = Ck(f)[1− Ck(f)] . . . [1− C1(f)] ,

k = 2, 3, ...

0 ≤ Hk(f) < 1 , Hk(0) = 0

For J = 1, ck = δ − fk, and

h1 = δ − f1 ,

hk = (1− fk) ∗ fk−1 ∗ . . . ∗ f1 , k = 2, 3, . . .
(A17)

with

dim {hk} =
k(k + 2)(k + 3)

3
+ 1 ,∑

n

hk(n) = 0 ,
(A18)

Hk(f) = [1− Fk(f)]Fk−1(f) . . . F1(f)

0 < Hk(f) ≤ 1 , Hk(0) = 0

Finally, the last component is computed from

hK+1 = δ −
K∑

k=1

hk (A19)

and

dim {hK+1(n)} = dim {hK} =
K(K + 1)(K + 3)

3
+ 1 ,∑

n

hK+1)(n) = 1 ,

HK+1)(f) = 1−
K∑

k=1

Hk(f) ,

0 < HK+1(f) ≤ 1 , HK+1(0) = 1

(A20)

Equation A18 and Equation A20 show that the re-
maining low-frequency part of the signal, which may
be further decomposed, always remains in component
number K + 1.
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APPENDIX B. AVERAGE INSTANTA-
NEOUS FREQUENCY

We consider a complex signal (not necessarily ana-
lytic)

z(t) = x(t) + iy(t) = A(t)eiϕ(t) (B21)

where

A(t) =
[
x(t)2 + y(t)2

]1/2
ϕ(t) = arctan

{
y(t)

x(t)

} (B22)

The instantaneous frequency is given by the time
derivative of the phase function (Angelsen, 1981; Han
and van der Baan, 2013)

f̂(t) =
1

2π
ϕ′(t) =

1

2π

y′(t)x(t)− x′(t)y(t)

x(t)2 + y(t)2
(B23)

The derivative is an unstable operation, so Porsani
et al. (2019) used a local averaging technique to ob-
tain a more stable estimate.

Here we shall use the average frequency Angelsen
(1981)

f̄ =

∫∞
−∞ fSz(f)df∫∞
−∞ Sz(f)df

=
1

2π
Im{ρ′z(0)}

(B24)

where
ρz(k) =

Rz(k)

Rz(0)
(B25)

is the normalized autocorrelation function of the sig-
nal and Sz(f) is the power spectrum. It can be shown
that the average frequency is the average value of the
instantaneous frequency (Angelsen, 1981).

The average frequency is a constant computed for
the input signal. In order to obtain a time-varying av-
erage frequency, we consider data in a moving time-
window centered at t, and compute the average in-
stantaneous frequency (AIF) (Andrade et al., 2018).
In this window we compute a one-step prediction er-
ror operator (PEO), [1, −r(t)] using the Burg (1975)
algorithm. The data in the time-window may then
be represented by the inverse of the PEO, which is a
minimum-delay wavelet (|r(t)| < 1),

wt(n) = r(t)n , n = 0, 1, . . . (B26)

The autocorrelation function is

Rt(n) =


Rt(0)r(t)

n , n = 1, 2, . . .

Rt(0) =
1

1− |r(t)|2
, n = 0

Rt(0)r
∗(t)n , n = −1, ,−2, . . .

(B27)

where r∗(t) is the complex conjugate. We also need

the discrete time-derivative operator

∂

∂n
≈ 1

∆t


q(n) , n > 0

0 , n = 0

−q(n) , n < 0

(B28)

where

q(n) =


1

n
, n = 1, 3, . . .

− 1

n
, n = 2, 4, . . .

(B29)

Using equation B27 to B29 in equation B24 gives

f̄(t) =
1

2π∆t
Im

{ ∞∑
k=1

[r(t)nq(n)− r∗(t)nq(n)]

}

=
1

π∆t
Im

{ ∞∑
k=1

r(t)nq(n)

}

=
1

π∆t
Im

{
r(t)

1
− r(t)2

2
+

r(t)3

3
− . . .

}
.

(B30)

A standard Taylor-series expression gives the AIF

f̄(t) =
1

π∆t
Im {log [1 + r(t)]}

=
1

π∆t
arctan

{
Im[r(t)]

1 + Re[r(t)]

}
.

(B31)
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