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ABSTRACT. The prediction of ionospheric scintillation is a current research topic. 

Data-oriented models have been proposed since there is not a mathematical model able to 

simulate the complex ionospheric mechanisms for the prediction of scintillation. Data-oriented 

models employ machine learning algorithms that are trained with known, post-mortem data, 

and then perform predictions from new data. An ensem-ble method based on sampling boosting 

applied for a set of decision trees is employed for the prediction of scintillation in a single low-

latitude location in Brazil. The prediction was performed considering two classes, occurrence or 

absence of scintillation. The method uses as input temporal series of the scintilla-tion index S4, the 

total electron content (TEC), and some geomagnetic and solar indexes for that location. Data 

encompasses the summer months of the previous solar cycle years (2010-2018), and it was split 

into mutually-exclusive training and validation/test sets. Prediction performance was promising, 

showing a potential to be developed for operational use. Data limitations related to time series 

extension, or also to a balanced distribution of samples/instances covering both classes, since 

scintillation occurrences are usually scarce, can be further developed as new data are available.
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2 LOW-LATITUDE SCINTILLATION PREDICTION

INTRODUCTION

Many socioeconomic activities rely onGNSS (Global Navigation Satellite System) satellite constellations,

including the navigation of aircraft, land vehicles, and fluvial/maritime vessels. The Earth’s ionosphere

presents density irregularities, which cause fluctuation in phase/amplitude of the radio-frequency sig-

nals that traverse it. This effect is called ionospheric scintillation and may affect GNSS signals and/or

telecommunication signals. Scintillation is associated with complex electromagnetic phenomena in the

ionosphere, which are even described by some mathematical models but still require more resolution.

Scintillation is a current research topic due to its relevance. Since low-latitude scintillation is frequent in

Brazil, researchers at INPE, the National Institute for Space Research, have been studying ionospheric

scintillation and plasma bubbles for more than 50 years (DE PAULA et al., 2021) and participate in

related international cooperation programs and projects with other research institutes and universities

worldwide. In addition, INPE hosts the EMBRACE program (Brazilian Study and Monitoring of Space

Weather)1.

The absence of accurate mathematical models to simulate the ionosphere, and thus predict the

occurrence of scintillation, gave rise to data-oriented models, which are based on machine learning.

One such model “learns”, using known post-mortem data that may include time series of scintillation,

total electron content (TEC), and other related geomagnetic and solar variables and indexes. This work

employed scintillation and TEC data from 2010 to 2018, covering almost the entire solar cycle 24.

Scintillation data was acquired from the GNSS networks LISN (Low-latitude Ionospheric Sensor Net-

work, Peru), CIGALA-CALIBRA (Concept for Ionospheric Scintillation Mitigation for Professional GNSS

in Latin America - Countering GNSS High Accuracy Applications Limitations due to Ionospheric Dis-

turbances in Brazil), and ICEA (Institute for Airspace Control, Brazil). The S4 data provided by these

networks were then employed to generate S4 maps by means of inverse distance weighted interpola-

tion (VANI, 2018), which interpolates for each grid point of the map the S4 values of all available GNSS

stations, but weighting each value by the inverse of the distance station-grid point.

TEC data was generated using the RINEX files provided by the RMBC/IBGE (Rede Brasileira de

Monitoramento Contínuo dos Sistemas GNSS, Brazilian Institute for Geography and Statistics) using

the method adopted by EMBRACE/INPE (OTSUKA et al., 2002; SOUSA DO CARMO, 2018), which

generates a TECmap combining the TEC values of the available stations for the considered time interval.

These maps have some data limitations related to the quality, periodicity, and eventual out-of-service

status of particular GNSS stations. Another limitation is that, for the early years of the considered solar

cycle, the number of GNSS stations of these networks was lower than now, affecting the monitoring of

scintillation. The number of stations has increased over the years.

This work denotes as raw data the S4 and TEC values extracted from the corresponding maps since

these values undergo a specific pre-processing in order to have a more suitable representation for the
1https://www2.inpe.br/climaespacial/portal/pt/
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3 LOW-LATITUDE SCINTILLATION PREDICTION

machine learning algorithm. In the case of this work, the time series of these maps allowed the time

series generation of the S4 and TEC values for a single location with low magnetic latitude, the city of

São José dos Campos (SJC), Brazil.

The proposed data-oriented model aims to perform short-term predictions (30 minutes ahead) of the

S4 index during the night over SJC. The prediction performance of the model was evaluated by some

specific metrics, showing a potential for future operational use at EMBRACE/INPE.

Ionospheric Scintillation
Nowadays, Global Navigation Satellite System (GNSS) are commonly employed in many activities, even

in critical ones, such as aerial navigation. Besides GPS, other GNSS’s were proposed and implemented

(or are being implemented) around the world, such as the Russian GLONASS, the Chinese COMPASS,

and the European GALILEO. However, GNSS radio-frequency signals may be disturbed by the iono-

sphere dynamic, mainly by undergoing phase and amplitude fluctuations along the line-of-sight between

GNSS satellites and receivers on ground stations or on board vehicles, aircraft, or vessels. This phe-

nomenon is called ionospheric scintillation, being measured in amplitude by the S4 index, the normalized

standard deviation of the signal amplitude I acquired at a rate of 50 Hz:

S2
4 =

⟨I2⟩ − ⟨I⟩2

⟨I⟩2
(1)

The Earth’s ionosphere presents many phenomena directly or indirectly related to the Sun dynamics.

The Sun emits radiation and particles that affect the SpaceWeather between Sun and Earth, including its

electric and magnetic fields. In their turn, Earth’s electric and magnetic fields are also affected, as well as

the ionosphere density of ions and electrons, generating non-homogeneous and non-isotropic structures

of different scales of size, ranging from meters to hundreds of kilometers. Such structures represent

ionospheric irregularities, being the most important the ionospheric bubbles, regions with depletion of

ions and electrons. The boundaries of these irregularities may present high-density gradients that may

cause scintillation.

In addition, there is a very known plasma transport process from themagnetic Equator to low latitudes,

in both Earth hemispheres, called the Equatorial Ionization Anomaly (EIA), which causes the rise of

equatorial plasma, and eventually, the rise of bubbles that migrate towards the magnetic South and

East, and may suffer expansion or contraction in size. Bubbles are formed after sunset and generally

end up at the beginning of dawn. The occurrences of ionosphere bubbles start to intensify from October

or November of each year, presenting peaks along the Summer, and start to decrease from March on.

The general morphology of bubble occurrence and associated mechanisms is well understood, but

bubble occurrences present high day-to-day variability, making their prediction difficult (ABDU, 2019).

This poses a challenge for its prediction since this work proposes the use of time series that may embed

such variability hampering the learning phase of the proposed algorithm.
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4 LOW-LATITUDE SCINTILLATION PREDICTION

Prediction of Ionospheric Scintillation
Currently, notwithstanding the existence of mathematical models able to simulate the forming and evolu-

tion of ionospheric bubbles, they would require higher temporal and spatial resolutions in order to predict

scintillation (YOKOYAMA, 2017). There are some empirical models that employ or not historical data,

but they are inaccurate for the prediction of scintillation (BÉNIGUEL et al., 2011; RETTERER, 2010;

WERNIK et al., 2007). Scintillation may impact different socioeconomic services, and although being

the occurrence of scintillation restricted to some regions and periods of time, it can critically affect aerial

navigation and landing/take-off procedures, which increasingly rely on GNSS services. The prediction of

the occurrence of scintillation is actually the prediction of the scintillation index S4 in a point of the globe,

making the abstraction of the existence of a two-dimensional S4 field. Such index is actually a measure of

the amplitude uniformity of the radio-frequency signal emitted by a GNSS satellite and reaching a ground

receiver (there is also another measure considering the phase of the signal). For instance, worldwide

institutions acquire raw data from networks of GNSS stations, to derive S4 values, and the resulting set

of these values at discrete points of the globe is then interpolated, providing regional or global S4 maps

that can be thought of as a two-dimensional field.

In the absence of a suitable mathematical model, a common approach is to employ a data-oriented

model that is based on a machine learning algorithm. Similar approaches have been employed in differ-

ent areas such as weather forecast or hydrology prediction, and rely on large amounts of data and on the

use of supercomputers (CAMPOREALE, 2019). A machine learning algorithm has training, validation,

and test phases using mutually exclusive sets of historical data. In the training phase, the algorithm

“learns” using known data, adjusting learning parameters (for instance, weights and biases, in the case

of a neural network). In the validation phase, other parameters inherent in the algorithm configuration,

called hyper-parameters are optimized, and in the test phase, the resulting data-oriented model is eval-

uated.

A particular work (McGRANAGHAN et al., 2018) was the first to propose the prediction of scintillation

in high magnetic latitudes but relies on the persistence paradigm, i.e. assuming that scintillation may last

for some hours, suggesting that the ionosphere has a kind of non-linear memory. However many works,

before and after that one, only proposed data-oriented models, as some works involving the authors

(LIMA et al., 2014, 2015; REZENDE et al., 2010). In particular, a fresh search on the Google Scholar

website revealed only a single work in recent years related to scintillation prediction in low magnetic

latitudes, as proposed here.

The referred work proposes scintillation prediction using a data-oriented model based on gradient

boosting (ZHAO et al., 2021). It employs S4 data of the 2012-2020 period from Brazilian GNSS stations,

and also the virtual height of the ionospheric F-layer base provided by specific radars called ionosondes.

The proposed prediction is made for the consideredGNSS station considering two classes, occurrence or

not of scintillation, respectively being below or above the threshold of S4 = 0.5, in the period 2012-2020.
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5 LOW-LATITUDE SCINTILLATION PREDICTION

The prediction is daily (actually for each night, since scintillation occurs mostly after sunset), yielding a

single maximum S4 value for each night. Training data uses S4 values averaged every 5 minutes, but

only the maximum of these values is considered for each night.

The prediction results of that work are promising, but there is a single S4 value predicted for the

entire night, not taking into account its temporal variability. In addition, the machine learning algorithm

was trained using only a single maximum value for each night, not considering that, at the same time,

the GNSS station could lock different satellites in different azimuthal angles that may yield S4 values in

a range of values from absent/weak, moderate or strong scintillation. Therefore, besides the limitation

of a single-value prediction for each night, there is a strong bias to make the prediction of only high S4

values that are more likely associated with the occurrence of strong scintillation in any azimuthal direction

around the GNSS station. The approach is interesting, but the resulting prediction performance given

by the F1 score, a standard metric explained in the next section, was below 85 % in all cases, showing

room for improvement.

DATA AND METHODOLOGY

Machine learning algorithms that perform prediction or classification are the same, only focusing on dif-

ferent problems. The prediction/classification performance relies on a suitable amount of good-quality

data, which must undergo selection and pre-processing in order to be suitable for the considered al-

gorithm. For instance, raw data may be discretized or normalized. A predictor/classifier algorithm is

then applied, “learning” from known data in the training phase, thus generating a specific data-oriented

model. Known data refers to input data composed of predictive features plus the expected numerical or

categorical output data. This work employs two target classes, occurrence, and absence of scintillation.

The next phase is the validation, the tuning of the hyper-parameters of the algorithm, in order to improve

the model performance. Finally, the test phase uses another “unknown” set of data (i.e. not including the

target class). An analysis of the prediction performance is then made by some selected metrics. These

steps, although applied to prediction, are part of a more general Data Science process called Knowledge

Discovery in Databases (KDD), which is performed iteratively, in order to optimize each step.

Prediction metrics
The standard way to evaluate the prediction/classification performance is by a confusion matrix that sum-

marizes correct and incorrect predictions/classifications for a number of instances to be predicted/classified.

In this case, there are only two classes (occurrence/absence of scintillation), being the matrix is 2 × 2.

The diagonal elements contain the count of correct predictions for the occurrence class (true positives

TP and true negatives TN), while the remaining elements are the counts of mispredictions for the same

class (false positives FP and false negatives FN). Some prediction/classification metrics can be derived

from the confusion matrix, all having values in the range of 0.0 to 1.0, being the unity their optimal value.
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6 LOW-LATITUDE SCINTILLATION PREDICTION

These metrics are defined below considering instances of the scintillation occurrence class:

accuracy =
TP + TN

TP + TN + FP + FN
(2)

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

F1 score = 2× precision× recall

precision+ recall
=

TP

TP + 1
2(TP + FN)

(5)

Usually, it is intended to predict the majority of the scintillation occurrence instances (TP), while

minimizing the misprediction occurrences (FN). As a consequence, the number of mispredicted non-

occurrences (FP) is increased, and some trade-off must the chosen in such adjustment in order to mini-

mize the number of FNs without increasing too much the number of FPs. The F1 score is a metric that

better optimizes these numbers, being adopted in this work.

Data pre-processing
The data employed in this work covers the 2010-2018 period, but only the summer months, which usually

present more scintillation events. Data includes time series of the S4 and TEC indexes, both over SJC.

This work proposes a local S4 prediction for SJC using local data, and thus no information about

the location is employed. S4 and TEC data of nearby GNSS stations were implicitly considered in the

generation of the corresponding maps.

Besides the time series of the S4 and TEC indexes, other time series were employed to account for

the geomagnetic activity and the level of solar activity. The time series of geomagnetic indexes include

the AE (Auroral Electrojet), Dst, Ap, and Sym-H/Sym-D, while the time series of solar indexes include the

F10.7 (Solar flux), SN (daily sunspot number), IMF (Interplanetary Magnetic Field), and its components

Bz and IMF By, solar wind velocity, and pressure, respectively, Vsw and Psw. In addition, the time series

of the virtual height of the F-layer base (h′F ) was also employed.

The sampling rates of S4, TEC, and other variables and indexes are higher, but the corresponding

time series are downsampled to 30-minute by their maximum, in order to reduce the complexity of the

problem and processing needs. The remaining data has a poorer temporal resolution. Predictions refer

to finding out if there will be absence or occurrence of scintillation at a given time over SJC using the S4

threshold value of 0.2 to distinguish between these classes. Many pre-processing steps were required,

as described below.
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7 LOW-LATITUDE SCINTILLATION PREDICTION

• Generation of time series of S4 maps from GNSS raw data similarly as performed in the GNSS

network CIGALA-CALIBRA/INCT (VANI, 2018), but reducing the S4 values corresponding to the

set of neighboring IPPs (Ionosphere Piercing Point) at each grid point using the maximum value,

instead of the average, and using a 10-minute integration interval;

• Generation of time series of TEC using the method adopted by EMBRACE/INPE (OTSUKA et al.,

2002; SOUSA DO CARMO, 2018), also with 10-minute resolution;

• Removal of eventual negative TEC values from the TEC maps, since they have no physical mean-

ing; these negative values may be generated as a flaw of the method that estimates the absolute

TEC value from the relative one; each negative value is replaced by the average of the lower

non-negative 5% quantile;

• Extraction of the TEC and S4 values using the corresponding values of the grid point that is nearest

to SJC, obtaining time series of these variables;

• Re-sampling of the S4 and TEC and the other time series for 30-minute resolution;

• Filling in of the missing values of the S4 and TEC time series using the last valid value that precedes

each missing value;

• Normalization of the S4 and TEC time series values to the 0.0 to 1.0 interval.

• Use of the libraries Tsfresh (CHRIST et al., 2016, 2018) and Tsfel (BARANDAS et al., 2020) for the

extraction of predictive features from fixed-length windows of the considered time series, such as

maximum value, average, median, Fourier transform coefficients, etc.;

• Calculation of the time derivatives of each time series and estimation of nonlinear correlations

between different time series or their derivatives;

• Calculation of the average and the climatology deviation is given, for each value of the series, by

the difference between the value and the average of precedent values for a fixed-length window;

• Filtering of the predictive features composed of the original features plus the extra features obtained

in the former steps; features with variance lower than 0.1 are filtered out since they are possibly

meaningless in the learning process;

• Standardization of all predictive features in order to yield zero mean and unitary variance for each

one;

• Use the SMOTE function of the Imblearn library (LEMAÎTRE et al., 2017) to generate synthetic

instances from the set of original ones, in order to obtain a balanced distribution of instances (oc-

currence/absence of scintillation) in the training set.
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8 LOW-LATITUDE SCINTILLATION PREDICTION

The resulting data from these pre-processing steps is a feature vector for each instant of time, ac-

cording to the 30-minute resolution. This vector is composed of all the considered predictive features

and may be considered as an instance of the input data. Every time a prediction is devised, the feature

vector for that instant of time applies.

Data partitioning and validation schemes
Data partitioning generally split the set of predictive features (in this case, time series of the different

indexes) into mutually-exclusive training and validation sets, the first is used to generate a model, this is,

it is applied in combination with an optimization algorithm to fit a function to the set, such that the function

gives the best possible result given a loss function, the set is used validate the model performance, in

some cases can be used to select (tunning) a class of functions (different types of models) from a list of

possible functions.

Data partitioning schemes are heuristics that define how to divide the data among the datasets. In this

work, a particular double-nested partition scheme was employed, composed of an external partition level

to generate a testing and a pseudo-training dataset, and an internal partition level that splits the external

pseudo-training dataset into internal training and validation datasets. Therefore, such a nested partition

scheme generates training, validation, and test sets. Both the internal and external partitioning levels

used here employ one of the following schemes: Time Series Cross Validation with Gaps (GapKFold)

or Time Series Cross Validation Gap Walk Forward (GapWalkForward). When using GapKFold, both

internal and external schemes are GapKFold, the same is valid for the GapWalkForward.

• Time Series Cross Validation with Gaps (GapKFold): the set of predictive features is divided into

k mutually exclusive subsets, each one sorted in time and separated by 30-day gaps, being (k-1)

subsets used for training and the remaining one for validation; this scheme is iteratively repeated

by replacing the validation set by one of the training sets, rendering k different models (named

as k-Cross Validation); the resulting prediction is given by a polling scheme using these k models

(here, k was adopted as 5);

• Time Series Cross Validation Gap Walk Forward (GapWalkForward): is similar to GapKFold, but

generates datasets ordered in time, such that all data in the training dataset precedes the data

in the validation dataset. K-different models can be generated: in the first interaction an ordered

subset from all samples sets starts in the first sample, this is the training set, for each interaction the

sample number in the training set will increase from the same amount while keeping the validation

set with a fixed size, in the last interaction all the available samples will be covered when considered

the training and validation subsets together (here, k was also adopted as 5).
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9 LOW-LATITUDE SCINTILLATION PREDICTION

Table 1: Number of instances for the training, validation, and testing subsets using the GapKFold parti-
tioning for the 30-minute prediction, showing subsets (I) and (II) of the outer level cross-validation.

I II
Subset 1 2 3 4 5 1 2 3 4 5
Training 17406 16216 16450 17006 18700 15508 14288 14564 15158 17242
Validation 3256 3256 3255 3255 3255 2987 2987 2987 2986 2986

Test 4406 4406 4406 4406 4406 4406 4406 4406 4406 4406

Gradient Boosting Ensemble algorithms
Two machine learning algorithms of this work are state-of-the-art ensemble methods, i.e. based on a

finite set of classifiers/predictors. Two Gradient Boosting Ensemble algorithms are used in the training

and validation of the same data resulting in two different models. Test results are given by a polling

scheme using these two models. The algorithms are the XGBoost (CHEN et al., 2016) and the CatBoost

(DOROGUSH et al., 2018; PROKHORENKOVA et al., 2018). However, a specific stopping criterion

(early stopping) is applied for each model along the training, in order to avoid over-fitting. At every

iteration of the training, the prediction performance based on the validation subset is evaluated. Since

such performance degrades for too many iterations, an optimal number of training iterations can be

defined for each model.

It is worth noting that predictions are made for 6 prediction times, from 30 to 180 minutes of an-

tecedence (spaced by 30 minutes), and therefore, there are actually 6 models, each one resulting from

the combination of the models derived from XGBoost and CatBoost for a given prediction time using

the GapKFold partitioning scheme, and another 6 models using GapWalkForward scheme. These 12

models are evaluated separately resulting in 12 prediction results at each instant of time. Each one

implies in training, validating, and testing the related subsets, which comprise the number of instances

with 30-minute resolution.

The (Tables 1 and 2) show the number of instances for the 30-minute prediction using respectively

the GapKFold and the GapWalkForward schemes, both after performing the balancing of instances ac-

cording to the classes (occurrence/absence of scintillation). In these tables, there are 5 subsets for each

validation level, but in the table related to the GapKFold scheme, only the two first subsets are shown for

the outer level. In the table related to the GapWalkForward scheme, only the first (smaller) and the last

(larger) subsets of the outer level are shown. In both, for each outer level, all corresponding 5 subsets

of the inner level are shown.

RESULTS

This section summarizes the prediction results for the different models, prediction times (30-180 min-

utes), and data partitioning schemes, using the prediction metrics described before in Section 2.1. It

is worth noting that such metrics presented were obtained from the counts of TP, TN, FP, and FN el-
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10 LOW-LATITUDE SCINTILLATION PREDICTION

Table 2: Number of instances for the training, validation, and testing subsets using the GapWalkForward
partitioning for the 30-minute prediction, showing the smaller (I) and the larger (V) subsets of the outer
level cross-validation.

I V
Subset 1 2 4 4 5 1 2 3 4 5
Training 974 2144 3322 4514 5706 5836 10282 15172 19350 23566
Validation 596 596 596 596 596 3043 3043 3043 3043 3043

Test 3671 3671 3671 3671 3671 3671 3671 3671 3671 3671

ements for the test subset of each case. As expected, longer prediction times degrade the prediction

performance, but for 30 and 60 minute antecedence, results show the F1 score above 90 % for the Gap-

KFold scheme, except for the last subset (V) of the GapKFold. The same tendency was observed for

the V subset of the GapWalkForward scheme, but the results were poorer.

The same behavior is observed for all prediction times and both partitioning schemes and can be

explained as follows. Regardless of the constant-size subsets of the GapKFold scheme, and the “cumu-

lative” size of the GapWalkForward scheme, both V subsets refer to more recent instances, in this case,

from the period 2017-2018 (solar minima). The corresponding training and validation subsets precede

the V subset, being of the period 2011-2017 (solar maxima). Therefore, these poor results for the V

subset are due to the use of data from different phases of the solar cycle.

In general, considering subsets I to IV, the performance of the GapWalkForward scheme was lower

than the GapKFold one. The reason is that the GapWalkForward scheme preserves the temporal order-

ing of the training, validation, and testing sets, and thus the training employs only “past data” in relation

to validation and testing sets. On the other hand, the GapKFold training may include samples of “future

data” in relation to the validation and test sets. This is a kind of leakage from one set to another and gen-

erally improves the prediction performance since in the training phase the model may learn information

about the “future”.

A second problem may arise using the GapWalkForward scheme, which generates 5 models using

increasing sizes of the training and validations sets, since, in the generation of the earlier models, the

size of the training and validation sets may be too small precluding the learning process.

However, despite its lower prediction performance, the GapWalkForward scheme would be better for

operational purposes, since it does not rely on “future data”.

Tables 3 and 5 present results for 30 and 60 minute predictions, respectively for the GapKFold and

the GapWalkForward schemes, showing accuracy, precision, and F1 score for each case. Tables 4 and

6 present results for 30-60-90-120-180 minute predictions for both schemes, but showing only the F1

score.
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11 LOW-LATITUDE SCINTILLATION PREDICTION

Table 3: Prediction results for 30 min and 60 min antecedence using the GapKFold scheme.

30 min 60 min
Test subset Accuracy Precision F1 score Accuracy Precision F1 score

I 0.99 0.97 0.97 0.98 0.95 0.95
II 0.95 0.92 0.93 0.94 0.92 0.91
III 0.93 0.93 0.92 0.92 0.92 0.91
IV 0.95 0.90 0.91 0.94 0.88 0.89
V 0.93 0.72 0.79 0.90 0.57 0.60

Table 4: Prediction results for 30 min to 180 min antecedence using the GapKFold scheme.

30 min 60 min 90 min 120 min 150 min 180 min
Test subset F1 F1 F1 F1 F1 F1

I 0.97 0.95 0.95 0.94 0.95 0.93
II 0.93 0.91 0.92 0.92 0.89 0.90
III 0.92 0.91 0.88 0.87 0.88 0.90
IV 0.91 0.89 0.86 0.84 0.84 0.86
V 0.79 0.60 0.48 0.47 0.48 0.49

Table 5: Prediction results for 30 min and 60 min antecedence using the GapWalkForward scheme.

30 min 60 min
Test subset Accuracy Precision F1 score Accuracy Precision F1 score

I 0.75 0.61 0.61 0.69 0.50 0.42
II 0.90 0.84 0.86 0.87 0.82 0.83
III 0.88 0.85 0.86 0.83 0.82 0.81
IV 0.93 0.82 0.83 0.92 0.78 0.79
V 0.92 0.68 0.74 0.87 0.52 0.51

Table 6: Prediction results for 30 min to 180 min antecedence using the GapWalkForward scheme.

30 min 60 min 90 min 120 min 150 min 180 min
Test subset F1 F1 F1 F1 F1 F1

I 0.61 0.42 0.54 0.42 0.43 0.43
II 0.86 0.83 0.79 0.82 0.74 0.81
III 0.86 0.81 0.78 0.79 0.78 0.78
IV 0.83 0.79 0.75 0.74 0.73 0.72
V 0.74 0.51 0.47 0.47 0.47 0.47

CONCLUSIONS

The monitoring and prediction of ionospheric scintillation occurrence are current research topics and

have importance for GNSS warning systems, mainly those concerned with aerial navigation, and aircraft
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12 LOW-LATITUDE SCINTILLATION PREDICTION

take-off/landing procedures. Currently, there is only a sole recent work proposing scintillation prediction

at low latitudes (ZHAO et al., 2021), as already mentioned. Similarly to the proposed approach, it yields

a categorical value (occurrence/absence class), but a single value for all the nights. This may show that

such prediction is difficult and a state-of-the-art research topic.

The approach proposed here is very complex but rendered promising prediction results. It was pre-

ceded by many simpler approaches with poorer prediction performance, thus requiring a higher complex-

ity in terms of data pre-processing, data partitioning and validation, different algorithms combinations,

corresponding prediction models, etc. Processing demands are high for a personal computer, but would

easily be tackled by any state-of-the-art multi-processed server. In addition, the proposed approach can

be further improved and evaluated, as detailed below for future work. The goal is to reach a predic-

tion performance high enough to be effectively implemented for operational use in the EMBRACE/INPE

program and eventually be adapted for use in other countries located at low magnetic latitudes.

Future work
Future work includes the assessment of the proposed approach using currently available data, providing

feedback to refine the employed machine learning algorithm by optimizing its hyper-parameters, and en-

larging the training data set as more data is made available or exploring different pre-processing options

for the data. It also devised the extension of the presented approach of scintillation local prediction to

other Brazilian GNSS stations, eventually generating a training data set using data of all the considered

stations, but testing separately for each station. Other improvements are also devised:

• Use of more recent ionospheric data for the period 2019-2022, which present better quality, being

provided by the 4 networks of GNSS stations available in Brazil (LISN, CIGALA-CALIBRA/INCT,

ICEA, RBMC/IBGE), which are being updated with Septentrio2 receivers, while TEC data is pro-

vided by the RBMC/IBGE;

• Use of new S4 maps to be generated by a newmethodology being recently proposed by the author’s

research group, to extract more accurate values for SJC;

• Extension of the proposed prediction for other locations in Brazil that have GNSS stations; this

would be performed in two steps: (i) performing training and validation using multi-locality data, and

evaluating the resulting prediction performance, and (ii) enhancing the predictive data by including

location-specific magnetic coordinates;

2https://www.septentrio.com/en/products/gnss-receivers
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