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ABSTRACT. As velocity analysis is an important step in seismic processing, several nonhyperbolic 
traveltime approximations have been proposed during the last decades, and each nonhyperbolic 
approximation was developed for different conditions and with different proposals. However, none of 
them was proposed to consider the combined effect of the nonhyperbolicity coming from layered 
media with large offsets, wave conversion and difference of datum between source and receiver. For 
this, a nonhyperbolic multiparametric traveltime approximation, which is capable of describing this 
combination of effects, was recently proposed. As this approximation was developed to characterize 
ultra-deep reservoirs, the understanding of its behavior is necessary for an offshore reservoir 
concerning the objective function topology complexity, as it is important for a better understanding 
of its behavior during the inversion procedure, and also important to determine the kind of 
optimization algorithm to be used. It is proposed performing the inversion procedure with different 
optimization algorithms and norms. It is also proposed the complexity analysis of the objective 
function. Then, a comparison between each norm and among each algorithm concerning their 
accuracy and efficiency is proposed to find which combination is the most effective to recover the 
RMS velocity information for this kind of scenario. 
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INTRODUCTION 
In the middle of the last century, Dix (1955) proposed 
the hyperbola equation to perform the velocity analysis, 
an important step for the reflection seismic data 
processing. However, the hyperbolic approximation is 
not suitable for layered media with large offsets, wave 
conversion and difference of datum between source and 
receiver. For these reasons, in the last decades, several 
nonhyperbolic approximations able to describe effects of 

the nonhyperbolicity in a traveltime event were 
developed (e.g., Malovichko, 1978; Muir and Dellinger, 
1985; Slotboom, 1990; Alkhalifah and Tsvankin, 1995; 
Wang and Pham, 2001; Li and Yuan, 2003; Ursin and 
Stovas, 2006; Blias, 2009). 

Several nonhyperbolic approximations were tested 
in the last years, aiming to find the best one for a specific 
situation or aiming a general behavior (e.g., Wang and 
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Pham, 2001; Bokhonok, 2011; Wang et al., 2014; Hao 
and Stovas, 2015; Tseng et al., 2016; Zuniga, 2017; 
Zuniga et al., 2017, 2019; Farra and Pšenčík, 2018; Lu 
et al., 2018; Xu and Stovas, 2018, 2019; Abedi and 
Stovas, 2019a, 2019b). However, even though the 
approximation proposed by Li and Yuan (2003) showed 
the best results in a general manner in previous works, 
more accurate results could be reached if the use of the 
OBN (Ocean Bottom Nodes) technology would be 
considered. This enhancement concerning the results 
would be possible by considering the difference of datum 
between source and receiver, and not only the 
nonhyperbolicity coming from the wave conversion and 
the RMS (root mean square) velocity relation. Wang and 
Pham (2001) tried to apply the effects of the OBN 
technology generalizing the approximation proposed by 
Li and Yuan (2003). However, it did not present good 
results for ultra-deep reservoirs (Wang et al., 2014; 
Zuniga, 2021). For this reason, Zuniga (2021) proposed 
a nonhyperbolic multiparametric traveltime 
approximation capable of describing nonhyperbolic 
effects from the relation of large offsets with layered 
media, wave conversion, and the difference of datum 
between source and receivers. 

In this work, it is proposed testing the 
approximation developed by Zuniga (2021) concerning 
the complexity of its topology of the objective function to 
understand its stability and unicity, an essential step to 
determine what kind of optimization algorithm is more 
appropriate to be used and also to evaluate the influence 
of L2- and L1-norm. The sensitivity analysis of the 
parameters for L2- and L1-norm is also proposed, 
aiming to find out whether there is a significant 
variation in the topological behavior, in order to 
determine which norm is the most appropriate for this 
kind of inversion procedure. These analyses are 
important to predict some possible limitations during 
the application of the inverse problem. Likewise, it is 
proposed to perform the inversion of PP and the PS 
reflection events with five different optimization 
algorithms in order to determine which one presented 
the best processing time and accuracy when combined 
with the approximation tested. It was also tested 
whether the L1-norm application during the inversion 
really finds a better result with this approximation, 
when compared to the L2-norm. This proposed 
combination of analyses allows determining the best 
combination of optimization algorithm and norm to be 
used with the approximation proposed by Zuniga (2021) 
for reflection events from ultra-deep reservoirs acquired 
with the OBN technology. 

Nonhyperbolic multiparametric 
traveltime approximation for 
converted wave and OBN 
A general nonhyperbolic multiparametric traveltime 
approximation started to be proposed by Li and Yuan 
(1999) with the 𝛾𝛾 parameter based on the anisotropic 
parameter of Thomsen (1986). Later, Li and Yuan 
(2001, 2003) proposed the approximation which was 
able to control the effects of wave conversion; it was 
lately studied by Li (2003) and compared with several 
other approximations (e.g., Wang and Pham, 2001; 
Wang et al., 2014; Hao and Stovas, 2015; Tseng et al., 
2016; Zuniga, 2017; Zuniga et al., 2017, 2019; Farra and 
Pšenčík, 2018; Lu et al., 2018; Xu and Stovas, 2018, 
2019). 

Zuniga (2021) developed an approximation based 
on the one proposed by Li and Yuan (2003), which also 
uses the 𝛾𝛾 parameter to perform the curve fitting; it 
makes the approximation able to recover the RMS 
velocity (𝑉𝑉) and the time for zero offset (𝑡𝑡0). However, 
as Wang and Pham (2001) and Wang et al. (2014) 
proposed to control the datum difference effect 
between source and receivers, it was necessary to 
correct the behaviour of the vector of offset (𝑥𝑥) to an 
apparent offset (𝑥𝑥𝐿𝐿𝐿𝐿). Even though this approximation 
is efficient for some situations, it lacks good result for 
ultra-deep reservoirs, which led to the development of 
an approximation that considers not only the 
difference of datum in a more general way but also the 
same behaviours proposed by Li and Yuan (2003) with 
the 𝛾𝛾 parameter. So, the approximation proposed by 
Zuniga (2021) which is able to describe the effects of 
layered media with large offsets, wave conversion and 
difference of datum between source and receivers is 
given by: 
 

𝑡𝑡 = �𝑡𝑡02 +
𝑥𝑥2

𝑉𝑉2
+

−(𝛾𝛾 − 1)2 𝑥𝑥𝐿𝐿𝐿𝐿4

𝛾𝛾 𝑉𝑉2[4𝑡𝑡02 𝑉𝑉2 + (1 − 𝛾𝛾)𝑥𝑥𝐿𝐿𝐿𝐿2 ] (1) 

 

The apparent offset,  𝑥𝑥𝐿𝐿𝐿𝐿, considers the difference 
of ray inclination between the P-wave in the water and 
in the solid medium for the down-going ray and 
considers that the up-going ray stops at the bottom of 
the ocean, the interface between the water and 
sediments. The 𝑥𝑥𝐿𝐿𝐿𝐿 is given by: 
 

𝑥𝑥𝐿𝐿𝐿𝐿 = 𝑥𝑥 �1 +
𝑧𝑧𝑊𝑊𝑊𝑊  𝑉𝑉𝑊𝑊𝑊𝑊

𝑡𝑡0 𝑉𝑉𝐶𝐶22
� , (2) 

 

where 𝑧𝑧𝑊𝑊𝑊𝑊 is the water depth and 𝑉𝑉𝑊𝑊𝑊𝑊 is the P-wave 
velocity in the water. Both are a priori parameters and 
shall not be recovered during the inversion. 
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Model used to perform the tests 
To perform complexity tests, it is necessary to use a 
model already known to compare the results with the 
previous ones. The offshore model used by Zuniga 
(2017, 2021) and Zuniga et al. (2019a) is a structure 
usually found in the Santos Basin. This structure was 
modelled using the parameter in Table 1, which was 
extracted from well logs from a pre-salt structure from 
the Santos Basin. In Table 1, it is possible to observe 
the characteristics of the offshore layered Model with 
a carbonate reservoir (𝑉𝑉𝑃𝑃 = 4010 m/s and 𝑉𝑉𝑆𝑆 = 2012 m/s) 
sealed by a salt structure composed by the 3rd, 4th and 
5th layers. The depth of the bottom of the carbonate 
layer is unknown. The traveltime curves were 
generated by the raytracing method for the PP and PS 
reflection events (Margrave, 2000, 2003) and by a 2D 
finite difference modelling scheme for the wave 
propagation (Thorbecke and Draganov, 2011), 
considering the use of the OBN technology and a 
maximum offset between source and receivers of 15 
km. A total of 100 receivers were used with spacing of 
150 meters between each one, the same spacing 
between source and receiver. 

Table 1: The parameters of the Model: Layer 
thickness (Δz), P-wave velocity (𝑉𝑉𝑃𝑃), S-wave 
velocity (𝑉𝑉𝑆𝑆) and 𝑉𝑉𝑃𝑃/𝑉𝑉𝑆𝑆 ratio. 

Layer Δz (m) 𝑉𝑉𝑃𝑃 (m/s) 𝑉𝑉𝑆𝑆 (m/s) 𝑉𝑉𝑃𝑃/𝑉𝑉𝑆𝑆 
Water 2157 1500 0 - 

1 496 2875 1200 2.40 
2 108 3505 1628 2.15 
3 664 4030 2190 1.84 
4 262 5005 2662 1.88 
5 1485 4220 2210 1.91 
6 - 4010 2012 1.99 

Complexity analysis of the topology  
of the objective function for L2- and 
L1-norm 
RMF (residual function maps) is an important tool to 
perform the topology complexity study of an objective 
function as shown by Larsen (1999) and Kurt (2007). 
The use of RMF allows obtaining important information 
about the stability and unicity of the function, and also 
the information about the sensibility of each aimed 
parameter (e.g., Larsen, 1999; Li and Yuan, 2003; 
Bokhonok, 2011; Du and Yan, 2013; Lu et al., 2015; 
Aleardi et al., 2017; Zuniga et al., 2018, 2019c). 

 

For this work, the RMF was a two-dimensional 
correlation between the RMS (Root mean squared) 
velocity and the 𝛾𝛾 parameter, with the third dimension 
in the hyperplane representing the minimum values 
as the residual between the observed and the 
calculated curve. 

Considering the comparison between L2- and 
L1-norm, it is important to describe that the least 
squares (i.e., L2-norm) error approximate solution is 
preferred for several problems in signal processing. 
However, the least absolute deviation (i.e., L1-
norm) can be preferable in several situations, as a 
complex topology of objective function with small 
distributions can be attenuated with this norm 
(Khaleelulla, 1982; Bourbaki, 1987; Zuniga et al., 
2019b; Costa et al., 2020). 

In Figure 1, for the PP reflection event, the L2-
norm (Fig. 1A) presents a more stable structure 
than the one presented by Figure 1B. However, both 
structures presented a multimodal behavior with a 
higher sensibility of the 𝛾𝛾 parameter than the RMS 
velocity did. The main difference between the two 
norms concerns the minimum regions, considering 
that, even with local and global regions more 
connected between them with the L1-norm, a little 
narrower structure for the global minimum region 
can be observed, providing a more accurate result 
during the inversion. 

The same characteristics and behaviours can 
be observed in Figure 2 (PS event). However, there 
is the displacement of the structure due to the 
different set of values of parameters as it was 
already discussed by Zuniga (2017) and Zuniga et al. 
(2017). 

As Zuniga (2017) and Zuniga et al. (2019a) 
described, concerning the behaviour of this 
approximation, the 𝛾𝛾 parameter does not exist for 
values lower than around 0.55, which is closely 
associated to the local minimum region and possibly 
related to the part of the P wave event, since this is 
a part of a solution for a higher RMS velocity. 
Another behaviour observed is that the L1-norm 
starts connecting more the local and the global 
minimum regions, which happens exactly in the 𝛾𝛾 
value of 1. It happens due to the fact that this 
approximation tends to the hyperbolic behaviour 
when the 𝛾𝛾 parameter tends to 1. So, if the 
hyperbola equation was used (Dix, 1955), it would 
reach a higher RMS velocity.
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 Figure 1: Residual function maps demonstrate the complexity of the 
topology of the approximation proposed by Zuniga (2021) by relating 𝛾𝛾 
parameter (additional parameter) and RMS velocity for the PP reflection 
event with (A) L2-norm and (B) L1-norm. The red dispersions represent the 
global minimum region, and the white dispersions represent the local 
minimum region. 

 

Accuracy analysis with different 
optimization algorithms for L2- and 
L1-norm 
Accomplishing the comparison of the optimization 
algorithms is an important step to find out which 
algorithm is the most accurate for nonhyperbolic 
multiparametric approximation and which is the 
most efficient manner to perform the inversion; 
therefore, the aimed parameters can be recovered for 
the analysed scenario in a more reliable way. This 
comparison can be applied for several types of 
reflection events, such as for q-P reflection events in 
VTI media (e.g., Aleixo and Schleicher, 2010; Golikov 

and Stovas, 2012), converted wave events in near-
surface structures (e.g., Bokhonok, 2011; Lu et al., 
2018), converted waves in VTI media (e.g., Hao and 
Stovas, 2015; Tseng et al., 2016), OBN data (e.g., 
Wang and Pham, 2001; Wang et al., 2014), converted 
waves and OBN data (e.g., Zuniga, 2017; Zuniga et 
al., 2017, 2019a), orthorhombic media (e.g., Xu and 
Stovas, 2018, 2019), and anisotropic media (e.g., 
Farra and Pšenčík, 2018; Abedi and Stovas, 2019b). 
In this work, it was computed the residual error 
between the observed curve and the calculated one, 
for each optimization algorithm used with L2- and 
L1-norm.
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 Figure 2: Residual function maps demonstrate the complexity of the topology 
of the approximation proposed by Zuniga (2021) by relating 𝛾𝛾 parameter 
(additional parameter) and RMS velocity for the PS reflection event with (A) 
L2-norm and (B) L1-norm. The red dispersions represent the global minimum 
region, and the white dispersions represent the local minimum region. 

 

 

The main objective of the optimization is to find 
the best option among a set of options (Horst et al., 
2000). As this work is aimed to find the minimum 
value of error, several optimization algorithms must 
be tested to find out which one presents the best 
solution. Many optimization algorithms were tested 
for several problems (Rios and Sahinidis, 2013), but 
there are only few works that compare them for the 
problem approached here. Many optimization 
algorithms presented very good results in many areas 
of science and engineering, such as the implicit 
filtering algorithms (Winslow et al., 1991; Gilmore 
and Kelley, 1995; Kelley, 2011), Powell’s model-based 
algorithms (Powell, 2006, 2008), triple approach 
algorithms based on extreme barrier, filter and 
progressive barrier (Abramson, 2002; Audet and 
Dennis, 2006, 2009; Abramson et al., 2009), simplex-

based algorithms (Coxeter, 1948; Spendley et al., 
1962; Nelder and Mead, 1965; Lagarias et al., 1998; 
Lewis et al., 2000) and pattern search method 
algorithms (Custódio and Vicente, 2007, 2008; 
Custódio et al., 2010). However, these kinds of 
algorithms are proposed to local search optimization, 
efficient for unimodal problems. This generates the 
necessity of using the multi-start procedure to solve 
multimodal problems (Kan and Timmer, 1978a, 
1978b; Terlaky and Sotirov, 2010; Sotirov and 
Terlaky, 2013). Some global search optimization 
algorithms based on particle swarm motion, 
evolution strategy and multilevel coordinate search 
(Hansen, 2006; Vaz and Vicente, 2007; Huyer and 
Neumaier, 2008) were also considered. However, five 
optimization algorithms with a significant difference 
in their ways of functioning were selected. 
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An optimization algorithm proposed to perform 
global search is the ASA (Adaptive Simulated 
Annealing) that depends on the magnitude of the 
parameters (Metropolis et al., 1953). It was initially 
proposed to solve combinatorial problems (Kirkpatrick 
et al., 1983) and then to solve continuous and other 
kinds of problems (Aarts and van Laarhoven, 1985; 
Romeo and Sangiovanni-Vincentelli, 1991; Bélisle et 
al., 1993). 

The RMS (Response Surface Method) is based on 
approximating an unknown function by a response 
called metamodel (Matheron, 1967; Barton, 1994). If 
there is a difference between the function and the 
metamodel, this difference is assumed to be caused by 
a model error (Jones, 2001; Barros et al., 2004). 

TOMLAB/EGO is an algorithm which considers 
both linear and nonlinear constraints (Holmström et 
al., 2008). This algorithm is based on performing a 
space-filling experimental design and estimating the 
aimed value likelihood for a calculated model. Then, 
the model is tested for consistency and accuracy 
(Pintér, 1995; Schonlau, 1997; Jones et al., 1998). 

The MCS (Multilevel Coordinate Search) is used 
for bound-constraint problems and is based on 
performing the partition of the search space into boxes 
with an evaluated base point (Huyer and Neumaier, 
1999; Neumaier et al., 2005). 

The last algorithm used in this work is the 
TOMLAB/LGO, which is based on providing access to 
several derivative-free optimization solvers (Jones, 
2001; Holmström et al., 2008). The LGO (Local and 
Global Optimization) solver is used as a combination 
of global and local nonlinear solvers implemented as a 
combination of a Lipschitzian-based branch-and-
bound algorithm with deterministic and stochastic 
local search (Pintér, 1995; Pintér et al., 2006). 

In Table 2, it is possible to observe that the PS 
event takes a significant higher processing time to 
perform the inversion, varying from a time 3 to 13% 
higher depending on the optimization algorithm, but 
showing almost no difference concerning the time 
decrease between the L2- to L1-norm for this 
comparison. However, comparing the L2- and L1-norm 
for the same reflection event, the mean decrease is 
around 20% in the processing time, which is an 
important improvement in the time to perform the 
inversion. If the ASA optimization algorithm is 
considered as the reference concerning the processing 
time, due to the fact that it presented the lowest time 
to perform the inversion, it is possible to compare the 
increase of the processing time of the more robust 
optimization algorithms. Thus, the RSM optimization 
algorithm presented a mean processing time 31% 

higher, while the TOMLAB/EGO and the MCS 
presented a mean processing time 44% and 62% 
higher, respectively. The TOMLAB/LGO presented 
the highest mean processing time, 168% higher. 

Table 2: Processing time (in seconds) to perform the 
inversion routine with each optimization algorithm for 
PP and PS reflection events with L2- and L1-norm. 

Algorithms 

PP 
event 
with 
L2-

norm 

PP 
event 
with 
L1-

norm 

PS 
event 
with 
L2-

norm 

PS 
event 
with 
L1-

norm 

ASA 131.5 109.6 142.0 118.3 

RSM 177.2 147.7 181,6 151.3 

TOMLAB/EGO 194.4 162.0 199.2 166.0 

MCS 208.1 173.4 234.6 195.5 

TOMLAB/LGO 344.2 286.8 388.2 323.5 
 

Figure 3 shows that the ASA optimization 
algorithm presented the worst result for both reflection 
events, with a significantly higher error than the other 
algorithms. The RMS algorithm presented a good result 
for both reflection events, but the TOMLAB/EGO 
algorithm presented an even better result. However, the 
optimization algorithms which presented the best 
results concerning the accuracy were the MCS and the 
TOMLAB/LGO with a very similar set of results. Even 
with a more accurate result from the TOMLAB/LGO, 
the processing time must also be considered. 

Comparing the L2- and L1-norm by the mean 
results of the five optimization algorithms, what can be 
observed, in Figure 3C, is that the L1-norm presented a 
sensible improvement concerning the accuracy, which is 
also related to the narrower global minimum region. 

CONCLUSIONS 
Concerning the topology of the objective function, the 
tests performed with the approximation showed a very 
sensitive behavior of the additional parameter, which is 
essential to perform a more accurate recovering of the 
RMS velocity information. The use of the L1-norm 
rather than the L2-norm showed a narrower global 
minimum region for the PP and the PS events, which is 
essential to reach an even better RMS velocity 
characterization. Therefore, the use of the L1-norm 
presented a little more accurate result, and an 
important decrease in the processing time. However, it 
is important to understand that not every optimization 
algorithm works for L1-norm, which always demands 
the use of a derivative free optimization algorithm. 
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 Figure 3: Relative errors in traveltime between the observed curve 
and the calculated one of the Zuniga (2021) approximation for (A) 
PP reflection event with each optimization algorithm, (B) PS 
reflection event with each optimization algorithm and the mean 
behavior of the inversion of the five optimization algorithms for L2- 
and L1-norm. 

 

 

With the tests performed in this work, we found 
that the optimization algorithms showed an accurate set 
of results; however, the TOMLAB/LGO algorithm 
showed the best one, that is only a little more accurate 
than the set of results showed by the MCS algorithm, 
which presented the second most accurate results. Even 
though with the ASA algorithm presenting the lowest 
processing time, the combination of accuracy and 
efficiency of the MCS algorithm makes it the best general 
option to be used jointly with the tested approximation, 
as the TOMLAB/LGO takes too much processing time. 

In a general way, the approximation proposed by 
Zuniga (2021) showed to be an important approach to 
perform the velocity analysis, working very well with all 

tested optimization algorithms and for both norms 
concerning the processing time and the accuracy. 
However, the most appropriate combination to use with 
this nonhyperbolic multiparametric approximation was 
found to be the L1-norm and the MCS optimization 
algorithm, which presented to be the most efficient 
combination for this kind of scenario. 
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