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ABSTRACT. The improvement in the temporal resolution of seismograms is usually achieved by compressing,
or deconvolving, the seismic pulse. In this paper, I present a new method of filtering time series that shrinks the
positive or negative polarity band of a signal while expands its opposite polarity. The filtering method uses the
complex seismic trace to compute the instantaneous phase, which is shrunk around the positions of the local
maximum (or minimum) values corresponding to the reflections of the original signal. It calculates the real and
imaginary components afterward, thus representing the filtered signal. The method is applied trace-by-trace
and promotes a significant improvement in the temporal resolution of the seismograms, revealing in greater
detail the reflections and structures of the subsurface. Numerical examples with 2D stacked seismic lines (from
the Pelotas Basin, and from the mouth of the Amazon river), and 3D, from the F3Demo of the OpendTect
repository, llustrate the performance of the new method proposed here. The average amplitude spectra of the
filtered data reveal the presence of the high and low frequency contents in the filtered results.
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INTRODUCTION

Among geophysical methods, the seismic reflection
one is the most used in the exploration of hydrocar-
bons. It allows, like no other, obtaining an image of
the subsurface that clearly reflects the geology of the
sedimentary basins. Improving the quality of seismic
images and increasing the ability to identify and dis-
criminate the seismic reflectors is one of the biggest
challenges of the seismic reflection method. Aiming
to improve the resolution, quality and fidelity of seis-
mic imaging, new methods of processing and filtering
seismic data are being continuously developed.

In seismic oil exploration, particularly in the study
of reservoirs, deconvolution is an important step of
seismic processing, applied to improve temporal reso-
lution of traces, allowing better top and bottom iden-
tification of thinner layers and thus better definition
of subsurface geology. When used for this purpose,
it is called wavelet or spiking deconvolution (Trei-
tel and Robinson, 1966; Robinson, 1967; Berkhout,
1977; Wiggins, 1978; Robinson and Treitel, 1980; Ul-
rych and Walker, 1982; Robinson and Osman, 1996).
Wavelet deconvolution aims to compress the wavelet
shape in order to recover the reflectivity function or
impulse response of the medium. In the last seven

decades, several papers on deconvolution and wavelet
estimation have been published in Geophysics liter-
ature. Most often the authors focus on and try to
solve problems related to the wavelet phase charac-
ter (Clarke, 1968; Eisner and Hampson, 1990; Ulrych
and Treitel, 1991; Lazear, 1993; Leinbach, 1995; Ursin
et al., 1996; Porsani and Ursin, 1998, 2000; Ursin and
Porsani, 2000; Sacchi and Ulrych, 2000; Misra and
Sacchi, 2007; Lü and Wang, 2007; van der Baan, 2008;
Misra and Chopra, 2010; Ledesma and Porsani, 2013)

The Wiener spiking deconvolution filter has been
developed and applied for seismic data processing
(Robinson, 1957; Robinson and Treitel, 1980; Lein-
bach, 1995; Yilmaz, 2001), with the assumptions
that the reflectivity series have the statistical prop-
erties of random white noise and the wavelet is
minimum-phase. The ability of this filter to com-
press the seismic wavelet in time, despite these ques-
tionable assumptions, is responsible for the popularity
of the Wiener spiking deconvolution technique in the
petroleum industry. It is well known that minimum-
phase seismic deconvolution performs poorly when
the seismic pulse is mixed phase (Robinson, 1967;
Robinson and Treitel, 1980; Leinbach, 1995; Lang,
1998; Yilmaz, 2001)
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Several alternative approaches have been pro-
posed to bypass the minimum-phase restriction of
the conventional Wiener spiking filter. Ziolkowski
and Slob (1991) discuss the use of polynomial fac-
torization to perform deconvolution. They conclude
that it is impossible to identify and extract the true
source signature from measured seismic data with-
out using assumptions about the statistical proper-
ties of the impulse response of the earth. Ulrych
et al. (1995) presented two different methods for sta-
tistical wavelet estimation. The first, based on cep-
stral stacking and homomorphic decomposition, does
not demand any assumption concerning the statisti-
cal properties of the reflectivity. The second method
uses a global optimization scheme with the constraint
that the reflectivity is a non-Gaussian, stationary,
and statistically independent random process. Por-
sani and Ursin (1998, 2000) presented a mixed-phase
deconvolution method, by using the solution of Yule-
Walker equations to estimate the polynomial roots
associated with the minimum-phase wavelet and then
obtained mixed-phase filters using all-pass operators.
Ledesma and Porsani (2013) uses the roots of these
polynomials to obtain an optimum inverse filter via
genetic algorithm. Misra and Sacchi (2007) and Misra
and Chopra (2010) deconvolve the data with a stan-
dard spiking deconvolution filter. From the filtered,
whitened data, they estimate an all-pass phase filter,
which is then applied to the whitened data.

In this paper I present a new approach to increase
the temporal and spatial resolution of the seismic
data, which is based on the shrinkage of the instanta-
neous phase of the complex seismograms (Taner et al.,
1979).

THE PHASE-SHRINKAGE FILTERING
METHOD

Let D(t) represent the complex seismic trace (Taner
et al., 1979),

D(t) = d(t) + iH{d(t)}, (1)

where, d(t) is the real seismic trace and H{.} denotes
the Hilbert transform,

H{d(t)} = d̃(t) =
1

π

∫ ∞

−∞

d(τ)

t− τ
dτ. (2)

The real and imaginary parts of equation 1 are equal
to,

d(t) = A(t) cos θ(t), (3)

d̃(t) = A(t) sin θ(t) (4)

where A(t) represent a time-dependent amplitude,
“instantaneous amplitude”, and θ(t) is the time-
dependent phase, “instantaneous phase”, (Bracewell,

1965),

A(t) =

√
d(t)2 + d̃(t)2, (5)

θ(t) = arctan

[
d̃(t)

d(t)

]
. (6)

The instantaneous phase is responsible for the shape
of the signal and, by shrinking the phase, it is possi-
ble to squeeze in time the shape of the reflection. The
idea is to shrink the phase around the local maximum,
or local minimum, values of the signal, such that the
wavelets corresponding to the reflections could occur
in a short time interval. That may be done by using
the following equation, adapted from the very fast
simulated annealing method (Sen and Stoffa, 1995),

θξ(t) = π sgn[θ(ξ, t)]T

(1 + 1

T

) |θ(ξ,t)|
π

− 1

 . (7)

Here the parameter T , (T < 1), controls the degree
of the phase-shrinkage. The symbol ξ, assumes val-
ues equal to {+1,−1}, according to the positive or
negative polarity of the original signal, chosen to be
shrunk. sgn[.] is the function that collects the sign of
the instantaneous phase of the complex signal. The
variable θ(ξ, t), [−π ≤ θ(ξ, t) ≤ π], is the instanta-
neous phase which depends on the ξ value,

θ(ξ, t) = ξ arctan

[
ξ d̃(t)

−ξ d(t)

]
. (8)

The new complex and filtered seismic trace is,

Dξ(t) = dξ(t) + i d̃ξ(t), (9)

where its real and imaginary components are given
by,

dξ(t) = A(t)[−ξ cos θξ(t)], (10)

d̃ξ(t) = A(t) sin θξ(t). (11)

Both the instantaneous amplitudes, A(t), of the fil-
tered, and the original complex seismic traces are the
same.

Here are the Fortran steps of the proposed phase-
shrinkage filtering method:

xi = 1. ! or -1. to shrinkage of the minima values
T = 0.01

pi = acos(-1.)
W = 1. + 1./T

call cmplx_trace(ns,d,cx) ! Complex trace, cx
Amp = abs(cx) !Eq.(5)
pha = xi*atan2(xi*aimag(cx),-xi*real(cx)) !Eq.(8)

do i=1,ns ! loop over the time samples
signal=sign(1.,pha(i))
pha_mod(i)=pi*signal*T*(W**abs(pha(i)/pi)-1.) !Eq.(7)
filt_c(i)=Amp(i)*(-xi*cos(pha_mod(i))) !Eq.(10)
filt_s(i)=Amp(i)*sin(pha_mod(i)) !Eq.(11)

enddo
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Figure 1 illustrates the effect of the magnitude of
the T parameter in the phase-shrinkage method, by
using a complex cosenosoid function. The real and
imaginary parts of the complex signal are shown in
(a) and (b), respectively. The phase computed us-
ing equation 8, for ξ = +1, is shown in (c). The
phase-shrinkage for T = {10−9, 10−6, 10−2, 10−1, 1}
is shown from (d) to (h). The shrinkage may be ob-
served more effectively for smaller values of T.

Figure 1: The phase shrinkage for different values of
the T parameter. The real and imaginary parts of a
cosenosoid complex signal are shown in (a) and (b),
respectively. The phase computed using equation 8,
for ξ = +1, is shown in (c). The effect in the phase
shrinkage for different values of the T parameter is
shown from (d) to (h).

Figure 2 illustrates the results obtained by using
equations 7 to 11, when associated with the phase-
shrinkage of the local maxima (ξ = +1) of the original
signal. The parameter T was set as T = 0.00001. A
cosenosoid function is represented in (a) and its nor-
malized instantaneous phase, associated to equation
8, in (b). The shrunk phase computed by using equa-
tion 7, with normalized values, is shown in (c), and
the real and imaginary components of the new com-
plex signal are represented in (d) and (e), respectively.
The real component, (d), shows the time-squeezing of
the band of positive values of the input signal, at the
local maxima, and the expansion of the negative ones,
around the local minima. In the imaginary compo-
nent, (e), only the shrinkage of the positive polarity
of the input signal is present. The instantaneous am-
plitude, equal to the input data and the filtered ones,
is shown in (f).

Figure 3 illustrates the results obtained by using

equations 7 to 11, associated with the phase-shrinkage
of the local minima (ξ = −1) of the original signal.
The normalized instantaneous phase, associated with
equation 8, is shown in (b). The shrunk phase com-
puted by using equation 7, with normalized values, is
shown in (c). The real component of the new com-
plex signal is represented in (d), where the negative
polarity of the input signal was shrunk while the pos-
itive one was expanded. The imaginary component,
(e), shows the contraction of the negative portion of
the signal, corresponding to the local minima of the
input signal.

Figure 2: Shrinkage of the positive polarity of the sig-
nal. A cosenosoid function is represented in (a). The
instantaneous phase computed by using equation 8 is
shown in (b). The shrinkage phase is shown in (c),
and the real and imaginary components of the new
complex signal are represented in (d) and (e), respec-
tively. The instantaneous amplitude is shown in (f).

Figure 3: Shrinkage of the negative polarity of the
signal. A cosenosoid function is represented in (a)
and its instantaneous phase, computed with equation
8, is shown in (b). The shrinkage phase is shown
in (c). The real component of the filtered signal is
shown in (d). The negative polarity of the input sig-
nal was shrunk while the positive one was expanded.
The imaginary component, (e), shows the contraction
of the negative portions of the signal, corresponding
to the local minima of the input signal. The instan-
taneous amplitude is shown in (f).
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Figures 4 and 5 show the shrinkage of the pos-
itive polarity (ξ = +1) of a real seismic trace of
post-stacked data, by using different values of T.
The real seismic trace and its Hilbert transform are
shown in (a) and (b), and the instantaneous am-
plitude in (i). From (c) to (h) of Figure 4 the
real components of the filtered data are shown as-
sociated with T=(10−7, 10−5, 10−3, 10−2, 10−1, 1), re-
spectively. The effect of the smaller values of the
T parameter on the shrinkage of the band of po-
larity may be observed, corresponding to the maxi-
mum local values of the original seismic trace. Simi-
lar results are observed in the imaginary components
shown from (c) to (h) of Figure 5.

Figure 4: Shrinkage of the positive polarity of a seis-
mic trace, by using different values of the parame-
ter T. A real seismic trace is shown in (a) and its
Hilbert transform in (b). The real components of
the filtered data are shown from (c) to (h) by us-
ing T=(10−7, 10−5, 10−3, 10−2, 10−1, 1), respectively.
The instantaneous amplitude is shown in (h).

Figure 5: Shrinkage of the positive polarity of a seis-
mic trace, by using different values of the parame-
ter T. A real seismic trace is shown in (a) and its
Hilbert transform in (b). The imaginary components
of the filtered data are shown from (c) to (h) by us-
ing T=(10−7, 10−5, 10−3, 10−2, 10−1, 1), respectively.
The instantaneous amplitude is shown in (h).

Figures 6 and 7 show the shrinkage of the
negative polarity (ξ = −1) of the real seismic
trace, by using different values of T. The real seis-
mic trace, its Hilbert transform, and the instan-
taneous amplitude are shown in (a), (b), and (i).
From (c) to (h) of Figure 6 are shown the real
components of the filtered data are shown asso-
ciated with T=(10−7, 10−5, 10−3, 10−2, 10−1, 1), re-
spectively. The effect of the smaller values of the T
parameter on the shrinkage of the band of polarity
may be observed, corresponding to the minimum local
values of the original seismic trace. Similar results are
observed in the imaginary components shown from (c)
to (k) in Figure 7.

Figure 6: Shrinkage of the negative polarity of a seis-
mic trace, by using different values of the parame-
ter T. A real seismic trace is shown in (a) and its
Hilbert transform in (b). The real components of
the filtered data are shown from (c) to (h) by us-
ing T=(10−7, 10−5, 10−3, 10−2, 10−1, 1), respectively.
The instantaneous amplitude is shown in (h).

Figure 7: Shrinkage of the negative polarity of a seis-
mic trace, by using different values of the parame-
ter T. A real seismic trace is shown in (a) and its
Hilbert transform in (b). The imaginary components
of the filtered data are shown from (c) to (h) by us-
ing T=(10−7, 10−5, 10−3, 10−2, 10−1, 1), respectively.
The instantaneous amplitude is shown in (h).
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NUMERICAL EXAMPLES

Numerical examples with stacked seismic - 2D from
the mouth of the Amazon river, and from the Pelotas
Basin - and, 3D from F3Demo, illustrate the obtained
results with the new method. In the following ex-
amples I chose to shrink the positive polarity (black
color) of the input seismic traces.

Figure 8 shows a post-stacked seismic line of the
mouth of the Amazon river. Figure 9 shows the real
part of the filtered data. The enhancement of the tem-
poral and spatial resolution is clearly seen in the im-
age. Figure 10 shows the filtered data corresponding
to the imaginary part of the complex traces. In this
case, as presented in Figures 1e and 2e, the interfaces
between layers are clearly displayed. The residue be-
tween the original data and the results depicted in
Figure 9 is shown in Figure 11. Figure 18 shows the
average amplitude spectra of the original and the fil-
tered data shown in Figure 9 (red line), in Figure 10
(black line), and in Figure 11 (green line). The en-
hancement of the high frequency content is noted in
the real component (Filtered c, red line) and in the
imaginary ones (Filtered s, black line). The enhance-
ment of the low frequency content associated to the
real component is also evident.

Figure 12 shows a post-stacked seismic line of the
Pelotas Basin. Figure 13 shows the real part of the
filtered data. The enhancement of both the tempo-
ral and spatial resolution is clearly seen in the image.
The sub-vertical faults and fractures are better dis-
played. Figure 14 shows the filtered data correspond-
ing to the imaginary part of the complex traces. Only
the interfaces between layers are displayed. Figure 19
shows the average amplitude spectra of the original,
and the filtered data shown in Figure 13 (red line),
and in Figure 14 (black line). The enhancement of
the high frequency content is noted in the real com-
ponent (Filtered c, red line) and in the imaginary ones
(Filtered s, black line). The enhancement of the low
frequency content associated to the real component is
also evident.

Marine seismic data for the F3 block, North Sea,
from the OpendTect repository, is shown in Figure 15
which shows 3D seismic data of the F3Demo. Figures
16 and 17 show the filtered data, and correspond to
the real and imaginary components, respectively, of
the phase-shrinkage filtering method. The enhance-
ment of the temporal and spatial resolution is clearly
shown in the faces of the volume. Figure 20 shows
the average amplitude spectra of the original and the
filtered data shown in Figure 16 (red line) and in Fig-
ure 17 (black line). The enhancement of the high
frequency content is evident in the real component
(Filtered c, red line) and in the imaginary ones (Fil-
tered s, black line). The enhancement of the low fre-
quency content associated to the real component is
also evident.

CONCLUSION

I present a new filtering method, which is quite effec-
tive in enhancing the temporal and spatial resolution
in seismic images. It is based on a single equation
only that is used for changing the instantaneous phase
of the complex seismic trace, thus preserving its in-
stantaneous amplitude. The method works trace-by-
trace, and its implementation and use are relatively
simple and computationally efficient. Its efficacy was
demonstrated by filtering 2D and 3D post-stacked
seismic data, and the numerical results show signifi-
cant improvement in the temporal and spatial resolu-
tion of seismic events in seismic images. The average
amplitude spectra associated with the three examples
show the capability of the proposed phase-shrinkage
filtering method to recover lower and higher frequency
contents corresponding to the reflected events in the
seismic data.
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Figure 8: A post-stacked seismic line of the mouth of the Amazon river.
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Figure 9: The filtered data corresponding to the real part of the complex seismic traces. The enhancement of
the temporal and spatial resolution is clearly seen in the image.
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Figure 10: The filtered data corresponding to the imaginary part of the complex seismic traces. The interfaces
between layers are clearly enhanced.
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Figure 11: The residue between the original data, (Fig. 8), and the filtered results depicted in Figure 9.
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Figure 12: A post-stacked seismic line of the Pelotas Basin.
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Figure 13: The real part of the filtered data. The enhancement of both the temporal and spatial resolution is
clearly seen in the image. The sub-vertical faults and fractures are better displayed.
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Figure 14: The filtered data corresponding to the imaginary part of the complex traces. The interfaces associ-
ated to the layers are enhanced.
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Figure 15: A 3D seismic data of the F3Demo.
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Figure 16: The filtered data correspond to the real component of the phase-shrinkage filtering method. The en-
hancement of the temporal and spatial resolution is clearly shown in the faces of the volume.
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Figure 17: The filtered data correspond to the imaginary component of the phase-shrinkage filtering method.
The enhancement of the temporal and spatial resolution is clearly shown in the faces of the volume.
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Figure 18: The average amplitude spectra of the original and the filtered data shown in Figure 9 (red line), in
Figure 10 (black line), and in Figure 11 (green line). The enhancement of the high frequency content is noted
in the real component (Filtered c, red line) and in the imaginary ones (Filtered s, black line). The enhance-
ment of low frequency content associated to the real component is also evident.
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Figure 19: The average amplitude spectra of the original, and the filtered data shown in Figure 13 (red line),
and in Figure 14 (black line). The enhancement of the high frequency content is noted in the real component
(Filtered c, red line) and in the imaginary ones (Filtered s, black line). The enhancement of the low frequency
content associated to the real component is also evident.
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Figure 20: The average amplitude spectra of the original and the filtered data shown in Figure 16 (red line)
and in Figure 17 (black line). The enhancement of the high frequency content is evident in the real component
(Filtered c, red line) and in the imaginary ones (Filtered s, black line). The enhancement of the low frequency
content associated to the real component is also evident.
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