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RANK-CONSTRAINED SEISMIC DATA 

INTERPOLATION AND DENOISING

ABSTRACT. Rank-constrained seismic data interpolation methods have been used to cope with spatial 
sampling deficiencies, but some fundamental aspects are often neglected. Understanding their underlying 
features is the first step for developing new solutions to overcome existing limitations. We intend to 
provide an intuitive description regarding low-rank strategies using the similarities between irregular 
samplings and noise in terms of their eigenimage representation. The interpretation of data recovery 
as iterative denoising helps to clarify how the traces are retrieved and the role of the rank. To emphasize 
either signal recovery or denoising along with the iterations, we explore non-linear versions of the 
decreasing weighting factor that drives the reinsertion of original samples. This type of weighting factor 
shows superior denoising results when raised to an integer power. Simple synthetic numerical examples 
illustrate the mechanics of low-rank procedures and their responses to different parameters. We also 
show 3D field data examples from a land survey to demonstrate the robustness of reduced-rank 
approaches.
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INTRODUCTION

Seismic data are supposed to be acquired in the field u s ing a  u n iform s a mpling a n d f o llowing a  pre-

defined survey design, where the sources and receivers are distributed according to a  template (Vermeer, 

2012). The traces are sampled in time and space at constant rates, which define t he r espective limiting 

Nyquist frequencies, as stated by Shannon’s theorem (Xu et al., 2005). The energy beyond the Nyquist 

frequency is aliased, appearing at wrong places in the Fourier spectra. Adequate time sampling is a 

well-resolved task, whereas the spatial directions may suffer from limitations related to acquisition costs. 

Additionally, obstacles and other environmental issues often lead to nonuniform spatial samplings. Some 

reorganizations of the traces required by processing tools may also generate spatial irregularities.

Diverse data recovery strategies have been proposed to overcome those sampling deficiencies: regular 

dealiasing interpolators using local dips (Abma and Kabir, 2005) or prediction filters (Spitz, 1991; Porsani, 

1999), which have already been adapted to deal with irregular data (Naghizadeh and Sacchi, 2010a; Liu 

and Fomel, 2011); methods using Radon (Trad, 2003), curvelet (Naghizadeh and Sacchi, 2010b; Zhang 

et al., 2020), and Fourier transforms (Duijndam et al., 1999; Liu and Sacchi, 2004; Xu et al., 2005; Abma 

and Kabir, 2006; Zwartjes and Sacchi, 2007; Trad, 2009; Naghizadeh, 2012; Qin et al., 2018); wave-

equation approaches (Stolt, 2002; Fomel, 2003; Kaplan et al., 2010); and machine-learning techniques 

(Jia and Ma, 2017; Wang et al., 2019; Kaur et al., 2021).

Low-rank methods constitute another important category, which has been largely investigated in recent 

years (Trickett et al., 2010; Oropeza and Sacchi, 2011; Kreimer and Sacchi, 2012; Ely et al., 2015; Carozzi 

and Sacchi, 2021; Oboué et al., 2021; Cavalcante and Porsani, 2022). They assume that regular seismic 

data can be represented as low-rank matrices or tensors. Thus, the aforementioned irregularities increase 

their rank and this fact can be used to recover the missing samples by a reduced-rank approximation. 

Multidimensional data may be expressed directly as a tensor (Kreimer and Sacchi, 2012) or embedded 

into a Hankel or a Toeplitz matrix to perform the rank reduction. The last procedure is known as Cadzow 

filtering or multichannel singular spectrum analysis (MSSA) (Oropeza and Sacchi, 2011; Gao et al., 2013). 

Although a coarse, regular sampling may not affect this type of representation, it still can be used for 
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dealiasing, after some adaptation (Naghizadeh and Sacchi, 2013; Huang et al., 2020). It is also possible 

to treat multidimensional signals looking through one spatial direction at a time, as an extension of the 

eigenimage filter (Trickett and Burroughs, 2009; Cavalcante and Porsani, 2 021). I n some s ense, t his is 

equivalent to unfolding the data tensor, a widely-used operation in multilinear algebraic approaches (Kolda 

and Bader, 2009; Kreimer et al., 2013; Carozzi and Sacchi, 2019).

Here we intend to provide a meaningful description of the rank-constrained interpolation methods. We 

explore the similarities between irregular samplings and uncorrelated noise in terms of their eigenimage 

representation (Freire and Ulrych, 1988). Instead of thinking of denoising as a welcome side-effect of 

low-rank recovery (common to other techniques as well), we consider the reconstruction itself as a type 

of iterative denoising. We use the basic form of eigenimage reconstruction (Trickett and Burroughs, 2009; 

Trickett et al., 2010; Cavalcante and Porsani, 2021) to perform the analysis, but the same interpretation 

remains valid for low-rank recovery approaches in general.

Additionally, we evaluate the role of the rank and the weighting factor which controls the reinsertion 

of original samples in the iterative optimization scheme. This weight can assume at least two different 

forms: a constant value (Kreimer and Sacchi, 2012; Gao et al., 2013) and iterative-dependent values with 

either a linear or a non-linear behavior (Oropeza and Sacchi, 2011; Huang et al., 2020). We propose 

novel approaches for this parameter and discuss their strengths and weaknesses both qualitatively and 

quantitatively, using synthetic numerical experiments. We also show field data examples to better illustrate 

some points.

2 THEORY

2.1 Data matrix and its low-rank approximation

A complex function of three variables Dobs(f, x, y) represents a 3D seismic volume in the frequency-

space domain, where f is the temporal frequency and (x, y) are spatial coordinates. By considering 

irregularly spaced data at a regular grid, the function Dobs(f, x, y) becomes a tensor Dobs of dimensions 
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Nx × Ny × Nf . For each constant frequency f , the seismic data may be written as a matrix Dobs(f)

of dimensions Nx × Ny. The tensor and matrix representations assume that multiple samples falling

in the same cell are averaged, whereas the elements within empty cells are set to zero. We will drop

the dependency in f from now on, but keep in mind that the analysis is done for each frequency slice

independently. For now, we also suppress the subscript of Dobs to simplify the notation. Thus, consider a

matrix D, which comes from a complete and noiseless data volume.

The computation of a reduced-rank version D̃ of the matrix D (a key step of low-rank strategies) pri-

marily uses the singular value decomposition (SVD) (Golub and Van Loan, 1996). For a given rank r, the

approximation D̃ is the solution to an optimization problem which minimizes (Oropeza and Sacchi, 2011;

Menke, 2012)

J = ‖D− D̃‖2F =

Nx∑
i=1

Ny∑
j=1

|dij − d̃ij |2, (1)

where ‖.‖F is the Frobenius norm (or matrix norm) and |dij− d̃ij | represents the absolute value of the error

between the (i, j) element of D and D̃, respectively. Thereby, the SVD-based D̃ is the best approximation

in a least-squares sense (Eckart and Young, 1936):

D̃ = UΣVH . (2)

The notation [.]H symbolizes the conjugate transpose. The columns of the Nx × r matrix U are the first r 

left singular vectors of D (eigenvectors of the covariance matrix DDH ). The rows of the r ×Ny matrix VH 

are the first r  r ight singular vectors of D (eigenvectors of the covariance matrix D HD). The r × r  matrix 

Σ = diag(σ1, . . . , σr) is formed by the r largest singular values of D in decreasing order. They are the 

positive square roots of the first r eigenvalues of both covariance matrices. We may rewrite equation 2 as 

the sum
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D̃ =

r∑
k=1

σkukvk
H . (3)

The rank-1 matrix resulting from the outer product ukvk
H is called the k-th eigenimage of D and σkukvkH

is known as the k-th weighted eigenimage (Freire and Ulrych, 1988; Trickett and Burroughs, 2009). Note

that the vectors uk and vk are the k-th left and right singular vectors, which appear as the columns and

rows of U and VH , respectively. Equations 2 and 3 (known as truncated SVD), may also be expressed as

(Freire and Ulrych, 1988)

D̃ = DVVH =

r∑
k=1

Dvkvk
H (4)

or

D̃ = UUHD =
r∑

k=1

ukuk
HD. (5)

It can be shown that D has a rank that corresponds to the number of linear events contained in the

seismic volume (Trickett and Burroughs, 2009). Because amplitude variation along the events may in-

crease the rank of the data matrix, preprocessing including amplitude equalization is a good practice.

Low-rank approaches work with curved events as well, as long as they can be regarded as a superposi-

tion of linear events. Windowed processing may be used to ensure that premise, which is also common to

Fourier-based methods (Abma and Kabir, 2006).

It is worth mentioning that there is a direct relationship between the rank-r approximation D̃, the r

principal components, and the Karhunen-Loève (KL) transform of D, which is given by (Freire and Ulrych,

1988; Ulrych et al., 1999)

P = UHD = ΣVH . (6)

The inverse KL transform is

D̃ = UP, (7)
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which is equivalent to equation 5.

According to equation 4, D̃ can be calculated using the eigenvectors of the Ny ×Ny covariance matrix

DHD, obtained by the eigenvalue decomposition (EVD)

DHD = VΛVH , (8)

where Λ = diag(λ1, . . . , λNy) and the eigenvalues λj = σj
2. Note that equation 8 is correct only if the

matrix V contains the whole set of eigenvectors. Otherwise, it would represent a low-rank approximation

of the covariance matrix itself. There is no loss of generality if Ny > Nx, which means that D has a

maximum of Nx singular values and the remaining λj , j = Nx, . . . , Ny are equal to zero. The subsequent

discussion could use the other covariance matrix as well, but we turn our attention to DHD just to stay in

line with the theory discribed by Cavalcante and Porsani (2021). Instead of analyzing the singular values

σj , we will look at the eigenvalues λj . This is reasonable given that the percentage of energy contained in

the reduced-rank approximation is given by (Freire and Ulrych, 1988)

E(r) =

∑r
j=1 σj

2∑Ny

j=1 σj
2
=

∑r
j=1 λj∑Ny

j=1 λj
. (9)

The denominators in equation 9, which give the total energy, are also related to the Frobenius norm of D∑N

and the trace of the covariance matrices, such that ‖D‖2F = j 
y

=1 σj 
2 = trace(DHD) = trace(DDH)

(Ford, 2014).

Recall that we are looking at individual frequency slices, in the frequency-space domain. Thus, to 

retrieve the 3D seismic volume one should apply the procedure for all frequencies and compute the inverse 

Fourier transform. This operation results in a weighted eigenvolume if it is performed using only one of

the weighted eigenimages (see equation 3). Figure 1 illustrates a 3D synthetic volume with linear events

and its first and second weighted eigenvolumes. Their dimensions are 64 × 64 × 204, referring to Nx, Ny, 

and Nt (number of time samples). The first eigenvolume captures the most energetic features (the two
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dipping planes with the same slope along the y-direction). Figure 1d shows the rank-2 approximation as

well, which is sufficient to represent all the information. Figure 2 portrays the first 16 eigenvalues of DHD

corresponding to the frequency slice f = 29.3Hz. As expected, only two of them have significant values.

2.2 Covariance matrix and noise

The Nx ×Ny observed data matrix Dobs at a constant frequency, with additive noise, can be written as

Dobs = D + N, (10)

where N is anNx×Ny matrix containing zero-mean, spatially-white random noise, independent from trace

to trace. Let’s say, for simplicity, that there is only one linear event with slowness equal to zero (a horizontal

event). In this case, the Nx ×Ny signal matrix D is formed by constant-valued elements (Cavalcante and

Porsani, 2021).

The Ny ×Ny data covariance matrix is composed of signal and noise, so that (Kirlin, 1999)

C = DH
obsDobs

= (D + N)H (D + N)

= DHD + NHN + NHD + DHN

= DHD + NHN + 2Re
{
DHN

}
.

(11)

Because we are dealing with uncorrelated noise, the cross-terms 2Re
{
DHN

}
vanish. The noise covari-

ance matrix is given by

NHN = σ2NI, (12)

where σ2N is the variance of the noise and I is the Ny × Ny identity matrix. Thus, the data covariance 

7CAVALCANTE, Q., and PORSANI M.J.

Draft 



matrix can be written as

C = DHD + σ2NI. (13)

The horizontal event leads to a signal covariance matrix DHD = w2Ny1, where 1 is an Ny × Ny matrix

of ones (the identity matrix under Hadamard multiplication). The constant w is the seismic wavelet’s

component in frequency f . DHD has a rank equal to one, which means that it has only one eigenvalue

λD. By multiplying both sides of equation 13 with v1, which is the first eigenvector of DHD, we obtain

Cv1 = DHDv1 + σ2NIv1

= λDv1 + σ2Nv1

=
(
λD + σ2N

)
v1.

(14)

Therefore, λD + σ2N is the largest eigenvalue of C. This is true even with a non-horizontal linear event, 

where the signal matrix D contains a 2D complex sinusoid (Canales and Lu, 1993). The remaining Ny − 1 

eigenvalues of C are λ2 = λ3 = . . . = λNy = σ2N , which indicate a measure of how close the first 

eigenimage of Dobs is to the signal D. The positive-semidefinite (and Hermitian) nature of C means that 

its eigenvalues are always real and non-negative (Freire and Ulrych, 1988; Strang, 2018).

The extension for a greater number of seismic events is straightforward. As stated before, in a more 

general case, D has a rank equal to the number r of linear events (Trickett and Burroughs, 2009). There-

fore, DHD has r significant eigenvalues and the last N y − r are equal to zero. For matrix C, the smallest 

Ny − r eigenvalues are equal to σ2N . This fact may be used to choose the best value for r, which is not 

known a priori in practical applications. The deviation caused by the presence of noise described by equa-

tion 12 does not alter the eigenvectors so that they are the same eigenvectors of the signal’s covariance 

matrix DHD (Strang, 2018). In other words, the eigenvectors are insensitive to white noise (Ulrych et al., 

1999).

The rank-r approximation of Dobs is itself an approximation of the signal matrix D because noise has 
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equal influence in the so-called "signal" and "noise" subspaces, associated with the r largest and theNy−r

smallest eigenvalues, respectively. The signal is recovered indeed, whereas the noise is suppressed in a

manner equivalent to an average stack (Ulrych et al., 1999).

If the noise comes from several sources of similar size, it can be described by a Gaussian (or Normal)

probability density function (p.d.f ), because it is the limiting p.d.f for the sum of independent random

variables, according to the central limit theorem. Also, linear functions of Gaussian random variables are

themselves Gaussian (Menke, 2012). For these reasons, we use Gaussian additive noise in our numerical

experiments, but we agree that assuming Gaussian and spatially-uncorrelated noise may represent an

oversimplification in some situations (Duijndam et al., 1999).

Figure 3 shows the same 3D synthetic volume with three linear events and random noise added to

obtain a signal-to-noise ratio (S/N) equal to four. The first two eigenvolumes are represented as well,

along with the low-rank approximation using r = 2. Likewise the clean volume, r = 2 is a necessary and

sufficient condition to retrieve the information. The noise is attenuated in the reduced-rank version, but it is

still there, whereas the remaining eigenvolumes (not shown here) contains only noise. The graphic of the

eigenvalues in Figure 4 reinforces this idea. It is reasonable to think that a choice of r > 2 would produce

a noisier output.

2.3 Spatial irregularities

Consider now the observed data matrix Dobs at a constant frequency with spatial irregularities. It is related

to the (ideal) complete signal matrix D through the sampling operator S, such that

Dobs = S�D, (15)

where � is the Hadamard or elementwise product and the entries of S are given by

9CAVALCANTE, Q., and PORSANI M.J.

Draft 



sij =


0, if the point (i, j) is missing;

1, if the point (i, j) is not missing.

(16)

If S contains randomly distributed elements, the rank of the resulting data matrix increases in a way that 

resembles the one with uncorrelated noise (Figure 4). However, there is a fundamental distinction: the 

signal leakage caused by spatial irregularities reduces the most significant eigenvalues when compared to 

the noisy case. In Figure 5, nearly 50% of the traces were randomly removed from the previous 3D clean 

synthetic volume. The first two e igenvolumes, h owever, contain both band-limited noise and s ignal, but 

with lower amplitude than the original volume (see the reduced eigenvalues in Figure 6). The remaining 

eigenvolumes contain only noise and the superposition of all eigenvolumes reproduces the gaps. Figure 

6 also compares the eigenvalues for three decimation rates: 30%, 50%, and 70%. The leakage and 

the resulting signal-energy loss are more severe for a greater number of missing samples, but the noise 

stemming from irregularities stays at the same level.

Interestingly, the signal leakage throughout the spatial directions is responsible for filling the g aps. The 

random irregularities behave as noise, in some sense, but the signal is present and it is captured by the 

dominant weighted eigenimages. Recall that linear events correspond to bidimensional complex sinusoids 

in the frequency-space domain. Although the irregularities force the covariance matrix towards a diagonal 

one, it still measures the spatial correlation of those periodic functions.

Figure 7 portrays the 3D volume with Gaussian noise and 50% of randomly missing traces. Naturally, the 

eigenvalues resulting from the combination of uncorrelated noise and irregularities show a superposition of 

both effects. However, because the noise itself is also subject to energy leakage, its eigenvalues decrease 

as well, as we see in Figure 8.

Random irregularities appear as pervasive noise in the frequency-wavenumber domain as well 

(Naghizadeh and Sacchi, 2010c) and this fact is used by Fourier-based reconstruction methods (Abma 

and Kabir, 2006; Xu et al., 2005). This is closely related to the compressive sensing framework (Donoho,
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2006), which comprises, basically: random sampling, sparsity in some domain, and signal recovery from

just a small number of coefficients (Herrmann, 2010). If we think of the eigenimages as a basis, their re-

spective coefficients are the singular values (Freire and Ulrych, 1988). Thus, sparsity and low rank are just

two sides of the same coin.

If S contains a zero-valued column or row or if it represents a regular decimation (a coarse sampling,

in practice), the rank of Dobs is not affected. Zero-valued columns are always linear combinations of the

others. Naghizadeh and Sacchi (2013) have proposed an adaptation for the Cadzow/MSSA approaches

(which represent the data as Hankel or Toeplitz matrices) that is capable of dealing with regular decimation.

This is still an open field for the eigenimage filter presented here, directly using the data volumes or

matrices without any Hankelization operation.

2.4 Data completion and denoising

In the previous section, we show how irregularities manifest themselves as noise. Therefore, recovery

of missing samples and denoising are performed simultaneously, in a natural way. Once we have the

reduced-rank approximation D̃ of the observed data matrix, our reconstruction follows the iterative strategy

described by Oropeza and Sacchi (2011), where the original samples are reinserted in each iteration. This

procedure guarantees that the signal energy (which suffers from the leakage illustrated in Figures 5, 6,

and 7) will be retrieved. A similar approach is used by Abma and Kabir (2006) in the context of Fourier

reconstruction. The recovered matrix is

Dν = Dobs + (1− S)� D̃ν−1, (17)

where ν = 1, . . . , νmax represents iteration index, νmax is the maximum number of iterations, and D0 = 

Dobs. The matrix 1 contains ones and has the same size as S. Clearly, equation 17 only works for clean 

seismic data. Otherwise, the noisy samples would be reinserted in every iteration. To attenuate this effect, 
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Dobs may be replaced by the weighted average aνDobs+(1− aν)S�D̃ν−1, so that (Oropeza and Sacchi,

2011; Kreimer and Sacchi, 2012)

Dν = aνDobs + (1− aνS)� D̃ν−1. (18)

The weighting factor a may assume different forms. Here we compare the performances of a constant

value a ∈ (0, 1) (Kreimer and Sacchi, 2012; Gao et al., 2013) with an iteration-dependent value a ∈ [0, 1]

which decreases from a1 = 1 to aνmax = 0 (Oropeza and Sacchi, 2011). In the last case, we may write

a =

(
νmax − ν
νmax − 1

) 1
p

, (19)

using a fractional exponent. When p = 1, the parameter a decreases linearly, as proposed by Oropeza

and Sacchi (2011), whereas p > 1 leads to non-linear behavior. Huang et al. (2020) also propose a non-

linear factor which, on the contrary, increases from 0 to 1, in a slightly different way. But their aim is similar

to ours: emphasizing signal recovery in the earlier iterations and intensifying noise removal in the final

stages. Figure 9 illustrates the weighting factor a as a function of the iteration number for different values

of p (equation 19).

Another possibility for the iteration-dependent a, using an integer exponent, is given by

a =

(
νmax − ν
νmax − 1

)p
. (20)

Now, the earlier stages corresponding to signal recovery are sacrificed t o e mphasize n oise r emoval in 

the last iterations. When p = 1, the previous equations lead to the same behavior, where the parameter 

a decreases linearly. Figure 10 displays the weighting factor a as a function of the iteration number for 

different values of p (equation 20).
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Gao et al. (2015) and Carozzi and Sacchi (2019) use the parallel matrix factorization for low-rank seismic

tensor reconstruction, where expressions like equation 18 arise. The single-imputation algorithm described

by Tomasi and Bro (2005) to cope with missing data in PARAFAC multilinear decomposition (Kolda and

Bader, 2009) also leads to a similar equation.

Because the algorithm iteratively improves a solution, a stop criterion can be used to avoid unnecessary

computation once the relative change (in terms of the squared Frobenius norm) between consecutive

iterations is less than a small ε. Mathematically, we may terminate the process when

‖Dν −Dν−1‖2F
‖Dν−1‖2F

< ε, (21)

but this type of interruption might become a problem when using an iteration-dependent a. Also, care must

be exercised in the choice of νmax, because a fast convergence may suppress the final intended denoising

effect.

3 MORE NUMERICAL EXPERIMENTS

The same toy volume with three linear events is used to demonstrate how low-rank methods work and

most importantly, the way the key parameters may influence the results. To evaluate them, we compute

the quality

Q =
‖Dtrue‖2F

‖Drec −Dtrue‖2F
, (22)

in decibels, where the tensors Dtrue and Drec represent the original clean volume and the recovered

volume, in the time domain, respectively.

We first investigate how the user-defined rank r may affect the recovery quality. Figure 11 shows the

interpolation of the 3D volume with nearly 50% of missing samples, using r = 2 and νmax = 20 (the
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maximum number of iterations). The resulting volume is virtually perfect, with quality Q = 46.9dB. The

error contains no significant energy. Clearly, steep and conflict dips are not limiting issues. On the contrary,

the volume in Figure 12a obtained with r = 5 has an inferior quality Q = 19.2dB and the error in Figure

12b is quite relevant.

In Figure 13 we plot the quality Q as a function of r to exemplify the importance of this parameter. As we

have mentioned, r = 1 does not suffice to carry all the information. The optimum value is r = 2 and beyond

that value, the quality decreases rapidly. It seems that SVD-based approaches lack flexibility regarding the

choice of the appropriate rank: it should be the least possible value. This fact and the computational cost

have motivated the search for alternatives to the SVD, such as randomized-SVD (Oropeza and Sacchi,

2011), Lanczos bidiagonalization (Gao et al., 2013), and CUR decompositions (Cavalcante and Porsani,

2022).

Figure 14 shows the reconstruction (and simultaneous denoising) of the irregular 3D volume with Gaus-

sian noise (S/N=4). The main parameters are r = 2 and νmax = 10. We use a constant weighting factor

a = 0.5 in this example, which leads to a noisy seismic volume. The negative quality Q = −0.3dB means

that the Frobenius norm of the error is superior to the norm of the clean data volume. A constant factor

a = 0.8 is even worse, with Q = −2.6dB. A last single-filtering iteration is not sufficient to generate much

better results.

Examples of iteration-dependent a with a fractional exponent (equation 19) are illustrated in Figure 15,

with p = 1 and p = 3. The recovery results are fairly similar, with Q = 2.7dB and Q = 2.4dB, respectively.

Both of them are significantly superior to those using a constant a. However, as p increases, the last

denoising iterations are sacrificed.

In Figure 16 we use the other form of a, with an integer power p = 3 (equation 20). The quality

Q = 3.3 dB indicates a superior denoising performance, but the signal energy is not completely restored

so that the error volume in Figure 16b contains signal amplitude with opposite polarity. The explanation is

the following: the fast decay of a (see Figure 10) prevents the original traces to be reinserted in the very

first iterations. On the other hand, more iterations are dedicated to denoising.

Braz. J. Geophys., 2023
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Figure 17 displays the recovery quality as a function of p for both non-linear procedures. More significant

differences are related to a as described by equation 20, with an integer power. For the fractional exponent,

the differences are quantitatively detectable but not qualitatively apparent.

Curved events, such as reflections and diffractions, can be regarded as a superposition of linear events.

However, only little curvatures are acceptable to guarantee the low-rank assumption. One can also make

use of windowed-processing strategies and normal moveout correction to ensure that the seismic data can

be described by a small number of linear events (or, equivalently, a low-rank matrix or tensor). Because

there is possibly a spatial direction with linear behavior in multidimensional data (Abma and Kabir, 2006), it

might be better to compute the reduced-rank approximation along this dimension (Cavalcante and Porsani,

2021).

When using synthetic data we can clearly see and precisely quantify whatever is necessary. That is a

great advantage, but sometimes it is also a source of disappointment because we tend to not tolerate any

error. Of course, in the real world, we do accept a certain noise level and sometimes we even use it in our

favor.

To illustrate the robustness of low-rank eigenimage reconstruction, we use 3D land data acquired ac-

cording to an orthogonal geometry (Vermeer, 2012). The common-offset volumes resulting from this type

of survey design have a certain pattern of missing samples, which seems especially suitable for rank-

constrained interpolation. These irregularities are just consequences of the relatively straight and widely-

spaced acquisition lines (Vermeer, 2012). Before data recovery, some preprocessing is required, including

the application of source- and receiver-statics corrections, ground-roll attenuation, and amplitude balance.

For this particular data volume, the common-midpoint grid is 30m × 30m. The tensor dimensions

are 120 × 80 × 401, referring to the inline, crossline, and time sample, respectively. The time sampling

rate is 4ms and we restrict the frequencies to the 8 - 90Hz band. Figure 18 portrays the reconstruction

of 3D common-offset volumes using r = 3 and νmax = 30, in spatial windows of size 21 × 21 traces.

The weighting factor a has a linearly decreasing form. In Figures 18a and 18b, the irregular volume and

recovery result correspond to offset bin number 3, centered at 300m. In Figures 18c and 18d, both volumes

Braz. J. Geophys., 2023
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correspond to offset bin number 4, centered at 420m. Good interpolations result from the aforementioned

set of parameters, despite a quite noisy background. Figure 19 displays time slices at 1352ms of these

common-offset volumes. The grayscale is the same as Figure 18, and most of the gray is related to missing

samples. As expected, the shorter offset shows a higher degree of irregularities, which are not random,

but sufficiently low-correlated in terms of the covariance matrix.

4 CONCLUSION

Here we unveiled some fundamental aspects hidden in the heart of rank-constrained recovery approaches.

We demonstrated how the eigenimage representation can capture the signal using both energy and spatial

correlation. We believe that the interpretation of trace recovery as iterative denoising helps to clarify

the origin of the retrieved data. Once the appropriate rank is chosen, which may not be a simple task,

the reconstructed volumes using iterative-dependent weighting factors show superior quality. Non-linear

parameters with an integer exponent lead to better denoising results when compared to the linear ones.

However, the signal amplitude is not fully retrieved. Not only does understanding the basic features of

reduced-rank methods help us recognizing their strengths and weaknesses, but it is also essential to

overcome their limitations. The often-neglected role of the rank, for instance, should be further investigated

towards flexibility. Additionally, it is worth exploring less-costly alternatives to SVD, paying special attention

to those not demanding the exact value of the rank (Carozzi and Sacchi, 2019; Cavalcante and Porsani,

2022).
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Figure 1. 3D synthetic data with linear events. (a) Original volume. (b) First weighted eigenvolume. (c)
Second weighted eigenvolume. (d) Low-rank approximation using the first two eigenvolumes (b) + (c).
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Figure 2. Eigenvalues corresponding to the 3D synthetic volume with linear events for frequency f =
29.3Hz.
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Figure 3. 3D synthetic data with linear events and additive Gaussian noise. (a) Original volume. (b) First
weighted eigenvolume. (c) Second weighted eigenvolume. (d) Low-rank approximation using the first two
eigenvolumes (b) + (c).
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Figure 4. Eigenvalues corresponding to the 3D synthetic volume with linear events and additive Gaussian
noise, for frequency f = 29.3Hz.
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Figure 5. 3D synthetic data with linear events. (a) Original volume with nearly 50% of missing traces. (b)
First weighted eigenvolume. (c) Second weighted eigenvolume. (d) Low-rank approximation using the first
two eigenvolumes (b) + (c).
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Figure 6. Eigenvalues corresponding to the 3D synthetic volume with linear events and three decimation
percentages, for frequency f = 29.3Hz.
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Figure 7. 3D synthetic data with linear events and additive Gaussian noise. Nearly 50% of the traces
were removed in (a). (b) First weighted eigenvolume. (c) Second weighted eigenvolume. (d) Low-rank
approximation using the first two eigenvolumes (b) + (c).
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Figure 8. Eigenvalues corresponding to the irregular 3D synthetic volume with linear events and additive
noise, for frequency f = 29.3Hz.
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Figure 9. Weighting factor a as a function of the iteration number for different values of p (equation 19).
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Figure 10. Weighting factor a as a function of the iteration number for different values of p (equation 20).
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Figure 11. Reconstruction of the 3D synthetic data with linear events. (a) Original volume. (b) Decimated
volume. (c) Recovery result using r = 2. Q = 46.9dB. (d) Reconstruction error (c) - (a).
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Figure 12. Reconstruction of the 3D synthetic data with linear events. (a) Recovery result using r = 5.
Q = 19.2dB. (d) Reconstruction error (a) - 11(a).
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Figure 13. Reconstruction quality as a function of the rank r for the 3D synthetic volume with linear events.
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Figure 14. Reconstruction of the 3D synthetic data with linear events and additive Gaussian noise. (a)
Original noisy volume. (b) Decimated volume. (c) Recovery result using r = 2 and a = 0.5. Q = −0.3dB.
(d) Reconstruction error (c) - 11(a).

Braz. J. Geophys., 2023

32RANK-CONSTRAINED INTERPOLATION AND DENOISING

Draft 

Reviewer
Retângulo



0

0.2

0.4

T
im

e
 (

s
)

20 40 60
x

20
40

60y

0

0.2

0.4

T
im

e
 (

s
)

20 40 60
x

20
40

60y

0

0.2

0.4

T
im

e
 (

s
)

20 40 60
x

20
40

60y

0

0.2

0.4

T
im

e
 (

s
)

20 40 60
x

20
40

60y

(a) (b)

(c) (d)

Figure 15. Reconstruction of the 3D synthetic data with linear events and additive Gaussian noise. (a)
Recovery result using r = 2 and p = 1 in equation 19 (fractional exponent). Q = 2.7dB. (b) Reconstruction
error (a) - 10(a). (c) Recovery result using r = 2 and p = 3. Q = 2.4dB. (d) Reconstruction error (c) -
11(a).
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Figure 16. Reconstruction of the 3D synthetic data with linear events and additive Gaussian noise. (a)
Recovery result using r = 2 and p = 3 in equation 20 (integer exponent). Q = 3.3dB. (b) Reconstruction
error (a) - 11(a).
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Figure 17. Reconstruction quality as a function of the parameter p in equations 19 (fractional exponent)
and 20 (integer exponent), for the 3D synthetic volume with linear events and additive Gaussian noise.
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Figure 18. Reconstruction of 3D common-offset volumes using r = 3 in spatial windows of size 21 × 21
traces. (a) Irregular volume corresponding to offset bin number 3, centered at 300m. (b) Recovery result.
(c) Irregular volume corresponding to offset bin number 4, centered at 420m. (d) Recovery result.
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Figure 19. Time slices at 1352ms of common-offset volumes. The grayscale is the same as Figure 18. (a)
Original time slice of offset bin number 3, centered at 300m. (b) Recovered time slice. (c) Original time
slice of offset bin number 4, centered at 420m. (d) Recovered time slice.
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