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ABSTRACT. Geophysics, when applied to the study of groundwater, is commonly used in searching for rocks, 
structures or geological environments that can allow the extraction of water. It can also be used to estimate physical 
aquifer characteristics (porosity and permeability); to indicate water potability parameters, such as the degree of 
salinity or the presence of contamination by polluting chemicals; and also to give information on the contaminant 
transport and ecosystem sustainability. These applications are discussed here, and examples of the use of geophysics 
in the main geological environments of occurrence of groundwater are also presented. The objective of this article is 
to review the available methods and demonstrate the importance of the application of Geophysics in the groundwater 
study. 
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INTRODUCTION 
Water, indispensable for life, can be found in two 
natural sources: surface and underground. Surface 
water is found in rivers, lakes, streams, bays and 
oceans, while groundwater occurs in the geological 
layers below the Earth's surface. From the amount of 
fresh water that exists on the surface and in the 
subsurface to a depth of 1000 m, more than 95% is 
groundwater (Rebouças, 1980). 

The safe use of surface water as a source of 
domestic supply of a city requires a lot of care that 
involves good planning and administration, as well the 
control of water quality. This demands a lot of resources 
and reflects in a high price to be paid by the consumer 
of water. 

An alternative to the supply of water, more 
effective and less expensive, is to also use groundwater 
withdrawal of geological layers through wells. 

There are at least seven major reasons for the use 
of groundwater (Rebouças, 1980): 

● The water for the population and industries is 
presented free of pathogens, turbidity and color, 
eliminating the costly purification processes 
required by surface water. 

● The water is more protected from contaminants 
or pollution. 

● The water presents very large volumes as 
compared to the volumes stored in surface. 

● The water is difficult to get radiochemical 
contamination and of great strategic 
importance in the issue of national security, 
considering the different possibilities of atomic 
catastrophes or act of terrorism. 

● There is no great loss by evaporation, being 
little affected by drought problems. 

● At the level of public supply, allows installment 
of investments to the extent that the demand 
evolves. 

● It can constitute the main or supplementary 
source of domestic and industrial supplies. 

In the study of groundwater, the rocky 
subsurface materials can be classified as: Aquifers, 
aquicludes, and aquifuges. 

Aquifers are the subsurface materials provided 
with sufficient porosity and permeability to produce 
the necessary water supply. The permeability of the 
aquifer is typically higher than 10-2 darcy. 

http://dx.doi.org/10.22564/brjg.v40i5.2147
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The materials which do not transmit water at 
velocities sufficient to provide appropriate supply 
quantities are called aquicludes. Such materials 
have low permeability (less than 10-2 darcy). 

Materials that are not able to provide or absorb 
water, by not having interconnected voids, are 
classified as aquifuges. These materials have very low 
permeability or no permeability (less than 10-4 darcy), 
although they may contain a large number of pores. 

Basic concepts on groundwater can be found in 
De Viest (1969); Custodio and Llamas (1976); Freeze 
and Cherry (1979); Singhal and Gupta (1999); Alfaro 
et al. (2006); Feitosa et al. (2008); Manzione (2015); 
Woessner and Poeter (2020); Clutter et al (2022); and 
Fetter and Kreamer (2022). 

GROUNDWATER ENVIRONMENTS 
Groundwater occurs in two main types of geological 
environments: in the sedimentary basins which house 
large thicknesses of sediments and sedimentary rocks, 
and in the basement areas where igneous and 
metamorphic rocks outcrop or are covered by a small 
thickness of sediments (Figure 1). 

In sedimentary basins, groundwater can be 
found in aquifers consisting of unconsolidated 
sediments (sands, gravels) or sedimentary rocks 
(sandstones, limestones, dolomites), occurring in the 
form of extensive layers or lenses, or even in the form 
of paleochannels. 

In the basement areas, the major amount of 
water is normally found in fractures that cut intrusive 
rocks, basaltic flows or metamorphic rocks. Water can 
also be extracted from zones of alteration of these 
rocks or from paleovalleys embedded in them. 

In the sedimentary environment, groundwater 
is stored in the pores of rocks. Therefore, higher 
porosity rocks and sediments are those with the 
greatest potential for the extraction of water for 
supply. However, the existence of high porosity does 
not necessarily imply that the rock can be exploited 
as an aquifer. It is necessary, in addition to the large 
amount of water, that it can easily be removed from 
the rock. 

The ability of a rock or sediment to easily yield 
the water easily is measured by its hydraulic 
conductivity or its permeability. Thus, there are rocks 
and sediments that have high porosity (contain large 
amount of water) and high permeability (easily yield 
the water) as unconsolidated sands and sandstones; 
but there are also rocks and sediments that have high 
porosity and low permeability (yield the water with 
difficulty) as clays and shales. Table 1 shows porosity 
values for various types of rocks and sediments. 

 
Figure 1: Geological environments of groundwater 
occurrence. 
 
The hydraulic conductivity and the permeability are 
defined respectively by: 
  

𝑲𝑲 = 𝜿𝜿 𝒅𝒅𝒅𝒅
𝝂𝝂

           κ = C d 2 , (1) 
 

where 𝐾𝐾 is the hydraulic conductivity, 𝜿𝜿 the 
permeability; d the fluid density; g the gravity; and  𝝂𝝂 
the fluid viscosity. 

The permeability described by the expression on 
the right is a function of the medium, where is a constant 
which depends on the roundness and arrangement of 
the grains and the rock compaction, and the average 
grain diameter in the rock. The speed with which a fluid 
runs through a medium depends on the hydraulic 
conductivity and the hydraulic gradient, being expressed 
by the negative of the product of these two quantities. 
Table 2 shows values of permeability and hydraulic 
conductivity for some types of rocks and sediments. 

Rocks with permeability values below 10-4 darcy 
are considered impermeable. Permeability values are 
considered low between 10-4 and 1 darcy; medium, 
between 1 and 102 darcy; high, between 102 and 104 
darcy; and very high, above 104 darcy (Benedini, 1976). 

Hydraulic transmissivity (m2/s) is the amount of 
water that can be transmitted horizontally across the 
thickness of the aquifer. Its value is calculated by the 
expression 

𝑇𝑇 = 𝐾𝐾ℎ, (2) 
where 𝐾𝐾 is the hydraulic conductivity and h the 
thickness of the aquifer. 
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Table 1: Porosity of sediments and rocks (Freeze and Cherry, 1979). 

Material Porosity (%) Material Porosity (%) 

Gravel 25 - 40 Sandstone 5 - 30 

Sand 25 - 50 Limestone 0 - 20 

Silt 35 - 50 Dolomite 0 - 20 

Clay 40 - 70 Shale 0 - 10 

Fractured basalt 5 - 50 Fractured crystalline rock 0 - 10 

Karst limestone 5 - 50 Dense crystalline rock 0 - 5 

 
Table 2: Hydraulic conductivity (K) and permeability (κ) of rocks and sediments (Freeze and Cherry, 1979). 

Material K (m/s) κ (darcy) Material K (m/s) κ (darcy) 

Permeable basalt 10-7 – 10-2 10-2 - 103 Shale 10-13 - 10-9 10-8 - 10-4 

Fractured igneous and 
metamorphic rocks 10-8 - 10-4 10-3 - 10 Marine Clay 10-12 - 10-9 10-7 - 10-4 

Limestone and dolomite 
 

10-9 - 10-6 

 

10-4 - 10-1 

 

Silt 

 

10-9 - 10-5 

 

10-4 - 1 

Sandstone 10-10 - 10-6 10-5 - 10-1 Sand 10-6 – 10-2 10-1 - 103 

Unfractured 
metamorphic and 

igneous rocks 
10-14 - 10-10 10-9 - 10-5 Gravel 10-3 - 1 102 - 105 

 

GEOPHYSICAL RESPONSE 
The success of Applied Geophysics as detection tool 
depends on several factors, among which stands out 
the contrast between the physical properties of the 
object being investigated and the environment that 
surrounds it. Thus, an object with density greater 
than 5 g/cm3, for example, may have a good chance 
of being detected within the geological environment 
where the rocks have density values rarely 
exceeding 3 g/cm3. Although the contrast of physical 
property is very important, another factor that 
should be highlighted is the concentration of the 
object within the volume of material sampled during 
the geophysical measurements. For this reason, 
despite gold having very high density and electrical 
conductivity compared to the host rock, geophysical 
measurements do not allow directly detecting this 
mineral because its concentration in rocks is 
generally less than 50 ppm. The concentration thus 
controls the contrast in physical properties in the 
sampled volume. The lower the concentration, the 

lower the contrast, independent of the absolute 
value of the physical property of the object of 
research and the lower the contrast, the more 
difficult becomes the direct detection through 
geophysical measurements. For a contrast to be 
perceived by Geophysics, the concentration should 
not be less than 1% (10,000 ppm). 

The presence of water in the pores of the rock 
causes changes in some of its physical properties, like, 
for example, the electrical conductivity and the density. 
The presence of water also affects the speed at which 
seismic waves and electromagnetic waves propagate in 
the rocks. Still, the groundwater prospecting is an 
indirect application, that is, it is not the physical 
properties of water that are directly researched and 
that respond to the geophysical methods. Table 3 shows 
physical property values and the propagation velocity 
of seismic waves for various types of rocks and 
sediments. 

The theory of geophysical methods employed in 
the exploration of groundwater is described by Astier 
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(1975); Orellana (1982); Telford et al. (1990); Luiz and 
Silva (1995); Kearey et al. (2009); and Reynolds (2011). 

Groundwater prospecting with geophysical 
methods allows seeking rocks, structures or geologic 
environments that may allow water extraction. 
Geophysical methods can also be used to: 

a) Estimate the physical characteristics of 
aquifers, as porosity, permeability, and 
transmissivity (Benedini, 1976; Griffiths, 1976; 
Kelly, 1977; Kosinski and Kelly, 1981; Niwas 
and Singhal, 1981; Ponzini et al., 1984; 
Marinho and Lima, 1997; Yadav and Abolfazli, 
1998; Hagrey and Müller, 2000; Lima and 
Niwas, 2000; Niwas and Lima, 2003; Lu and 
Sato, 2007; Soupios et al., 2007; Nascimento 
and Lima, 2013; Neves and Luiz, 2015; Díaz-
Curiel et al., 2016; Omeje et al., 2022). 

b) Specify some of the parameters for water 
quality as, for example, the degree of salinity 
(Hagrey and Müller, 2000; Benkabbour et al., 
2004, Dhakate et al., 2015; Hasan et al., 2019; 
Shah et al., 2022) or contamination by chemical 
and organic pollutants (Buselli et al., 1990; 
Costa and Ferlin, 1992; Costa et al., 1995; 
Benson et al., 1997; Sauck et al., 1998; Aquino 
and Botelho, 2001; Nunes and Luiz, 2006; 
Laureano and Shiraiwa, 2008; Baessa et al., 
2010; Bahia et al., 2011; Cunha and Shiraiwa, 
2011; Naik, 2017; Marques et al., 2018; Guireli 
Netto et al., 2020). 

Geophysical methods can also provide 
information about the direction of groundwater flow 
(Schiavone and Quarto, 1984; Carvalho Junior, 1997; 
Braz et al., 2000; Neves, 2002; Neves and Luiz, 2003; 
Bai et al., 2021; Kukemilks and Wagner, 2021) and the 
volume of water present in aquifers (West and Sumner, 
1972; Van Overmeeren et al., 1997; Legchenko et al., 
2018; Lähivaara et al., 2019). 

While electrical (resistivity tomography - ERT 
and soundings - VES) and electromagnetic methods 
(time domain – TDEM and frequency domain - FDEM) 
are the most widely used in studies of groundwater, 
seismic methods and gravimetry can also provide good 
results, as shown in Eaton and Watkins (1970); Hobson 
(1970); West and Sumner (1972); Zehner (1973); Van 
Overmeeren (1975); Van Nostrand (1976); Carmichael 
and Henry, Jr. (1977); Stewart (1980); Ali and Whiteley 
(1981); Van Overmeeren (1981); Kobayashi (1982); 
Allis and Hunt (1986); Haeni (1986); Steeples and 
Miller (1990); Holman et al. (1999); Murty and 
Raghavan (2002); Mota and Monteiro dos Santos 
(2006); Adeoti et al. (2012); Azaiez et al. (2021). 

The main applications of geophysics in the 
groundwater exploration and the recommended 
methods in these applications are: 

● Determining the limits and thickness of a 
sedimentary basin - resistivity, seismic 
(refraction and reflection), gravimetric, and 
magnetic methods. 

● Determination of the lateral extent and 
thickness of layers - resistivity and seismic 
(refraction and reflection) methods. 

● Location of palaeochannels and paleovalleys - 
resistivity, induced polarization, ground 
penetrating radar (GPR), seismic (refraction 
and reflection), and gravimetric methods. 

● Location of fractures - inductive 
electromagnetic methods (EM). 

● Determination of the top of the water table - 
resistivity, GPR, and seismic refraction 
methods. 

● Determination of the contact between 
freshwater and saltwater - resistivity, 
inductive electromagnetic, and GPR methods. 

● Study of the movement (flow direction) of 
water - spontaneous potential method. 

● Study of the variation in permeability - 
induced polarization (IP) method. 

● Estimates of porosity - resistivity, seismic 
refraction, and radiometric methods (in 
measurements inside wells and at the surface 
of the ground for the first two methods and 
inside wells in the case of radiometric). 

● Estimates of permeability - resistivity method 
(in measurements inside wells and at the 
surface of the ground). 

● Estimates of the content of dissolved solids 
(salts) - resistivity method (in measurements 
inside wells). 

Despite Geophysics providing a lot of information 
on groundwater prospecting, worldwide, 96% of 
spending on geophysical exploration between 1976 and 
1990 were made in the demand for oil, while from the 
remaining 4%, 49% was devoted to mineral 
prospecting, 4% for groundwater prospecting, 18% to 
civil engineering, and 1% to environmental protection 
(Luiz and Silva, 1995). The remaining 28% was spent 
on research (15%), Oceanography (9%) and geothermal 
prospecting (4%) (Luiz and Silva, 1995). Currently, it 
seems that these percentages were little changed.  

Next, it is presented examples of applications of 
Geophysics in the groundwater prospection. 
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POROSITY, TRANSMISSIVITY AND 
HYDRAULIC CONDUCTIVITY 
ESTIMATES 
The porosity of the rocks can be estimated from electrical 
resistivity values through the empirical relationship 
called Archie-Winsauer Formula. In the case of 
saturated, non-argillaceous formations, this formula is 
 

𝜌𝜌𝑟𝑟 = 𝜌𝜌𝑎𝑎𝑎𝑎∅−𝑚𝑚 (3) 
 
where r is the resistivity of the rock saturated with 
water; a the resistivity of the water; ∅ the rock porosity; 
and a, m are empirical parameters respectively related 
to the texture of the rock and the cementing. The 
parameter a ranges from 0.6 (sedimentary rocks) to 3.5 
(tuffs and volcanic lavas); while the parameter m 
ranges from 1.3, for weakly consolidated sediments, to 
2.3, for rocks with well cemented grains (Keller, 1970). 

Some typical values of a and m are (Keller, 1970): 
a = 0.88 and m = 1.37 for detrital rocks weakly 
cemented with porosity ranging from 25 % to 45 % and 
tertiary age (sands, sandstones, and some limestones); 
a = 0.62 and m = 1.72 for moderately cemented 
sedimentary rocks, with porosity ranging from 8 % to 
35 % and generally mesozoic age (sandstones and 
limestones); a = 0.62 and m = 1.95  

for well cemented sedimentary rocks with a 
porosity between 5 % and 25 % and age usually 
paleozoic; a = 3.5 and m = 1.44 for highly porous 
volcanic rocks (20 % to 80 %); a = 1.4 and m = 1.58 for 
rocks with less than 4 % porosity (igneous rocks and 
metamorphosed sedimentary rocks). 

As a first approximation, using a = 1 and m = 2, it is 
produced small errors in the estimates when porosity is 
between 10 % and 30 % (Keller and Frischknecht, 1966). 

Porosity can also be estimated from the velocity of 
the waves obtained in seismic refraction surveys. In 
consolidated, saturated, non-argillaceous formations, it 
is useful the formula given by Wyllie (Astier, 1975): 
 

1
𝑉𝑉 =

∅
𝑉𝑉𝑎𝑎

+
(1 − ∅)
𝑉𝑉𝑚𝑚

 (4) 

 
where V is the velocity in the medium; ∅ the porosity; Va 
the velocity in water (1450 m/s); and Vm the speed in the 
rock matrix. According Astier (1975), satisfactory results 
are generally achieved using the following values for Vm: 
6000 m/s in sandstones, 6400 m/s in limestones and 7000 
m/s in dolomites. On the other hand, in consolidated, 
saturated, argillaceous formations, the expression 
becomes (Astier, 1975): 
 

1
𝑉𝑉

=
𝑃𝑃𝑎𝑎𝑟𝑟𝑎𝑎
𝑉𝑉𝑎𝑎𝑟𝑟𝑎𝑎

+
∅
𝑉𝑉𝑎𝑎

+
1 − 𝑃𝑃𝑎𝑎𝑟𝑟𝑎𝑎 − ∅

𝑉𝑉𝑚𝑚
 (5) 

 

where Parg is the percentage of clay in the rock and 
Varg the velocity in the clay(about 2000 m/s). 

To estimate the hydraulic transmissivity, it is 
necessary to combine the expression (2), which defines 
the transmissivity, with the defining expression of the 
transverse electrical resistance (R) of a layer given by 
(Orellana, 1982): 
 

𝑅𝑅 = 𝜌𝜌ℎ, (6) 
 

where 𝜌𝜌 is the electrical resistivity of the layer and h 
its thickness. From this combination, it results 
 

𝑇𝑇 = 𝐾𝐾
𝑅𝑅
𝜌𝜌

 (7) 

 

If in a given area 𝐾𝐾/𝜌𝜌 in an aquifer remains 
constant, representing the logarithm of the transmissivity 
(obtained in wells in the area) versus the logarithm of the 
transverse resistance calculated from vertical electrical 
soundings (made close to the wells where the  
transmissivity values were obtained) establishes a linear 
relationship between transmissivity and transverse 
resistance. Thus, when performing electrical soundings 
elsewhere in the area, it is possible to estimate the 
transmissivity and hydraulic conductivity at these points, 
without the need to drill a well. Moreover, it is possible to 
identify the areas of greatest transmissivity of the aquifer 
to indicate locations of drilling. 

MAPPING OF AQUIFER LAYERS IN A 
SEDIMENTARY BASIN 
Figure 2 shows a geoelectric section constructed from the 
lateral correlation of models arising from the 
interpretation of Vertical Electrical Soundings (VES) 
conducted with the resistivity method. The geophysical 
survey was conducted in the town of Bom Jesus do 
Tocantins, southern of the state of Pará, Brazil. On the 
section, there is an indication of two possible aquifer 
layers: a shallower (layer 4) one, starting at a depth of 20 
m, and a deeper (layer 6), with the top deeper than 100 
m. The indication of the aquifer layers was based on the 
correlation of the section with additional information 
obtained in a near shallow well and field observations. 

Another example of the mapping of potential 
aquifer layers in a sedimentary basin is shown in 
Figure 3. The figure presents the results of gravimetric 
and seismic refraction data obtained on the same 
profile. The survey was conducted at the Indian Wells  
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Figure 2: Geoelectric section constructed from models resulting from the interpretation of VES conducted in Bom 
Jesus do Tocantins, southern Pará, Brazil. The layers 4 and 6 were indicated as aquifers. The values in the 
columns represent the resistivity in ohm.m (adapted from Alves and Luiz, 2001). 
 

 

Figure 3: Interpretative models from gravimetric and seismic refraction measurements obtained on profile 
conducted in Indian Wells Valley, California, USA (Eaton and Watkins, 1970). 
 
Valley, California, USA. The upper part of the figure 
shows the measured values of the gravity field (solid 
line) and the gravity values calculated (points) for the 
subsurface model shown in the middle part of the 
figure. At the bottom of the figure, it appears the 
subsurface model obtained from the seismic refraction 
data. It is observed in the seismic model that the 
sedimentary layers and the basement are 
characterized by the velocity of propagation values 
interpreted for the seismic wave. We note, comparing 

the two models, that they are very similar, although the 
model obtained from gravimetry is less detailed than 
the seismic model, because it can only discriminate the 
basement and a package of sediments resting on it, 
without distinguishing the different sediment layers. 

More examples of the application of geophysical 
mapping of aquifer layers can be found in Lima (1990); 
Souza and Luiz (1994); Harari (1996); Barbosa Junior 
and Alves (2013); Mendes et al. (2014); Nazifi and 
Lambon (2021); and Fadakinte (2022). 
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LOCATION OF FRACTURES IN 
BASEMENT 
In regions where there is little thickness of sedimentary 
material, the amount of groundwater which can be 
removed from the subsoil is usually very low. Appreciable 
quantities of groundwater may, however, be drawn from 
fractures of basement rocks that lie just below the 
sedimentary material.  

These fractures have been successfully located by 
applying the inductive electromagnetic methods. Figure 
4 illustrates this kind of application. The survey was 
conducted along streets in the town of Canaã dos 
Carajás, south of the state of Pará, Brazil, with 
measurements taken at intervals of 50 m. It is shown in 
the figure measurements of the in-phase and quadrature 
components made with the Slingram horizontal loop 
(HLEM) system Max-Min for three frequencies (110 Hz, 
880 Hz and 3250 Hz). The position of the fractures is 
indicated by arrows in the figure. 

Other examples of application of geophysics in the 
basement environment are described by Lima and 
Medeiros (1988); Medeiros and Lima (1990, 1991); 
Cavalcante et al. (2001); Souza Filho et al. (2006); Lima 
(2010); Oliveira (2011); Sousa and Luiz (2012); 
Nascimento et al. (2013); Chandra et al. (2019); and 
Deep et al. (2021). 

FRESHWATER-SALTWATER 
INTERFACE IN COASTAL AQUIFERS 
On the seacoast area, saltwater infiltrates into the 
continent, positioned beneath the fresh groundwater. 
The knowledge of the depth of the interface that 
separates these two waters is important to indicate the 
maximum depth that a catchment well should reach to 
not attain the salt water. This is a problem that has been 
satisfactorily solved with the aid of electrical resistivity 
and inductive electromagnetic methods, and the GPR. In 
Figure 5, it is shown the application of the electrical 
resistivity method by VES to delineate the surface that 
separates saltwater from freshwater in Ilha Comprida, 
municipality of Iguape, state of São Paulo, Brazil. On the 
left the figure shows the results obtained in 3 VES and 
on the right the location of the VES and the interpreted 
saltwater-freshwater contact. 

Figure 6 shows a resistivity section where it was 
possible to identify the freshwater-saltwater interface. 
The interface was estimated using the Archie-Winsauer 
Formula. The section was obtained in a resistivity profile 
held in the Village of Algodoal, northeastern Pará, Brazil. 

Other works involving the mapping of the 
freshwater-saltwater interface are presented by Arora 
and Bose (1981); Lima and Macedo (1983); Cavalcanti 
Neto (1986); Goldman et al. (1991); Silva (1991); Aquino 
et al. (1998a, b); Pereira et al. (2003); Land et al. (2004); 
De Mio et al. (2005); Dias et al. (2007); Hasan et al. 
(2017); Correia et al. (2019); and Hasan et al. (2019). 

SEPARATION OF FRESHWATER 
AQUIFER FROM SALINE AQUIFER 
The resistivity values obtained on aquifers with brackish 
water and on clayed aquifers with freshwater are very 
similar. Both the brackish water and the presence of clay 
cause the resistivity decreases. To separate these effects, 
Roy and Elliott (1980) used the method of induced 
polarization, which normally produces high values in the 
presence of clay and low in the presence of brackish 
water. Figure 7 illustrates this application of the method 
of induced polarization. In the figure, a comparison is 
made between the measurements obtained in the VES 
with the methods of resistivity and induced polarization. 
In Figure 7 (a), it is shown VES performed on an aquifer 
with brackish water: the resistivity is less than the 
threshold 100 Ω.m and the induced polarization less 
than the limit of 3 ms. In Figure 7 (b), the VES were 
performed on a clay aquifer with freshwater: the 
resistivity is close to the limit of 100 Ω.m and the induced 
polarization above the threshold value of 3 ms. 

IDENTIFICATION OF SANDY ZONES 
IN A WELL 
During the drilling of a well for groundwater extraction, 
samples of the material being cut are collected. The 
purpose of this sampling is to identify the most 
promising zones for the exploitation of water (usually the 
sandy zones in a sedimentary basin). Often, the limits of 
the sandy zones are difficult to be determined based only 
on the sampled material; furthermore, the clay 
intercalations in the sandy zones can also be difficult to 
recognize. These problems can be easily solved by 
logging the well with geophysical measurements. The 
demarcation of the boundaries of the sandy zones 
supplied by the geophysical logging helps in the accurate 
placement of filters for water catchment. 

Basics of well profiling (or well logging) applied to 
groundwater can be found in Keys (1970, 1989) and Nery 
(2008, 2013). 
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Figure 4: Mapping of fractures with the electromagnetic Slingram HLEM system in Canaã dos Carajás, south of 
the state of Pará. The position of the fractures are marked by arrows. The solid lines represent the in-phase 
component, while the dashed lines represent the quadrature component (adapted from Alves and Luiz, 2001). 
 
 

 

Figure 5: Determination of the freshwater-saltwater interface in Ilha Comprida, municipality of Iguape, São 
Paulo, Brazil (adapted from Davino et al., 1980). 
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Figure 6: Resistivity section conducted in Algodoal, northeastern Pará, Brazil. The interface separating 
freshwater from saltwater is represented by the dashed line (adapted from Luiz et al., 2001). 
 

 

Figure 7: Comparison between VES measurements obtained with the methods of resistivity and induced 
polarization to separate aquifers with brackish water from clay aquifers with freshwater (Roy and Elliott, 1980). 
 

In Figure 8, it is represented part of the data 
collected during the geophysical profiling of a well 
drilled in the metropolitan region of Belém, state of 
Pará, Brazil. In the well, it was "run" electrical 
resistance (ER), spontaneous potential (SP), and 
Gamma Ray profiles. The correlation between the 
three profiles allowed the identification of three sandy 
zones, which are potential aquifers for water 
extraction. These zones are highlighted by the 
symbols I, II and III. The position of the zones was 
identified by associating low values of the gamma ray 

counts (cps - counts per second) with high values of 
electrical resistance and low values of spontaneous 
potential. This association characterizes the presence 
of sandy zones, as opposed to the high values of 
gamma rays, low values of electrical resistance and 
high values of spontaneous potential that are 
produced by clay zones. 

The characterization of sandy zones in wells and 
the lateral correlation for defining aquifer layers is 
presented by Lima and Ribeiro (1982); Keys (1989); 
Souza and Luiz (1994); and Freimann et al. (2014). 
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Figure 8: Logging of well drilled for groundwater extraction in a sedimentary basin environment. SP = 
spontaneous potential, ER = electrical resistance. The sandy areas are highlighted by the dashed lines with the 
symbols I, II and III. 
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