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ABSTRACT. Well logging records the physical properties of geological formations and the fluids traversed by the 
wells. This operation is interested in parameters such as lithology, hydrocarbon presence, permeability, porosity, and 
fluid saturation. Generally, oil reservoirs are sandstone or carbonate rocks, and the latter characterization is a critical 
question in the petrophysical property distribution, mainly permeability. Estimating permeability is a complex task 
due to the heterogeneity of these reservoirs. Therefore, this work used conventional logs to estimate the permeability 
of wells A03 and A10, both belonging to the oilfield A, Campos Basin, Southeastern Brazil. Together with the logs, 
the permeability measured in the laboratory in rock samples was used to validate the achieved estimates. Thus, the 
estimates used basic logs as input and approaches such as Timur empirical equation, multilinear regression, and 
machine learning techniques, like fuzzy logic, neural network, and decision tree. The Pearson's coefficient of 
determination R was used as the comparison metric with the experimental data. The number of samples in training 
was 70%, with 15% in the validation and testing; the results show that the first four estimates presented bad fits 
(R≤0.60), while the decision tree showed good fits (R>0.60). This approach also showed that the gamma-ray and 
resistivity logs are the ones that have the most significant weight in the estimates. 
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INTRODUCTION

Well logging is an operation to record the physical 
characteristics of the geological formations, which are 
used to assess the petrophysical properties of the 
reservoirs, such as porosity, permeability, lithology and 
water saturation (Luthi and Bryant, 1997). 
Permeability estimate is a critical question in 
carbonate reservoirs because they have many 
heterogeneities, which makes interpretation difficult 
(Tiab and Donaldson, 2004).  

Permeability is a very complex parameter, and its 
value depends on many factors, including lithology, 
texture, cementation, etc. It can be evaluated by different 
methods, which have limitations: formation tests, 
laboratory core measurements, empirical estimates with 
logs, and statistical approaches. The formation tests 

provide average permeability values; however, they 
assume homogeneity in the tested zone. Direct 
measurements are done on cores and can be affected by 
factors such as the selection and representativeness of 
samples taken on cores, depth mismatch, and accuracy of 
laboratory measurements. In addition, there are 
differences between the measuring volumes in rock 
samples (centimeters) and well-logging curves (meters) 
(Schön, 2015). The empirical relationships of Timur and 
Kozeny-Carman are widely used, which provide estimated 
values from, in general, porosity and irreducible water 
saturation data. Statistical methods allow estimates using 
the available logs by consulting the database generated 
with the records of key wells and permeability data 
obtained from cores of these same wells. The reliability of 
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these statistical methods depends on the existence of a 
reasonable number of good-quality samples analyzed in 
the laboratory. All data must be perfectly correlated in 
depth with the logs, and the gamma-ray log recorded in 
the core can be used to compare it with the gamma-ray log 
recorded in the well. Geophysical well logs do not directly 
measure permeability, so it is almost always an 
approximate estimation rather than a parameter 
produced in a test (Yan, 2002). 

On the other hand, machine learning evolved from 
studying pattern recognition and computational learning 
theory to artificial intelligence (Theodoridis and 
Koutroumbas, 2009). It can be defined as a field of study 
that allows computers to learn without being explicitly 
programmed (Cabena et al., 1998). It is about studying 
and constructing algorithms that can learn from their 
mistakes and make predictions about data. Such 
algorithms build a model from sample inputs to make 
data-driven predictions or decisions rather than simply 
follow inflexible and static programmed instructions 
(Silva et al., 2020). While in artificial intelligence, there 
are two types of reasoning (inductive, which extracts 
rules and patterns from large data sets, and deductive), 
machine learning is only concerned with inductive 
reasoning. Some parts of machine learning are closely 
linked (and often overlapping) with computational 
statistics, a discipline that focuses on making predictions 
using computers, with research focusing on the 
properties of statistical methods and their computational 
complexity. It has strong ties to mathematical 
optimization, which produces methods, theory, and 
application domains for this field (Mitchell, 1997). 

The working script was established as follows: it 
started with the Geological Context to present the object 
of study. It continued with Materials and Methods to 
show how the permeability assessment in this reservoir 
was performed. Then, the outcomes were presented in 
Results and Discussions, looking for a deeper 
understanding of the applied concepts. Finally, the 
study’s main results were highlighted in Conclusions 
and the consulted works in References. 

GEOLOGICAL CONTEXT 
According to Okubo et al. (2015), the origin and evolution 
of the Campos Basin are related to the separation of the 
supercontinent Gondwana (Figure 1). They are marked 
by the disaggregation of the plates of South America and 
Africa with the consequent formation of the South 
Atlantic Ocean. The tectonic-sedimentary evolution of 
this basin occurred in three phases: rift, post-rift, and 

drift, which correspond, respectively, to the continental, 
transitional and marine sequences. The continental was 
deposited during the mechanical subsidence of the rift 
phase and includes basalts from the Cabiunas Formation 
and continental sediments from the Lagoa Feia 
Formation. The transition sequence is characterized by 
evaporites from the Retiro Formation deposited in 
shallow marine transgression pulses over continental 
areas and relative tectonic quiescence (Bruhn et al., 
2003). 

The marine sequence marks the beginning of the 
open marine deposition during the thermal subsidence 
associated with the drift phase. This stage begins with 
the carbonate sedimentation (Macaé Group) and grades 
to a mainly siliciclastic succession (Campos Group) 
affected by intense halokinesis. The Macaé Group 
sedimentation occurred during the Albian Age in an 
early drift context and comprised the Goitacás, 
Quissamã, Outeiro, Imbetiba, and Namorado 
formations. The Quissamã Formation is formed by 
grainstones and packstones, constituted by oncoids, 
ooids, peloids, and diverse bioclasts, associated with NE 
shoals deposited in high to moderate-energy 
environments. The Outeiro Formation is composed of 
fine carbonate layers, interbedded with marl and shale 
deposited in response to a gradual rise in sea level and 
the drowning of the shallow carbonate platform of the 
Quissamã Formation (Figure 2). These carbonate rocks 
have abundant pelagic microfossils, like calcispheres 
(pitonellids), planktonic foraminifera, and radiolarians 
(Guardado et al., 1989). 

MATERIALS AND METHODS 
Oilfield A has 27 wells with the complete set of well logs, 
but only two wells have the petrophysical laboratory 
tests (Table 1). Thus, wells A03 and A10 were used in 
this study to estimate the permeability of the carbonate 
reservoir in this basin.  The complete dataset consists of 
the basic suite of well logs and laboratory measurements 
of porosity and permeability (Table 2). Figures 3 and 4, 
on the other hand, show, respectively, the logs for both 
wells. The logs are identified as gamma-ray (GR), 
neutron porosity (NPHI), density (RHOB), sonic (DT), 
and shallow (RXO) and deep (RT) resistivities, which 
appear, respectively, between tracks 4 and 7 of these two 
figures. The study involves, thus, log analysis to 
determine the permeability in these wells through 
various approaches, constantly comparing the quality of 
estimates with the gas permeability measured in the 
laboratory (Petrobras, 2012).
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Figure 1: The location of Albian carbonate reservoirs in the Campos Basin offshore, 
Brazil. The Albian calcarenite reservoirs are indicated by the dashed red line 
(modified from Bruhn et al., 2003). 

 

 
Figure 2: Stratigraphic chart of the Albian section in the Campos Basin (adapted from Winter et al., 
2007). 

The Interactive Petrophysics-IP (Geoactive, 2021) 
was used to plot and interpret, preliminary, the logs. 
Next, the Waikato Environment for Knowledge 
Analysis-Weka (Holmes et al., 1994) and Matlab (2018) 
were used to construct the Timur´s empirical model, the 
multilinear regression approach (MLR) and the machine 
learning simulations, as fuzzy logic (FL), neural network 
(NN) and the decision tree (DTree) (Russell and Norvig, 
2009). Finally, Microsoft Excel was used to make the 

statistical analysis (Harnett and Horrell, 1998). These 
permeability estimates were then compared with each 
other, and their qualities were evaluated using the 
Pearson’s determination coefficient-R (Cameron and 
Windmeijer, 1997) when matched in the adjustment 
with experimental laboratory data, where R is a measure 
of linear correlation between original and predicted 
values (Dell’Aversana, 2019). The workflow adopted in 
this work is presented in Figure 5. 
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Table 1: Characteristics of the carbonate reservoir (Petrobras, 2012). 

Reservoir Oilfield A 

Lithology Carbonate 

Age Albian 

Area (km²) 11.6 

Mean Net Pay (m) 105 

Mean Porosity (%) 19 

Mean Permeability (mD) 50 

Mean Water Saturation (%) 22 

Formation Water Salinity (ppm) 70000 

Temperature (°C) 90 

 

Table 2: Available data set of the oilfield A (Petrobras, 2012). 

Logs 
Curve 

Nemonics 
Units 

Wells 

A3 A10 

Sonic DT µs/ft x x 

Density RHOB gr/cm³ x x 

Neutron NPHI % x x 

Gamma Ray GR °API x x 

Deep resistivity RT ohm.m x x 

Shallow Resistivity RXO ohm.m x x 

Laboratory porosity φ % x x 

Laboratory permeability k mD x x 

Initially, the Timur’s empirical model was applied 
to estimate the permeability using the following 
equation (Timur, 1968): 
 

𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑎𝑎φ𝑏𝑏

𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐  (1) 

 

where kTimur is the permeability (mD); a, b and c are 
regression coefficients; φ is the porosity (%); and Swirr is 
the irreducible water saturation (%). Generally, the 
used values for a, b and c are 0.136, 4.4, and 2, 
respectively. 

Next, MLR was applied as a mathematical 
method that uses several explanatory variables to 
predict the outcome of a response variable. MLR aims 
to model the linear relationship between the 
independent variables (GR, NPHI, RHOB, DT, RXO, 
and RT logs) and the dependent variable (kMLR). MLR 

is the extension of conventional least-squares 
regressions because it involves more than one 
explanatory variable. In the case of our study, 
permeability was estimated by entering the logs in the 
following equation (Seber and Lee, 2003): 
 

𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑐𝑐1𝐺𝐺𝐺𝐺 + 𝑐𝑐2𝑅𝑅𝑅𝑅 + 𝑐𝑐3𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑐𝑐4𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

+ 𝑐𝑐5𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑐𝑐6𝐷𝐷𝐷𝐷 + ε, 
(2) 

 

where kMLR is the permeability (mD); c1 to c6 are the 
regression coefficients; and ε is the error in the 
estimate. 

FL is a form of many-valued logic in which the 
truth value of variables may be any actual number 
between 0 and 1. It handles partial truth, where the 
truth value may be entirely true or false. By contrast, 
in Boolean logic, the truth values of variables may only 
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Figure 3:  Well A03, tracks: 1) Depth (m); 2) Temperature (°F); 3) Fluids; 4) 
GR log; 5) NPHI (%, blue curve) and RHOB (gr/cm3, red curve) logs; 6) DT 
log (μsec/feet, black curve); 7) Shallow RXO (ohm.m, pink curve) and deep 
RT (ohm.m, red curve) resistivity logs, on logarithmic scale.  

be the integer values 0 or 1. FL is based on the 
observation that people make decisions based on 
imprecise and non-numerical information. Fuzzy 
models or sets are mathematical means of 
representing vagueness and inaccurate information, 
hence the term fuzzy (Cuddy, 1997). These models can 
recognize, describe, manipulate, interpret, and utilize 
data and information that are vague and lack 
certainty. FL has been applied to many fields, from 
control theory to artificial intelligence. Fuzzy sets are 
often defined as triangle, trapezoid, or sigmoid-
shaped curves, as each value will have a slope where 
the value is increasing, a peak where the value is 
equal to 1 (which can have a length of 0 or greater), 
and a slope where the value is decreasing. One typical 
case is the standard logistic function (Sx) defined as 
(Nordlund, 1996): 
 

𝑆𝑆(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

 , (3) 

 

which has the following symmetry property: 
 

𝑆𝑆(𝑥𝑥) + 𝑆𝑆(−𝑥𝑥) = 1. (4) 

 

From this, it follows that: 
 

�𝑆𝑆(𝑥𝑥) + 𝑆𝑆(−𝑥𝑥)�. �𝑆𝑆(𝑦𝑦)

+ 𝑆𝑆(−𝑦𝑦)�. �𝑆𝑆(𝑧𝑧)

+ 𝑆𝑆(−𝑧𝑧)� = 1 

(5) 

 

NN is a network or circuit of neurons, or in a 
modern sense, an artificial neural network composed of 
artificial neurons or nodes for solving artificial 
intelligence problems. The connections of the biological 
neuron are modeled in artificial neural networks as 
 

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
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Figure 4: Well A10, tracks: 1) Depth (m); 2) Temperature (°F); 3) Fluids; 4) GR log; 5) 
NPHI (%, blue curve) and RHOB (gr/cm3, red curve) logs; 6) DT log (μsec/feet, black 
curve); 7) Shallow RXO (ohm.m, pink curve) and deep RT (ohm.m, red curve) resistivity 
logs, on logarithmic scale. 

weights between nodes (Mohaghegh et al., 1995). A 
positive weight reflects an excitatory connection, while 
negative values mean inhibitory connections. All inputs 
are modified by weight and summed. This activity is 
referred to as a linear combination. Finally, an activation 
function controls the amplitude of the output. For 
example, an acceptable output range is usually between 
0 and 1, or it could be −1 and 1 (Ahmadi et al., 2012). 
Artificial networks may be used for predictive modeling, 
adaptive control, and applications where they can be 
trained via a dataset. Self-learning resulting from 
experience can occur within networks, which can derive 
conclusions from a complex and seemingly unrelated set 
of information. As neuron activation, the NN models 
used, as transfer functions, a hyperbolic tangent function 
(equation 6) in the neurons of the hidden layer and a 

linear function (equation 7) in the neurons of the output 
layer (Silva et al., 2015):  
 

tanh(𝑠𝑠) =
2

(1 + 𝑒𝑒−2𝑠𝑠) − 1, (6) 

 

where s represents the sum calculated for each neuron 
in each propagation. The calculation of a neuron of the 
hidden layer can be represented by the following 
function: 
 

𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑤𝑤0𝑖𝑖 + �𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 ,
𝑛𝑛

𝑗𝑗=1

 (7) 

 

where xj are the input variables; wij are the weight 
factors; n is the number of hidden layer input neurons; 
and w0i is the bias of each hidden layer neuron. 
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Figure 5: Workflow followed in the study. 

of the output layer, the function of calculating the 
permeability of propagation can be represented as 
follows: 
 

𝑘𝑘 = 𝑓𝑓 �𝑣𝑣0 + �𝑣𝑣𝑖𝑖𝑓𝑓𝑖𝑖 �
2

1 + 𝑒𝑒−2𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖
�

𝑚𝑚

𝑖𝑖=1

�, (8) 

 

DTree is a flowchart-like structure in which each 
internal node represents a test on an attribute, each 
branch represents the outcome of the test, and each leaf 
node represents a class label. The paths from the root 
to the leaf represent classification rules. A DTree and 
the closely related influence diagram are used in 
decision analysis as a visual and analytical decision 
support tool, where the expected values of competing 
alternatives are calculated. A DTree consists of three 
types of nodes: a) decision nodes, b) chance nodes, and 
c) end nodes (Quinlan, 1987). 

RESULTS AND DISCUSSIONS 
For well A03, Figure 3 shows, from left to right, the 
basic set of logs: Depth (m); GR (API); NPHI (%); RHOB 
(gr/cm3); DT (μsec/feet); and shallow (RXO, ohm.m) and 
deep resistivity (RT, ohm.m). In track 4, the GR log 

drops at 1775 m depth and then there is a sharp drop 
at 1800 m depth, from around 50ºAPI to approximately 
30ºAPI. This sudden change indicates a change in the 
type of lithology, as muddy rocks have high GR values 
and carbonate reservoir rock does not, suggesting a 
capping rock between these depths. On track 5, with 
the RHOB and NPHI logs, it is possible to see the 
intersection of the curves around 1785 m, indicating the 
presence of hydrocarbons (yellow shadow). The DT log 
in track 6 shows a drop in 1775 m in the transit time, 
indicating the presence of more porous rock, in this 
case, the reservoir rock, showing a characteristic 
carbonate heterogeneity. In track 7, the RT log grows in 
1785 m, indicating the presence of oil, as oil has high 
resistivity. The RXO log is close to the RT log, showing 
a small invasion (low permeability) and possibly 
indicating that the drilling fluid is oil-based. After this, 
a distance between the resistivity curves suggests the 
presence of water and a more extensive invasion 
(higher permeability), the beginning of the transition 
zone around 1830 m. Therefore, making a cross-
analysis of the values presented by each log, the 
hydrocarbon zone was delimited from 1785 to 1829 m, 
the transition zone between 1829 and 1850 m, and the 
water zone below 1850 m. 
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Figure 4 shows, from left to right, the basic set of 
logs for well A10. Analogously, the GR log presents an 
abrupt drop around 1750 m depth (track 4), indicating 
the beginning of the reservoir. On track 5, with the 
RHOB and NPHI logs, it is possible to see the 
intersection of the curves around 1750 m depth, 
indicating the presence of hydrocarbons in this region 
(yellow shadow). The DT log shows in track 5 a drop in 
1745 m depth, indicating the presence of more porous 
rock, in this case, the reservoir rock. The sharp increase 
in RT between 1750 and 1775 m depth in track 7, in 
addition to the fact that the drilling fluid is water-
based, also indicates the presence of a concentration of 
hydrocarbons. The separation between the RXO and RT 
curves in well A10 means more significant invasion and 
better permeability than in well A03. Therefore, 
making a cross-analysis of the values presented by each 
log, the hydrocarbon zone was delimited from 1746 to 
1794 m depth, the transition zone from 1794 to 1855 m 
depth, and from 1855 m depth onwards, the aquifer. 

Figures 6A and 6B present the laboratory 
permeability together with the permeability estimated 
by Timur’s (1968) equation, where the red dots are the 
estimates (kTimur), and the blue dots are the laboratory 
data (klab). In this, it is possible to observe a weak 
correlation in both wells, having R is 0.12 and -0.08 for 
wells A03 and A10, respectively (Table 3). This 
represents a solid reason to look for other types of 
estimates that work better. 

In the case of estimating the permeability of the 
two wells with MLR, the DT, GR, NPHI, RT, and RHOB 
logs were used as input data to create the regression 
model. The number of samples for wells A03 and A10 is 
135 and 263, respectively (Table 4). The generic 
equation created by the MLR has the form of Equation 
2, and the value of the coefficients c0 to c6. The error ε 
represents the adjustment error, which was not 
calculated and replaced by R to analyze the goodness of 
fit. It is also observed that c6, the coefficient for the DT 
log, is the most significant (9.47 and -40.58), which can 
mean the presence of secondary porosity for which this 
log is more sensitive, such as fractures or vugs. From 
this, the two best estimates for both wells are shown in 
Figures 7A and 7B, with the red being the estimates 
(kMLR) and the blue dots being the laboratory data (klab), 
having R is 0.36 and 0.50 for wells A03 and A10, 
respectively (Table 3). 

The same logs as the MLR estimate were used to 
estimate the permeability with FL. Figures 8A and 8B 
show these estimates for wells A03 and A10, respectively, 

where the red dots are the estimates (kFL), and the blue 
dots are laboratory permeability measurements (klab). 
Table 3 shows R=0.28 and 0.29 for wells A03 and A10, 
respectively, which is considered a wrong estimate. The 
choice of membership functions and the rules of this 
approach make it difficult to apply the FL technique. 

The permeability estimation with NN used the 
Random Bayesian Regularization, utilizing the same 
input logs for MLR and FL estimates. For both wells, 
the number of iterations was 1000, with 100 neurons in 
the hidden layer and only one in the output layer (k). 
For well A03, Figure 9A shows the estimate (red dots, 
kNN) and laboratory permeability measurements (blue 
dots, klab). The number of samples in training was 202 
(70%), with 44 (15%) in the validation and testing 
stages, and the results show an R=0.99 (Figure 9B) in 
the training stage, 0.13 in the test (Figure 9C) and 0.50 
for all (Figure 9D). For well A10, Figure 10A shows the 
estimate (red dots, kNN) and laboratory permeability 
measurements (blue dots, klab). The number of samples 
in training was 333 (60%), with 71 (20%) in the 
validation and testing stages, and the results show an 
R=0.85 (Figure 10A) in the training stage, 0.46 in the 
test (Figure10B) and 0.76 for all (Figure10C). It is 
essential to point out that if the percentage of samples 
is decreased in the training step to increase the test and 
all stages, this reduces the coefficient R between the 
estimate and the laboratory data. Figures 9A and 10A 
show the bad fit after this great effort, this good result 
is attributed to the grain contrast and very low values 
in the laboratory permeability values (Table 3). The 
better result in well A10 is likely due to more laboratory 
data than in well A03. 

The DTree approach results indicate R=0.71 and 
0.80 for wells A03 and A10, respectively (Table 3). The 
percentage of samples used for this estimate at the 
training, test, and all steps is the same as that used 
with the NN estimate. Figure 11A shows the results of 
Dtrees estimation (red dots, kDTREE) and laboratory 
permeability measurements (blue dots, klab) for well 
A03 and Figure 11B for well A10, which improves on 
the previous estimate. Figures 11C and 11D show that 
the GR log is the most critical factor in the two 
calculations, followed by RT and RHOB for both wells. 
In the case of NPHI and DT logs, DT is more important 
than NPHI for well A03 (Figure 11C). But in the case of 
well A10, the exact opposite happens, NPHI has more 
weight than DT (Figure11D). The difference between 
Figures 11C and 11D can be explained because these 
are different wells with similar but not identical 
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Figure 6: Timur’s permeability estimates (red dots, kTimur) and laboratory 
permeability measurements (blue dots, klab) for wells A03 (A) and A10 (B). 

 

Table 3: Wells A03 and A10 permeability estimates for the different 
algorithms, showing the values for R, the Pearson’s Determination Coefficient. 

Wells 

Estimates 

Timur 
Multilinear 
Regression 

Fuzzy 
Logic 

Neural 
Network 

Decision 
Tree 

A03 0.12 0.36 0.28 0.50 0.71 

A10 -0.09 0.50 0.29 0.76 0.80 
 

Table 4: Multilinear Regression Coefficients for the estimates of Wells A03 and A10. 

Wells No. Points c1 c2 c3 c4 c5 c6 

A03 135 8.32 -5.07 -2.73 0.40 2.23 9.47 

A10 263 25.56 0.93 -6.30 -2.00 0.34 -40.58 
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Figure 7: Multilinear regression (red dots, klab) and laboratory permeability 
measurements (blue dots, kMLR) for wells A03 (A) and A10 (B). 

lithology. The most significant influence of the GR log 
can be justified by the presence of carbonate mud in the 
pores, which hinders the flow of fluids in the porous 
media. The RT log also has a high correlation with 
permeability, as the electric current circulates along 
the same paths where the fluids circulate inside the 

reservoir. Finally, Figure 12 shows the DTree resulting 
from this estimate, indicating that it is a complex 
process, but it is efficient in a multifaceted assessment, 
such as permeability in carbonate reservoirs. Only the 
first two final nodes or decision levels (gray rectangles) 
are presented among the existing twelve.
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Figure 8: Fuzzy logic estimates (red dots, kFL) and laboratory permeability 
measurements (blue dots, klab) for wells A03 (A) and A10 (B). 

 

 
Figure 9: Artificial neural network results for well A03: (A) estimate (red dots, kNN) and laboratory 
permeability measurements (blue dots, klab); (B) Training step; (C) test step; and (D) all steps. 
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Figure 10: Artificial neural network results for well A10: (A) estimate (red dots, kNN) and laboratory 
permeability measurements (blue dots, klab); (B) Training step; (C) test step; and (D) all steps. 

CONCLUSIONS 
The permeability evaluation in carbonate reservoirs 
requires very robust calculations due to the 
heterogeneity of this type of reservoir. Consequently, 
using well logs, the permeability estimates for wells 
A03 and A10 of oilfield A in Campos Basin proved 
difficult. In this case, Timur's empirical model was an 
unsatisfactory estimate, with Pearson's determination 
coefficients R=0.10 and 0.15 for wells A03 and A10, 
respectively. Multiple linear regression, a simple 
mathematical process, showed R=0.36 and 0.50 in the 
same order for the wells indicated above, which is an 
improvement from Timur's estimates. Also, it proved to 
be better than the fuzzy logic approach, which 
presented R=0.28 and 0.29 to those same wells. The 
choice of membership functions and rules makes 
applying the fuzzy logic approach difficult. The neural 
network response improved on previous estimates, 
with R=0.50 and 0.76 for the above wells. But it is the 

decision tree that performed better than all the other 
estimates, with R=0.71 and 0.80, in that order, for the 
wells mentioned above, also showing that the GR and 
RT logs are the ones that have the most significant 
weight in the estimates. Executing a decision tree 
approach seems to be a complicated process, as it 
presents many disjunctives. But, for estimating a 
parameter as complex as permeability, it proved to be 
more effective than other approaches. 
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Figure 11: Decision tree estimates (red dots, kDTree) and laboratory permeability 
measurements (blue dots, klab): (A) well A03; (B) well A10; (C) predictor importance 
estimates for well A03; (D) predictor importance estimates for well A10. 

 

 
Figure 12: Decision tree scheme for estimating the permeability for wells A03 and A10. 
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