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ABSTRACT. This paper aims to verify if the seismic slowness log estimated through the supervised machine 
learning K-nearest neighbor (KNN) algorithm can be a feasible alternative to replace the sonic well log as input for 
the seismic well tie in a dataset from the Recôncavo Basin. The training and optimization of the regression were 
performed in a dataset composed of 17 well logs with petrophysical information of gamma-ray, deep and shallow 
resistivities, and the geological formation, e.g, Pojuca, Marfim, Maracangalha, Candeias, São Sebastião, Água 
Grande, and Sergi Formations. The metric to evaluate the regressions was the mean absolute error of the measured 
property and the prediction. The Holdout cross-validation technique was applied to avoid overfitting, and a well log 
was separated as a blind test to verify the prediction in an unknown dataset. Furthermore, synthetic seismic traces 
were generated from the slowness log and the prediction using the KNN. The comparison between them shows 
outstanding results in the visual analysis of the peaks and amplitudes of the main seismic events. In addition, the 
comparison between the seismic traces close to the synthetic seismic traces reveals a better correlation to the 
calculated traces using the slowness predicted by the KNN algorithm. 
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INTRODUCTION 
The slowness log, also known as compressional acoustic 
sonic log (t), is an important tool employed to predict 
petrophysical rock information, such as porosity, pore 
pressure, and permeability in oil and gas exploration in 
sedimentary basins with complex geological formations 
(Cranganu and Breaban, 2013). Furthermore, this 
information plays a crucial role in the seismic well tie 
activity, which provides means to identify horizons to 
correctly pick, estimate wavelets to perform inversions in 
the seismic data, analyze the amplitude versus offset, or 
for operations which involve geostatistical modelling in 
3D space (White and Simm, 2003; Simm and Bacon, 
2014; Bulhões et al., 2015). 

Supervised machine learning algorithms can be 
seen as a feasible solution when the logs are missing. 
Several works applied regression algorithms to predict 

petrophysical properties related to well log activities and 
core samples, such as resistivity, compressional and 
shear slowness, density, photoelectric, and neutron logs 
using linear regression, models based on trees, support 
vector machines, and artificial neural networks (Rolon et 
al., 2005, 2009; Cranganu and Breaban, 2013; 
Akinnikawe et al., 2018; Suleymanov et al., 2021). In this 
sense, the supervised machine learning K-nearest 
neighbor (KNN) technique is a simple but efficient 
algorithm that can be used to make classifications and 
regression tasks. This algorithm predicts a value by 
analyzing the weighted or uniform distance between 
the K samples closest to the input in an n-dimensional 
space in which n is equal to the variables available. 
According to Faceli et al. (2019), algorithms based on the 
distance of the closest neighbor are one of the most 
straightforward machine learning techniques. 
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In Recôncavo Basin, it is common the absence of the 
slowness property in the well logs to oil and gas 
exploration, mainly in the shallow portion of the basin, 
and old well logs, which turns challenging to develop the 
well tie seismic task with reliability. However, few works 
tried to estimate missing sonic logs (da Silva et al., 2014; 
Barbosa et al., 2021), and the Gardner relation (Gardner 
et al., 1974) is usually applied to estimate the 
compressional velocity log and generate a synthetic 
seismic trace. In this case, the KNN algorithm can be an 
alternative to estimate the compressional slowness log in 
a dataset where the sonic is unavailable, and its result can 
be employed in the synthetic seismic trace generation. 

This work aims to verify if the regressions obtained 
from the K-nearest neighbor algorithm of the slowness 
can be an appropriate way to replace the sonic log in the 
well seismic tie in Recôncavo basin using the gamma-
ray, deep and shallow resistivity logs as quantitative 
information, and the geological formation as qualitative 
information. This paper is organized into four main 
sections: the first one is called Dataset and the Study 
Area, which presents some characteristics of the geology 
of the dataset; the second, named Methodology, contains 
some aspects related to pre-processing, validation, 
regression algorithm, optimization, and the well tie 
performed; the third called Results and Discussions that 
presents the analysis performed in the blind well log; and 
finally the section Conclusions, which draws some 
remarks about this research. 

DATASET AND THE STUDY AREA 
The well logs used to perform the experiments are 
located in the Recôncavo basin, in the Northeastern 
Brazilian region, and have approximately 11,500 km². 
According to Milani and Davison (1988), this intra-
continental rift system was developed during the 
Cretaceous as a consequence of the breaking of Pangea. 

The Rift sequence was filled with fluvial-deltaic 
and lacustrine sediments represented by the Candeias, 
Marfim, Maracangalha, and Pojuca Formations, 
interbedded with a fan-delta system derived from the 
faulted border from the Salvador Formation. The rift’s 
final stage is marked by the spreading of the fluvial system 
from the São Sebastião Formation (Silva et al., 2007). 

The study area (Figure 1) is in the deepest part of 
the basin, with the prevalence of lacustrine rocks as 
pelagic shales, debrite and turbidite sandstones, with 
occasional deltaic and fluvial rocks in the uppermost 
well parts. 

The regression to obtain the slowness well log (also 
known as sonic) was performed using information from 
seventeen well logs in training and one borehole as a 
blind test (see Figure 1). The following measurements 
were used as input of the regressions: gamma-ray, deep 
and shallow induction resistivity, and a numerical label 
corresponding to the geological formation. 

METHODOLOGY 
The following workflow (Figure 2) summarizes the 
methodology applied to verify whether the predicted 
slowness log can replace the measured data in the 
seismic well tie procedure. The experiments were 
conducted in Python using the sci-kit learn library 
(Pedregosa et al., 2011). Each step mentioned inside the 
boxes is detailed in the subsections below. 

Editing and Preprocessing 
The first step of analyzing a dataset consists of editing 
and preprocessing the data, which are, in this case, the 
petrophysical information from well logs. This stage 
comprises the standardization of attributes, 
concatenation of data from different wells, unreliable 
data verification, and categorical features creation, 
such as the “geological formation” to which a given 
sample belongs. Then, a data preprocessing proposes 
the analysis of the general behavior of the input 
variables, aiming to identify and eliminate spurious 
values without geophysical-geological meaning. The 
dataset (𝐗𝐗) is normalized by the standard deviation (𝜎𝜎) 
and the mean (𝜇𝜇), as shown in equation (4). 
 

𝐗𝐗norm =
𝐗𝐗 − 𝜎𝜎
𝜇𝜇 . (4) 

 

Holdout Cross-Validation Method 
Cross-validation tests are applied to assess whether the 
built-in regression model predicts well the value of 
unknown samples, i.e., to gauge the generalizability of 
an algorithm, so there is no overfitting or underfitting 
to the input data. 

According to Refaeilzadeh et al. (2009), a common 
approach is to randomly split the available data set into 
two non-overlapped parts: one for training and the other 
for testing. The proportion of data partitioning is 
arbitrary, and, in general, the largest portion of the 
samples is assigned to compose the training subset. In this 
study, 75% of the samples were used to train the model. 
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Figure 1: A total of 18 well logs were used to carry out the experiments, in which 17 of them (orange 
points) were used to train the regression model. The last one (blue point) was used as a blind test to 
check whether the model was reliable and to perform the seismic well tie. 

 

 

Figure 2: Workflow used to perform the 
slowness well log regression, generate the 
synthetic traces, tie the traces to the 
seismic data and establish a comparison 
between the results. 

 
The test data (25%) is held out and not used during 
training. This procedure was performed by the Holdout 
cross-validation method, which ensures a more accurate 
estimate for the generalization performance of the 
algorithm. 

K-Nearest Neighbor Algorithm 
It is usual to define that the smaller is the distance 
between two or more samples in the feature space, the 
more they are similar (Ertel, 2018). The use of the idea 
behind the statement over an n-dimensional space to 
build a regression model indicates that the K-nearest 
neighbor method can predict the value of a sample. The 
K-nearest neighbor algorithm (KNN) is a non-
parametric supervised machine learning technique 
that uses observed data present in the training subset 
X to estimate the magnitude of unknown samples based 
on their similarity or distance d. In other words, to the 
unknown point is assigned a value based on how much 
it resembles the points in the training subset. 

As said by Ortiz-Bejar et al. (2018), when it is 
applied to establish a nonlinear regression model, for a 
given sample 𝑥𝑥𝑞𝑞, the value of the target attribute 𝑦𝑦��𝐱𝐱𝐪𝐪� 
is calculated as the mean between its most similar (or 
nearest) k samples 𝐱𝐱𝐢𝐢 ∈ 𝐗𝐗 for each of the input variables 
weighted by the inverse of the distance w (equation 5). 
 

𝑦𝑦�(𝐱𝐱𝐪𝐪) =
1
𝑘𝑘
∑ 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑘𝑘
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖𝑘𝑘
𝑖𝑖=1

 (5) 

 

where 

𝑤𝑤𝑖𝑖 =
1

𝑑𝑑�𝐱𝐱𝐢𝐢, 𝐱𝐱𝐪𝐪�
. (6) 
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A variation of equation (5) can be taken when all the 
weights are equal to 1. In this case, equation (6) is reduced 
to the simple mean of the k closest samples (equation 7): 
 

𝑦𝑦� =
1
𝑘𝑘�𝑦𝑦𝑖𝑖

𝑘𝑘

𝑖𝑖=1

. (7) 

 

Hence, to build the regression model, it is necessary 
to calculate how far are the training samples regarding 
the non-estimated point in an n-dimensional space, 
where n is the number of input variables.  This procedure 
is computationally costly for high dimensionality. It 
can be performed through distinct distance metrics, e.g., 
Euclidean, Manhattan, Minkowski, and Hamming. The 
divergence among them is given by the parameter p, 
presented in equation (8). The Manhattan and Euclidean 
distances are defined using p equals to 1 and 2, 
respectively. These two were used in this work to 
establish a comparison. 
 

𝑑𝑑�𝐱𝐱𝐢𝐢, 𝐱𝐱𝐪𝐪� = ���𝐱𝐱𝐢𝐢,𝐣𝐣 − 𝐱𝐱𝐪𝐪,𝐣𝐣�
𝑝𝑝

𝐷𝐷

𝑗𝑗=1

�

1/𝑝𝑝

, (8) 

 

where D  is the number of measurements (logs). 
The results obtained using this algorithm are very 

sensitive to the number of neighbors used to train the 
model. If this hyperparameter is too small, the final 
model will overfit, since only a few points would be 
considered to estimate a new sample. On the other hand, 
if k is too large, the model will poorly perform in both 
training and test data. Therefore, optimizing the number 
of neighbors is an indispensable step to minimize errors 
in training and validation data. 

The Mean Absolute Error (MAE) is used to 
evaluate regressions since such metric suits well for 
problems with a large amount of data, besides having a 
high interpretability. Equation (9) shows how MAE is 
calculated: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤� |
𝑛𝑛

𝑖𝑖=1

, (9) 

 

in which n is the number of samples and 𝑦𝑦� is the 
calculated data. 

Hyperparameter k Optimization 
The selection of hyperparameters is part of the model 
optimization process that aims to minimize the mean 
absolute error in training and test datasets. In the 
present work, a variation of the elbow method was used 

to select the number of neighbors in the K-nearest 
neighbor technique using uniform weights (equation 9). 
These curves are constructed iteratively by calculating 
the mean absolute errors of each subset for each value 
of K, in a range from one to 200. These graphs highlight 
the point from which there is a stabilization of the 
difference between those curves to verify the MAE of 
this point. 

To support the decision-making of the K value, the 
logarithm of the difference between the mean absolute 
error of training and test was used in the case where 
the value of the function was obtained from a mean 
between the K-nearest neighbor. The resulting graph 
from this operation (Figure 3) can point out the plateau 
from which the increase in the number of neighbors 
does not offer significant interference for the 
minimization of the metric employed. 

It is important to note that this result comes from 
the adjustment of the model that considers the L2 
norm as the distance metric (𝑝𝑝 = 2). Taking into 
consideration the Manhattan distance (𝑝𝑝 = 1), it was 
possible to observe that there were no significant 
changes in errors for the training and test 
data.  Therefore, the later stages were performed using 
the Euclidean distance to fit the model. 

In Figure 4, through the analysis of the mean 
absolute error on test data, considering the weighted 
functions mentioned above, it can be seen that there is 
a brief improvement, for the optimal number of 
neighbors, in the MAE when the predicted sample’s 
value is weighted by the distance between points 
(equation 5). It changes from 6.94 μ𝑠𝑠/𝑓𝑓𝑓𝑓 to 6.79 μ𝑠𝑠/𝑓𝑓𝑓𝑓. It 
is also important to notice that the optimal 
hyperparameter k is slightly different in both 
situations: it goes from 7, when the weight function is 
uniform, to 10. 

Table 1 allows us to analyze the model’s 
performance considering the weighted distance for each 
geological formation present in the dataset. The fact 
that the predictions made by formations have distinct 
errors is remarkable. The most reliable estimations are 
made for the samples of the Sergi and Candeias 
Formations, while the worst are made in the Pojuca and 
Marfim Formations. 

Finally, to verify the performance of the KNN 
estimations, a linear regression was performed in the 
same dataset, and the MAE of the train and test of the 
linear regression were approximately 25.57 μ𝑠𝑠/𝑓𝑓𝑓𝑓 and 
25.24 μ𝑠𝑠/𝑓𝑓𝑓𝑓, respectively. 
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Figure 3: (a) The mean absolute error of the K-nearest neighbor regression with uniform weights applied to 
train and test datasets using the following attributes: gamma-ray (GR), resistivity (Rild), the difference between 
resistivity and short normal (SN), and geological formation; (b) the logarithm of the difference between the test 
and train mean absolute errors. 

 

 
Figure 4: The mean absolute error of the K-nearest neighbor regression applied to train and test datasets when 
the parameter weighted function is (a) uniform and (b) the distance weighted. Because of the non-uniform 
weighting, the error for the training data is always zero; hence it does not appear in the graph. 
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Table 1: Train and test mean absolute error by geological formation. 

Geological  
Formation 

Pojuca Marfim Maracangalha Candeias São Sebastião Água Grande Sergi Total 

MAE Test 
(μ𝑠𝑠/𝑓𝑓𝑓𝑓) 

10.09 7.09 6.95 5.21 6.53 5.27 2.08 12.81 

 
Seismic Well Tie 
The seismic well tie is an essential stage in seismic 
interpretation. It relates rock physical properties 
measured in a borehole with time travel data recorded 
during seismic reflection activity, providing the correct 
identification of seismic horizons (White and Simm, 
2003). According to Simm and Bacon (2014), seeing the 
well tie is the interpreters' chance to link the geology and 
the seismic data. 

The classic seismic well tie procedure embodies the 
synthetic seismic trace alignment with the real seismic 
trace near the borehole. The generation of the synthetic 
trace is based on the convolutional model, defined by the 
convolution of the reflectivity series 𝐫𝐫(𝐭𝐭) with the 
seismic wavelet 𝐰𝐰(𝐭𝐭) added to a noise 𝐧𝐧(𝐭𝐭), according to 
equation (10): 
 

𝐱𝐱(𝐭𝐭) = 𝐫𝐫(𝐭𝐭) ∗ 𝐰𝐰(𝐭𝐭) + 𝐧𝐧(𝐭𝐭). (10) 
 

To achieve this result, it is necessary to perform a 
series of steps, where the most important are the 
geophysical log upscale and, consequently, the reflectivity 
coefficients obtainment; the wavelet extraction; and the 
stretch and squeeze of the synthetic trace. Firstly, in our 
experiment using the blind well log, the upscale was 
done using the median filter with a window equals to 151 
samples, as displayed in Figure 5. 

After filtering the compressional velocity and 
density, the acoustic impedance was obtained from 
equation (2), allowing us to estimate the reflection 
coefficient (equation 3), a crucial parameter for obtaining 
the synthetic trace. 

Then, to determine the wavelet, the frequency 
spectrum of the nearest real seismic trace was calculated 
and four frequencies were selected (Figure 6) to compose 
the frequency bandwidth of a zero-phase Ormsby 
wavelet (Figure 7), given by equation (11): 

 

𝑤𝑤(𝑡𝑡) =
𝜋𝜋𝑓𝑓12

𝑓𝑓2 − 𝑓𝑓1
𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐2(𝜋𝜋𝑓𝑓1𝑡𝑡) −

𝜋𝜋𝑓𝑓22

𝑓𝑓2 − 𝑓𝑓1
𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐2(𝜋𝜋𝑓𝑓2𝑡𝑡) 

−
𝜋𝜋𝑓𝑓32

𝑓𝑓4 − 𝑓𝑓3
𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐2(𝜋𝜋𝑓𝑓3𝑡𝑡) +

𝜋𝜋𝑓𝑓42

𝑓𝑓4 − 𝑓𝑓3
𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐2(𝜋𝜋𝑓𝑓4𝑡𝑡) 

(11) 

 

where 𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3, and 𝑓𝑓4 are the main frequencies of the 
Ormsby wavelet. 
 

In possession of this information, two synthetic 
traces were generated for comparison: one using the 
compressional velocity obtained from the sonic well log 
and the other obtained from the regression using the 
KNN algorithm. 

RESULTS AND DISCUSSION 
For a better understanding of this work's results, it is 
possible to section them in two consecutive phases. The 
first one covers the pre-processing of geophysical log data 
up to the regression of the seismic slowness data, while the 
next step comprises the generation of synthetic traces 
using the measured sonic log and the log estimated by the 
KNN method, followed by the comparison between both 
synthetic traces. The following subsection will present the 
regression results in the blind dataset, the well tie 
performed using the slowness curve of the blind data, and 
the sonic log obtained from KNN. The well tie is supported 
with the use of the checkshot data 

Regression 
After the parameter optimization process, the final 
model was built using the L2 norm as the distance 
metric; the prediction of a sample’s value is weighted by 
its distance to the K nearest points, and the number of 
neighbors equals 10. Figure 8 presents the result of the 
regression applied to the blind well log (1-IMET-4BA), 
which has the checkshot information available. The 
mean absolute error between measured and predicted 
seismic slowness is 12.81 s/ft. The estimated curve suits 
better to the one measured after 850 meters of depth.  

The algorithm had difficulty predicting the 
slowness in the Marfim Fm., and upper Maracangalha, 
mainly in regions where the density log presented 
values lower than 2 g/cm3, probably due to collapses 
inside the borehole – information that could not be 
confirmed because of the absence of the caliper log. 
Table 2 highlights what can be seen in Figure 8 
regarding the prediction error. The algorithm nicely 
predicted the lower part of the Maracangalha 
Formation and the Candeias. The predictions in  
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Figure 5: In red, the application of the median filter over the following rock physical properties (in black): (a) 
measured and (b) predicted seismic slowness and (c) density of the blind well log. The filter window size was 
chosen through a visual analysis of the curve smoothing. 

 

 
Figure 6: Amplitude spectrum of the nearest real 
seismic trace. A set of four frequencies, 𝑓𝑓1 = 3, 𝑓𝑓2 =
7, 𝑓𝑓3 = 22, and 𝑓𝑓4 = 27 Hz, was chosen to construct 
the zero-phase Ormsby wavelet. 

 
Figure 7: Zero-phase Ormsby wavelet generated 
using the frequencies 𝑓𝑓1 = 3, 𝑓𝑓2 = 7, 𝑓𝑓3 = 22, and 𝑓𝑓4 =
27 Hz employed in the seismic well tie of the blind 
well log. 

Table 2: Mean Absolute Error by Geological Formation in the blind dataset. 

Geological Formation Pojuca Marfim Maracangalha Candeias Total 

MAE  
(μ𝑠𝑠/𝑓𝑓𝑓𝑓) 

- 21.57 13.51 5.77 12.81 
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Figure 8: Chart of geophysical logs referring to: (a) gamma-ray, (b) resistivity, (c) density, and (d) measured 
(continuous black curve) and estimated (dashed red line) seismic slowness. The last track (e) presents the 
geological formation to which every sample in the blind well log belongs. 

Marfim Fm. are inaccurate. Although the Pojuca 
Formation appears in the geological formation column, 
it does not have its slowness samples predicted, due to 
the fact that the resistivity information is missing. 

 
Well to seismic tie 
Once the well log data were upscaled, the reflection 
coefficients were obtained and the wavelet extracted. The 
whole seismic well tie process took place on the blind test. 
The synthetic traces were generated using both the 

measured and estimated seismic slowness to compare each 
one with the seismic traces close to them. 

Figure 9 illustrates them as well as some other rock 
physical properties. It is remarkable that the labels inside 
each track indicate from which seismic slowness log that 
respective property was obtained. As a way to compare the 
synthetic traces, the Pearson coefficient was calculated 
between the synthetic traces in the time range from 0.24 to 
1 second. This cutout was selected to avoid wavelet edge 
effects. The Pearson correlation is approximately 0.83 
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Figure 9: Synthetic traces generated from the sonic log data and the predicted slowness log data. The four time-
intervals highlighted by the red lines indicate the main contrasts of acoustic impedance that characterize the 
leading seismic events. 

between the synthetic traces. Furthermore, four intervals 
were selected for a visual analysis, which allows us to verify 
that both traces have temporally correlated peaks and 
troughs, with similar seismic amplitudes, except for the third 
time interval in Figure 9 (between 0.62 and 0.73 seconds). 

To demonstrate that the nonlinear regression using 
the K-nearest neighbor algorithm is an outstanding 
alternative to replace the sonic well log when it is not 
included in the dataset, or its quality is compromised 
due to borehole problems, we compared the synthetic 
trace obtained from the slowness and the regression 

with the closest seismic traces available in the seismic 
dataset, as can be displayed in Figure 10. The highest 
Pearson correlation between the seismic trace and the 
synthetic traces in the time interval of 0.24 s to 1.032 s 
was approximately 0.36 for the synthetic trace 
generated using the slowness of the log and 0.42 for 
the synthetic trace obtained from the regression of the 
sonic log. Furthermore, it is necessary to enhance that 
stretch. The squeeze was not performed in any 
synthetic traces to avoid a non-geological information 
insertion in the comparisons.
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Figure 10: Comparison between (a) the synthetic trace obtained from the measured slowness log (Δ𝑡𝑡) and 
(b) the synthetic seismic trace derived from the estimated slowness log (𝐾𝐾𝐾𝐾𝐾𝐾 Δ𝑡𝑡) with the closest traces 
within the seismic survey. 

CONCLUSIONS 
The slowness regression estimated from the K-nearest 
neighbor algorithm presented an outstanding result in 
comparison to the linear regression performed into the 
training dataset. To demonstrate the technique 
effectiveness, a blind well log was used and the Mean 
Absolute Error was approximately 12.81 𝛍𝛍𝒔𝒔/𝒇𝒇𝒇𝒇. It 
allowed the authors to obtain more reliable logs to be 
used in the synthetic seismic trace generation to 
perform the well tie seismic task. The synthetic trace 
obtained from the Δt log and the regression were very 
similar, and the comparison between them and the 
closest seismic trace in the seismic survey using the 
Pearson correlation pointed out a better result to the 
synthetic trace calculated using slowness estimated 
from KNN. 
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