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Abstract. An innovative comparative study among three different global optimization 
methods (GOMs) to invert time domain electromagnetic data (TDEM), was applied in 
the 1.5D subsurface resistivity imaging. These stochastic methods allow the incorporation 
of different kinds of constraints in the objective function, due to the easiness of 
implementation in their algorithms and their computational efficiency. Nevertheless, 
global optimization methods, like any other based on swarm intelligence cost much 
computational time, including problems with a high number of unknown parameters and 
when the forward modeling involves time-consuming calculations such as Gaver-Stehfest 
inverse transforms, Hankel transforms, and others. To overcome this difficulty, we 
developed a parallel pure MPI version of each GOM, allowing the distribution of the 
computation among several cores of a cluster. The performances of the classic version of 
particle swarm optimization (PSO), grey wolf optimizer (GWO), and whale optimization 
algorithm (WOA) using MPI parallelism for solving 1.5D TDEM inverse problems are 
compared here in a set of synthetic and real data. The principal outcomes show: (1) These 
GOMs reproduce quite well the distribution of subsurface resistivity either synthetic 
models or real data, (2) WOA and PSO exhibit better computational performances, 
converging first than GWO, (3) WOA provided better performance in the final value 
achieved of the cost function than PSO and GWO, and (4) pure MPI parallelism provided 
a 17x and 50x speedup in the computation time for both synthetic and real data, 
respectively. In a better way to classify this comparison, we analyzed the solutions using 
total variation (TV) and Global smoothness (GS) constraints, to identify smooth and sharp 
structures. Additionally, we have diminished the computational time execution with the 
parallel solution (MPI version of each stochastic traditional method) against the 
sequential processing. 
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INTRODUCTION 
 
The time domain electromagnetic method (TDEM) or transient electromagnetic (TEM) 

is a technique that has been used for more than 40 years to image the resistivity 

distribution in the subsurface. This technique involves the induction of an electric current 

into the ground generated in most cases by a big transmitter loop sized from tens to 

hundreds of meters of in length. The easiness of data acquisition and the low cost of field 

campaigns have become useful tools in several hydrogeological and environmental 

investigations. 

 

After some data processing, an inversion process is carried out to finally obtain the 

resistivity model of the studied area. There are many approaches to solving nonlinear 

inverse problems, the local gradient-based and global search methods, both involve the 

use of constraints in the cost function, to reduce its ill-posed nature (Silva et al., 2001). 

For the first case, local methods can converge fast but are extremely dependent on a good 

initial model (Gill et al., 2019). In the last case, global methods do not need a good starting 

point because the search space is made by trajectories selected randomly until a minimum 

global is attained. These stochastic methods, also called global optimization methods 

(GOMs) have developed their own techniques to avoid getting stuck in local minima. 

 

Compared to gradient-descent algorithms, GOMs have no restrictions linked to initial 

models due to the random nature of search space, but, unfortunately, are quite time-

consuming, because several runs are needed to evaluate the cost function (Sen and Stoffa, 

1995). Algorithms such as PSO (Kennedy and Eberhart, 1995), along with the grey wolf 

optimizer (GWO) (Mirjalili et al., 2014), simulated annealing (SA) (Kirkpatrick et al., 

1983) and genetic algorithm (GA) (Goldberg, 1989) have been classified into this group 

of heuristic algorithms. 

 

In spite of the computational cost, over the last 30 years, GOMs have been employed in 

the inversion of TDEM data to determine the distribution of resistivity in the subsurface. 

Monteiro and El-Kaliouby (2010) used SA, PSO, and a local optimization technique in 

the individual and joint inversion of vertical electrical soundings (VES) and TEM data. 

Similarly, Cheng et al. (2015), applied joint inversion of DC resistivity and TDEM data 
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using PSO to detect roadways in a coal mine in the east China, and for the same purpose 

Chandra et al. (2017) and Agarwal et al. (2018) used a GWO to an electrical and gravity-

magnetic data set, respectively. Supported by the former case, Li et al. (2018) introduced 

an improved GWO applied to geophysics inversion, and Godio and Santilano (2018) used 

the PSO for the inversion of electromagnetic soundings, applied to audio-magnetotelluric 

(AMT) and magnetotelluric (MT) data. These studies show that PSO and GWO are so far 

the methods most well-known and used, not only in the TEM data but also in other 

geophysical methods. 

 

In addition to these traditional methods, the whale optimization algorithm (WOA) 

founded by Mirjalili and Lewis (2016) is a recent heuristic method and is little used in 

earth sciences and geophysics. Few works published are restricted to 1D inverse problems 

such as Abdelazeem et al. (2019) and Liang et al. (2022). 

 

Apart from the 1D aforementioned works, 1.5D and 2D inversions of TEM data using 

GOMs in geophysics are quite rare and computationally demanding, limiting their use to 

local optimization methods that use complex derivative calculations to achieve the 

minimum of the cost function. Keeping in mind the idea of avoiding this complex 

computing and considering the benefit that GOMs offer to the interpreter, incorporating 

with easiness several constraints in the cost function and supported using a small 

computer cluster the challenge can be overcome. 

 

Based on Barboza et al. (2018), we develop a new comparative study analyzing the 

performance of parallel canonical versions of WOA, PSO, and GWO to solve the 1.5D 

TEM nonlinear inversion problem, imposing lateral continuity constraints on the 

parameters model (e.g., Auken and Christiansen (2004) and Santos (2004)), but following 

1D forward modeling in form of the layered models, such as (Auken et al., 2005). 

Particularly, we analyzed the total variation (TV) and global smoothness (GS) constraints 

in the model parameters vector as a way to infer small discontinuities in the lateral 

continuity, associated with sharp structures and faults (Loke et al., 2003). To alleviate the 

high computing cost related to the high number of evaluations of the cost function to 

achieve a global minimum (Sen and Stoffa, 2013), we developed a parallel MPI 

implementation of each GOM where assessments are carried out parallelly using 
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numerous MPI workers. The efficiency of each algorithm is conducted through tests with 

synthetic and real data. In both cases, the outcomes found demonstrated to be efficient in 

recovering the resistivity model. For the sake of simplicity, first, we discuss the 1D 

forward modeling of TEM, then we explain the 1.5D inversion of TEM and finally, we 

focused on addressing some general considerations about the parallel processing scheme 

used in WOA, PSO, and GWO. 

 

2 1D forward modeling of TEM data 

In this research we used the modeling formulation described in Ingeman-Nielsen and 

Baumgartner (2006), where the authors describe the calculation of the magnetic field 

above a horizontally stratified earth assuming that the loop is on the surface (z = 0). The 

formulation is used for central loop configuration, with the magnetic field in the center of 

the loop is expressed by: 

 

𝐻𝐻𝑧𝑧 = 𝑎𝑎𝑎𝑎 � �
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( 1) 

 

 
 
Assuming low frequencies, we can define k0 ≈ 0. Then equation above can be simplified 

as: 
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( 2) 

 

 

where Rn
TE is a function that can be obtained by a recursive relationship as follows: 

 

𝑅𝑅𝑛𝑛𝑇𝑇𝑇𝑇 =
𝑅𝑅𝑛𝑛+1𝑇𝑇𝑇𝑇 𝜑𝜑𝑛𝑛+1𝑇𝑇𝑇𝑇

𝑅𝑅𝑛𝑛+1𝑇𝑇𝑇𝑇 𝜑𝜑𝑛𝑛+1𝑇𝑇𝑇𝑇 𝑒𝑒−2𝑢𝑢𝑛𝑛ℎ𝑛𝑛 
( 3) 
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𝜑𝜑𝑛𝑛+1𝑇𝑇𝑇𝑇 =

𝑢𝑢𝑛𝑛
𝑧𝑧𝑛𝑛

− 𝑢𝑢𝑛𝑛+1
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( 4) 

 

 

�̂�𝑧𝑛𝑛 = 𝑖𝑖𝑖𝑖𝜇𝜇𝑟𝑟 
( 5) 

 
 

𝑘𝑘𝑛𝑛2 = 𝑖𝑖2𝜖𝜖𝑛𝑛 − 𝑖𝑖𝑖𝑖𝜇𝜇𝑛𝑛𝜎𝜎𝑛𝑛 
( 6) 

 

 

𝑢𝑢𝑛𝑛 = λ2 − 𝑘𝑘𝑟𝑟2 
( 7) 

 

 

where hn is the thickness of the layer n. For the last layer, denoted by N, and that 

corresponds to the geoelectric basement, we have RN
TE =0. I is the current in the loop, a 

is the radius of the circular loop, J1 is the Bessel function of order 1 and λ is the variable 

of integration.  

Since the transient response is a causal function (hz = 0 for t < 0), the  response's transform 

in the frequency domain to the time domain can be obtained in the form of a sine or cosine 

transform. Assuming the field does not vary in the area of the receiving coil, where b is 

the radius of the receiving loop and n is the number of turns, the mutual impedance can 

be expressed as: 

𝑍𝑍(𝜏𝜏) =
−2𝑛𝑛𝑏𝑏2

𝜎𝜎𝑎𝑎3
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2𝑔𝑔
𝜎𝜎𝜇𝜇0𝑎𝑎2

] sin(𝑔𝑔𝜏𝜏)𝑑𝑑𝑔𝑔
∞

0
 

( 8) 

 

where 

𝜏𝜏 = 2𝑡𝑡(𝜎𝜎1𝜇𝜇0𝑎𝑎2)−1 
( 9) 
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1
2

(𝜎𝜎1𝜇𝜇0𝑖𝑖𝑎𝑎2) 
( 10) 

 

 

Draft 



6   1.5D TIME DOMAIN ELECTROMAGNETIC INVERSION USING GOM AND PARALLEL PROCESSING  

 

Braz. J. Geophys., 40, 4, 2022 
 

and σ1 is the conductivity of the first layer, is also calculated using the filters developed 

by Christensen (1990). Then, the apparent resistivity is expressed by: 

 

𝜌𝜌𝑎𝑎(𝑖𝑖) = �
√𝜋𝜋𝑎𝑎2𝑛𝑛𝑏𝑏2

20𝑍𝑍(𝑖𝑖)
�

2
3

(
𝜇𝜇0
𝑡𝑡(𝑖𝑖)

)
5
3 

( 11) 

 

 

where i denotes each instant of time. 

 

3 Nonlinear inversion of 1.5D TEM data 

For the sake of clarify the 1.5D inversion scheme used in this research, we set a number 

of TDEM soundings (ns) disposed in a parallel line forming transverses. Each sounding 

was determined by a certain number of layers (nl), that involve ns×nl resistivity 

parameters (organized in an array ρ) and ns×(nl-1) thickness parameters (organized in an 

array h) for each layer, forming a total number of parameters Npar = ns (nl − 1). In addition, 

we set the Npar as an array that contains all model parameters (z) and (do) as a vector that 

contains the total number of observed apparent resistivity measurements (Nobs) along the 

transverse. 

 

Assuming these considerations, we can represent the set of observed apparent resistivity 

data, that is: 

 

𝒅𝒅𝑜𝑜 = 𝒅𝒅𝑝𝑝(𝒛𝒛) + 𝜉𝜉 
( 12) 

 

where dp(z) is a vector of apparent resistivity data predicted, obtained through the TDEM 

responses of 1D layered models (Anderson, 1982; Sandberg, 1988) and ξ is an array of 

discrepancies. Minimizing the norm of ξ can recover the model parameters (z), but it is 

necessary to incorporate constraints, because the solution become unstable. To stable 

solution, we define a three-terms parametric functional as follows (Barboza et al., 2018): 

 

𝑃𝑃[𝒅𝒅𝑝𝑝(𝒛𝒛),𝒅𝒅𝑜𝑜(𝒛𝒛); 𝒛𝒛] = 𝛷𝛷𝑑𝑑[𝒅𝒅𝑝𝑝,𝒅𝒅𝑜𝑜] + 𝜆𝜆𝑝𝑝𝑪𝑪𝑝𝑝(𝒛𝒛) + 𝜆𝜆ℎ𝑪𝑪ℎ(𝒛𝒛) 
( 13) 
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The equation above details three terms on the right side of parametric functional P. The 

first term Φd corresponds to the vector of discrepancies between observed and calculated 

data, and the second and third one are the constraints that represent the first-order finite 

difference matrix for resistivities Cρ (z) and thickness layers Ch (z) of the same layer, 

below neighbors pairs of soundings, respectively. These finite difference matrices are 

described with more detail in (Barboza et al., 2018). Also, in equation 13, λρ and λh are 

the pair of Lagrange multipliers used to compensate the mismatch between data and the 

constraints incorporated (Hansen, 1992). In this investigation, we used two constraints 

for computational modeling with synthetic and field data: (i) the GS constraint used to 

smooth high heterogeneities between model parameters (deGroot Hedlin and Constable, 

1990) and (ii) the TV constraint that has the opposite effect and allow discontinuous 

solutions (Bertete-Aguirre et al., 2002). In the next section, is described in detail the 

mathematical equations for both constraints. 

 

4 Mathematical equations of the lateral constraints 

Different approaches of inversion have been used for incorporating constraints in the cost 

function. Within these techniques, lateral continuity constraints or commonly called 

lateral continuity constraints (LCC), have been widely used to reduce the effects of high 

contrasts of 2D and 3D structures (e.g., Auken and Christiansen 2004; Santos 2004). In 

the case of Auken and Christiansen (2004), they only use laterally constrained inversion 

(LCI) with the L2 norm over the layers and resistivities of the model, resulting in an 

inappropriate method to detect sharp structures and faults. Keeping in mind this 

disadvantage, the use of L1 norm become helpful to overcome this issue. In addition, these 

inversion approaches cannot give us the easiness of modifying the cost function, because 

are based on local methods. In contrast, GOMs have quite flexibility to modify or 

incorporate constraints (TV or GS) or any other kind of constraints in the cost function. 

Below we described both types of constraints. 

 

4.1 Global smoothness constraint (GSC) 

Based on equation (13), the Φd, Cρ and Ch terms are based on the least-squares 

discrepancies between model parameters, that means a smooth representation of the 

physical property to be investigated (Constable et al., 1987). The above-mentioned 

depiction by each term is given as follows: 
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𝛷𝛷𝑑𝑑 =
1

𝑁𝑁𝑜𝑜𝑏𝑏𝑏𝑏|𝜎𝜎𝑑𝑑2|
||log((𝒅𝒅𝑜𝑜) − log (𝒅𝒅𝑝𝑝))||22 

( 14) 

 

 

𝐶𝐶𝜌𝜌 =
1

[(𝑛𝑛𝑛𝑛 − 1)𝑛𝑛𝑛𝑛]|𝜎𝜎𝜌𝜌2|
||𝐃𝐃𝜌𝜌[log (𝜌𝜌)]||22 

( 15) 

 

 

𝐶𝐶ℎ =
1

[(𝑛𝑛𝑛𝑛 − 1)(𝑛𝑛𝑛𝑛 − 1)]|𝜎𝜎ℎ2|
||𝐃𝐃ℎ𝒉𝒉||22 

( 16) 

 

 

where || · ||22 expresses the squared l2-norm and the σd
2, σρ

2, σh
2 terms on the denominator 

of equations (14)-(16), depicts the variances applied to normalize the parametric 

functional P of equation 13, during the inversion process. These values can be configured 

after several simulations of test. Furthermore, the Dρ and Dh operators symbolize the 

matrices of first-order derivatives, whose sizes are described in detail by (Barboza et al., 

2018). 

 

4.2 Total variation constraint (TVC) 

This constraint uses the least-absolute discrepancies, that means the opposite behavior for 

the GS constraint. It promotes some discontinuities between model parameters, favoring 

the search of sharp structures and faults (Rudin et al., 1992). The mathematical equations 

are shown below: 

 

𝛷𝛷𝑑𝑑 =
1

𝑁𝑁𝑜𝑜𝑏𝑏𝑏𝑏|𝜎𝜎𝑑𝑑2|
1
2

||log((𝒅𝒅𝑜𝑜) − log (𝒅𝒅𝑝𝑝))||1 
( 17) 

 

 

𝐶𝐶𝜌𝜌 =
1

[(𝑛𝑛𝑛𝑛 − 1)𝑛𝑛𝑛𝑛]|𝜎𝜎𝜌𝜌2|
1
2

||𝐃𝐃𝜌𝜌[log (𝝆𝝆)]||1 
( 18) 
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𝐶𝐶ℎ =
1

[(𝑛𝑛𝑛𝑛 − 1)(𝑛𝑛𝑛𝑛 − 1)]|𝜎𝜎ℎ2|
1
2

||𝐃𝐃ℎ𝒉𝒉||1 
( 19) 

 

 

where || · ||1 expresses the l1-norm. 

 

5 Considerations about Global Optimization Methods 

Meta-heuristic techniques of global optimization such as PSO, GWO and WOA have 

become well known among scientific communities. All these techniques emulate the 

social conduct of group of individuals in nature. WOA, PSO and GWO algorithms find 

promising regions to locate the global minimum, a common objective among of them. To 

locate this minimum, each algorithm is provided of certain mechanisms that allow them 

to locate the prey and obtain food in the search space. Keeping in mind this, to know the 

nature of each algorithm, in this section, we described the principal characteristics and 

mathematical equations used by each of them and addressed the general stopping 

condition applied in all simulations. 

 

5.1 Particle swarm optimization 

This method, implemented by Kennedy and Eberhart (1995) imitates the group conduct 

of a bevy of entities (birds) which work together to achieve a shared objective (e.g., to 

search meal). In this pursuit, each entity uses its own experience and the bevy experience 

to attain the common goal (Kennedy, 2006). 

 

For the case of PSO algorithm, the search for food is controlled by each particle i, having 

its position (zi), and its velocity (vi) within a search space Π. The performance of each 

particle is evaluated using equation 13, which expresses the fitness of particle’s positions. 

The best position reached by the i-th particle (noted as personal best) is depicted by (pi), 

whilst the best location reached by nearby particles in the bevy (noted as global best) is 

depicted by (gi). Along each iteration k, each particle changes its position corresponding 

to its recent velocity as in 

 

𝒗𝒗𝑖𝑖(𝑘𝑘 + 1) = 𝜁𝜁[𝒗𝒗𝑖𝑖(𝑘𝑘) + 𝑐𝑐1𝒓𝒓𝟏𝟏⨂(𝒑𝒑𝑖𝑖 − 𝒛𝒛𝑖𝑖(𝑘𝑘)) + 𝑐𝑐2𝒓𝒓𝟐𝟐⨂(𝒈𝒈𝑖𝑖 − 𝒛𝒛𝑖𝑖(𝑘𝑘))] 
( 20) 
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𝒛𝒛𝑖𝑖(𝑘𝑘 + 1) = 𝒛𝒛𝑖𝑖(𝑘𝑘) + 𝒗𝒗𝑖𝑖(𝑘𝑘 + 1) 
( 21) 

 

where i = 1, 2, . . ., npart, the parameters χ, c1 and c2, r1 and r2 are the constriction factor 

introduced by Clerc (1999), two constants and two random vectors enclosed by [0,1], 

respectively. The symbol ⊗ implies point-to-point vector product. After several inversion 

tests, we configured 𝜁𝜁 = 0.73, c1 = 2.9 and c2 = 1.2 for all simulations. Similarly, we 

defined a number of particles npart = 12 × np, being n p the total number of model 

parameters. Finally, we chose a value of 5000 iterations in all simulations. 

 

5.2 Grey wolf optimizer 

For almost 10 years the grey wolf optimizer (GWO) has been used widely for many 

scientists in different fields of the knowledge, including geophysics (e.g., Chandra et al., 

2017; Agarwal et al., 2018; Li et al., 2018). This probabilistic technique introduced by 

Mirjalili et al. (2014) emulates the social hierarchical behavior and the hunting approach 

of grey wolves (GW) in nature. The social classification structure is comprised by the 

alpha, beta, delta, and omega categories of wolves. The best three wolves in the group 

(alpha, beta, and delta), control the guidance of omega wolves towards to a shared goal 

(e.g., to find the prey). To achieve this goal Muro et al. (2011) defined three keys to 

explain the hunting approach used by the wolves: (i) searching, enchasing, and focusing 

the prey; (ii) tracking, envolving and suffocating the victim up to it quits moving, and (iii) 

attack against the prey. To describe the mathematical expressions of the algorithm, we 

denote each model in the wolf pack as an iteration of a particular vector: 

 

𝒛𝒛𝑖𝑖(𝑘𝑘) = [𝑧𝑧𝑖𝑖1(𝑘𝑘), 𝑧𝑧𝑖𝑖2(𝑘𝑘), 𝑧𝑧𝑖𝑖3(𝑘𝑘), … , 𝑧𝑧𝑓𝑓(𝑘𝑘), … , 𝑧𝑧𝑖𝑖𝑞𝑞(𝑘𝑘)]𝑇𝑇, 
 

( 22) 

 
 

where we denote the bold character to define a vector encompassing q scalar elements 

that represent the number of parameters (f=1,2,…q), the subfix i expresses the 

population number (i=1, 2,…, npart) and k denotes the number of iterations. 

 

To represent alpha, beta, and delta wolves in each iteration we have: 
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𝒛𝒛𝑙𝑙(𝑘𝑘) = [𝑧𝑧𝑙𝑙1(𝑘𝑘), 𝑧𝑧𝑙𝑙2(𝑘𝑘), 𝑧𝑧𝑙𝑙3(𝑘𝑘), … , 𝑧𝑧𝑙𝑙𝑓𝑓(𝑘𝑘), … , 𝑧𝑧𝑙𝑙𝑞𝑞(𝑘𝑘)]𝑇𝑇, 
 

( 23) 

 
Being l є {α, β, δ}.  
 

The coefficients of search can be calculated as: 

 

𝑎𝑎𝑙𝑙(𝑘𝑘) = 𝑎𝑎𝑓𝑓(𝑘𝑘). �2𝑟𝑟1𝑙𝑙
𝑓𝑓 − 1� 

𝑐𝑐𝑙𝑙
𝑓𝑓(𝑘𝑘) = 2𝑟𝑟2𝑙𝑙

𝑓𝑓;  𝑛𝑛 є {𝛼𝛼,𝛽𝛽, 𝛿𝛿}, 
 

( 24) 

 

 

Where rf
1l and rf

2l are two random numbers between 0 and 1 and f= 1, …, q. The 

coefficients af(k) are linearly diminished from 2 to 0 during each search process as follow: 

 

𝑎𝑎𝑙𝑙
𝑓𝑓(𝑘𝑘) = 2 −

2𝑘𝑘
(𝑘𝑘𝑚𝑚𝑎𝑎𝑚𝑚) ;  𝑓𝑓 = 1,2, … , 𝑞𝑞. 

( 25) 

 
 

After that, it is possible to calculate the distances between the current best position and 

the best positions of α, β, and δ wolves as: 

 

𝑑𝑑𝑖𝑖
𝑙𝑙𝑓𝑓 = 𝑐𝑐𝑖𝑖

𝑙𝑙𝑓𝑓 . 𝑧𝑧𝑙𝑙𝑓𝑓(𝑘𝑘) − 𝑧𝑧𝑖𝑖𝑘𝑘(𝑘𝑘), 
𝑖𝑖 = 1,2, … ,𝑛𝑛𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝;   𝑛𝑛 є {𝛼𝛼,𝛽𝛽, 𝛿𝛿} 

 

( 26) 

 

 

Once computed the distances with the above equation, it can be calculated the best 

positions of α, β, δ wolves as follow: 

 

𝑧𝑧𝑙𝑙𝑓𝑓(𝑘𝑘 + 1) = 𝑧𝑧𝑙𝑙𝑓𝑓(𝑘𝑘) −  𝑎𝑎𝑙𝑙
𝑓𝑓(𝑘𝑘).𝑑𝑑𝑙𝑙

𝑓𝑓(𝑘𝑘)     𝑓𝑓 = 1, … , 𝑞𝑞; 
                 𝑖𝑖 = 1,2, . . . ,𝑛𝑛𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝;  𝑛𝑛 є {𝛼𝛼,𝛽𝛽, 𝛿𝛿} 

( 27) 

 
 

Finally, it is calculated the updated position vector using an arithmetic mean among α, β 

vectors and the δ vector as follow: 

 

𝒛𝒛𝒊𝒊(𝑘𝑘) =
𝒛𝒛𝜶𝜶(𝑘𝑘 + 1) + 𝒛𝒛𝜷𝜷(𝑘𝑘 + 1) + 𝒛𝒛𝜹𝜹(𝑘𝑘 + 1)

 

( 28) 
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                                           𝑖𝑖 = 1, … , 𝑛𝑛𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝. 
 

 

The coefficient cl
f(k) gives random values between 0 and 2 to allow to explore or to attack 

the prey. If the value becomes 1, contributes to hunt the prey and if the value is greater 

than 1 contributes to search the prey. This behavior avoids getting stuck in the local 

minimums.  

 

The prey is attacked when it stops its movement, allowing the attack of grey wolves. 

During the last iteration when af(k) becomes 0, coefficients elements of al
f(k) are equal to 

0. The attack is mathematically modelled diminishing the af(k) value. Similarly, with the 

swarm optimization techniques, the GWO updates its position based on previous position. 

This mechanism involves an interchange of information among of all individuals that 

guide everyone to a better position within the search space.  

 

Similarly, to the PSO algorithm, we used a number of particles npart = 12×np, being np the 

total number of model parameters, and addressed a value of 5000 iterations in all 

simulations. 

 

5.3 Whale optimization algorithm 

The whale optimization algorithm (WOA) forms part of the swarm intelligence (SI) 

algorithms, whose essence is based on nature-inspired behavior of organisms in nature. 

Introduced and developed by Mirjalili and Lewis (2016), this technique simulates the 

natural hunting conduct of humpback whales for obtaining food. Its adoption has risen in 

the last 5 years among different researches comprising several scientific fields (e.g., Chen 

et al., 2019; Lee and Zhuo 2021). Particularly, the use of WOA in geophysical applications 

is very restricted and reduced to a few studies (e.g., Abdelazeem et al., 2019; Liang et al., 

2022), in comparison to the well-known PSO and GWO algorithms discussed above. 

 

The WOA is based on three similar phases to explain its functioning: (i) involving the 

prey, (ii) exploitation phase (i.e., air-ball net assaulting against the prey) and, (iii) 

exploration phase (i.e., the pursuit for the prey). Like the GWO, it is denoted each whale 

population in a particular iteration as a vector, following the expression: 
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𝒛𝒛𝒊𝒊(𝑘𝑘) = [𝑧𝑧𝑖𝑖1(𝑘𝑘), 𝑧𝑧𝑖𝑖2(𝑘𝑘), 𝑧𝑧𝑖𝑖3(𝑘𝑘), … , 𝑧𝑧𝑖𝑖
𝑓𝑓(𝑘𝑘), … , 𝑧𝑧𝑖𝑖

𝑞𝑞(𝑘𝑘) ]𝑇𝑇 , 
( 29) 

 
 

where we denote the bold character to define a vector encompassing q scalar elements 

that represent the number of parameters (f=1,2,…q), the subfix i expresses the 

population number (i=1, 2,…,npart) and k denotes the number of iterations. 

 

The first mechanism that simulates the encircling of the prey is computed following the 

equations: 

 

𝑑𝑑𝑖𝑖
𝑓𝑓 = 𝑐𝑐𝑖𝑖

𝑓𝑓 . 𝑧𝑧𝑓𝑓∗(𝑘𝑘) − 𝑎𝑎𝑓𝑓(𝑘𝑘).𝑑𝑑𝑓𝑓(𝑘𝑘), 
      𝑖𝑖 = 1,2, …𝑁𝑁,𝑓𝑓 = 1, … , 𝑞𝑞 

( 30) 

 
 

𝑧𝑧𝑓𝑓(𝑘𝑘 + 1) = 𝑧𝑧𝑓𝑓∗(𝑘𝑘) − 𝑎𝑎𝑓𝑓(𝑘𝑘).𝑑𝑑𝑓𝑓(𝑘𝑘), 
           𝑖𝑖 = 1,2, … ,𝑁𝑁 𝑓𝑓 = 1, … , 𝑞𝑞 

( 31) 

 
 

In a specific iteration k, zf
*(k) is only updated if there is a better solution. The coefficients 

a and c are denoted as: 

 

𝑎𝑎𝑓𝑓(𝑘𝑘) = 𝑎𝑎𝑓𝑓(𝑘𝑘). �2𝑟𝑟1
𝑓𝑓 − 1�, 

            𝑐𝑐𝑙𝑙
𝑓𝑓(𝑘𝑘) = 2𝑟𝑟2

𝑓𝑓, 

( 32) 

 
 

where r1
f and r2

f are two random numbers between 0 and1, and f=1,…,q. 

The attack strategy by bubble-net is made following three phases that consist in:  

• the shrinking circle’s phase: In this case, the af(k) value is diminished from 2 to 0, 

allowing a better proximity from the current agent (i.e., agent’s best position). 

• the spiral-shape’s phase: Emulates the spiral movement that whales perform to 

search the whales’ position, following: 

 

𝑧𝑧𝑓𝑓(𝑘𝑘 + 1) = 𝑑𝑑′𝑖𝑖
𝑓𝑓 . 𝑒𝑒𝑏𝑏𝑙𝑙 cos 2𝜋𝜋𝑛𝑛 + 𝑧𝑧𝑓𝑓∗(𝑘𝑘), 

           𝑖𝑖 = 1,2, … ,𝑛𝑛𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝; 𝑓𝑓 = 1, … , 𝑞𝑞. 

( 33) 
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𝑑𝑑′𝑖𝑖
𝑓𝑓 = 𝑧𝑧𝑓𝑓∗(𝑘𝑘) − 𝑧𝑧𝑖𝑖

𝑓𝑓(𝑘𝑘), 
𝑖𝑖 = 1,2, … , 𝑛𝑛𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝; 𝑓𝑓 = 1, … , 𝑞𝑞. 

( 34) 

 
 

where d´i
f represents the distance between current agent and the better solution obtained 

so far; b is a scalar that represents the spiral’ shape and l is a random number between 

[0,1].  

• the attack phase: This step involves a behavior in which there is a probability of 

50% to choose either the shrinking circle’s strategy or the spiral-shape’s strategy. 

This is computed as: 

 

𝑧𝑧𝑓𝑓(𝑘𝑘 + 1) = 𝑧𝑧𝑓𝑓∗(𝑘𝑘) − 𝑎𝑎𝑓𝑓(𝑘𝑘).𝑑𝑑′𝑖𝑖
𝑓𝑓              𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5 

𝑧𝑧𝑓𝑓(𝑘𝑘 + 1) = 𝑑𝑑′𝑖𝑖
𝑓𝑓 . 𝑒𝑒𝑏𝑏𝑙𝑙. cos 2𝜋𝜋𝑛𝑛 +  𝑧𝑧𝑓𝑓∗(𝑘𝑘)   𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5 

( 35) 

 
 

being p a random number between 0 and 1 that indicates the probability to choose the 

two-mechanism described above. 

 

Finally, the prey search mechanism, obeys the exploration and exploitation phases of the 

algorithm, where ak
f(k) is used to attack or to avoid the prey. If ak

f(k) is greater than 1, the 

search is carried out searching the prey, and if the ak
f(k) value is less than 1 performs 

bubble-net attack. This behavior is mathematically emulated by: 

 

𝑑𝑑𝑖𝑖
𝑓𝑓 = 𝑐𝑐𝑖𝑖

𝑓𝑓𝑧𝑧𝑓𝑓𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑(𝑘𝑘) − 𝑧𝑧𝑖𝑖
𝑓𝑓(𝑘𝑘), 

  𝑖𝑖 = 1,2, … , 𝑛𝑛𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝; 𝑓𝑓 = 1, … , 𝑞𝑞. 

( 36) 

 
 

𝑧𝑧𝑓𝑓(𝑘𝑘 + 1) = 𝑧𝑧𝑓𝑓𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑(𝑘𝑘) − 𝑎𝑎𝑓𝑓(𝑘𝑘).𝑑𝑑𝑓𝑓(𝑘𝑘), 
            𝑖𝑖 = 1,2, … ,𝑛𝑛𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝; 𝑓𝑓 = 1, … , 𝑞𝑞. 

( 37) 

 
 

being mf
rand(k) a random position vector generated to avoid premature entrapment in the 

algorithm and di
f is the distance between the random value generated and the best position 

of the prey. Similarly, with PSO and GWO, we configured 5000 iterations and a number 

of particles of npart = 12 × np, being np the total number of parameters, for all simulations. 
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5.4 General stopping condition. 

Exist several rules to determine the general stopping condition when working with 

GOMs: (i) A predefined maximum number of iterations, (ii) a maximum number of cost 

function evaluations, and (iii) a break condition which ends of iterating the algorithm 

once has reached a specific threshold, defined by the user. 

 

In this research we used the latter condition proposed by Bartle (1964), in which a 

stopping condition is accepted when the difference of the parametric functional P (m) 

between one previous iteration (k − 1) and the current (k), continues approximately equal 

below a determined tolerance δP that is, 

 

𝑃𝑃(𝒛𝒛)𝑘𝑘 = 𝑃𝑃(𝒛𝒛)𝑘𝑘 − 𝑃𝑃(𝒛𝒛)𝑘𝑘−1 ≤ 𝛿𝛿𝜌𝜌 = 10−6 
( 38) 

 

 

where || denotes the absolute value, and P(z)k and P(z)k−1 are the best solutions attained 

in the (k) and (k − 1) iterations, respectively. We configured for all simulations a Ni = 

500, that is the number of iterations in which the equation (31) is fulfilled, and the 

threshold value was configured as δP = 10−6. 

 

6 Parallel implementation of the GOMs 

Given that GOMs need a high number of evaluations of the cost function, it is simple to 

understand that the use of serial versions would demand a high computational cost. To 

decrease the processing time, we coded a parallelized classical version of each algorithm 

(WOA, PSO and GWO). In the parallel code implementation, we used the MPI library to 

distribute the computing across several processes, following the scheme applied by 

Metcalfe and Charbonneau (2003), where a master process assigns tasks to other MPI 

processes (workers) on requirement. For clarify the general functioning of the parallelized 

code, we established a common terminology of "agent" to refer to a whale in WOA, a 

particle in PSO and a wolf in GWO. Additionally, we used the common nomenclature of 

"specific subroutine" to refer to the principal operations performed in WOA, PSO and 

GWO, respectively. These operations are well described in section (5). 
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6.1 General functioning of the parallelized code 

In general, the functioning of the parallel code begins in the main algorithm, where is 

invoked by the master process a "specific subroutine". Once the population is created, the 

agents are distributed among the available worker processes resorting to a subroutine that 

computes the cost function in parallel (mpi-cost subroutine), sending an agent (one array 

that contains the model parameters) to each worker process. The subroutine waits for the 

responses of other workers and sends new agents to each worker, since the earlier 

computation has finished (cost function assessment). A determine worker process will 

perform 1.5D forward modeling linked to the agent received and will also evaluate the 

cost function according to the equation (13). The cost function value gives back to a 

master process and again a worker process is available to receive an agent from him. This 

programming paradigm allows to master process maintain all worker processes busy if 

there are no sufficient agents available to release. Once the cost function value is allocated 

to the agents in each iteration, the mpi-cost subroutine returns to the "specific subroutine" 

that executes its own operations. 

 

It is worth to mention that a huge part of the time-consuming of the inversion process 

using global optimization methods is due to the evaluation of the cost function. In this 

programming scheme, each worker process available will evaluate a set of particles (cost 

function) until the maximum number of particles is allocated in each iteration. Once the 

algorithm has reached a certain number of iterations (i.e., the stopping criteria is attained), 

the total execution time is calculated. 

 

7 Methodology used to set search space and Lagrange multipliers. 

An important issue related with the inversion results of 1.5D TEM data has to do with 

setting the search space for the parameters model, that is the upper and lower bounds in 

which GOMs take place. To overcome this problem, we have performed 1D inversions 

of TEM soundings, to provide the best range of search space. The Lagrange multipliers 

λρ and λh in equation (13) are also an important issue in the inversion. Most common 

approaches to determine these values are evaluated thorough the Pareto efficiency (i.e, to 

choose a pair values around the corner closer to the origin), following line searches (e.g., 

Rawlinson et al., 2006; Barboza et al., 2018). 
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Nonetheless, this technique is quite influenced by the used model and for the 

normalization values introduced in equations (14-16). For this reason, we opted the trial-

and-error method. Thus, after doing several simulations was established a value of 0.01 

for both multipliers (λr and λh) and σρ = 400, σd = 0.5, σh = 0.5 for the normalization values 

mentioned above. 

 

Additionally, the same analysis used to configure the Lagrange multipliers and the 

normalization factors in synthetic data, were used to configure the experimental data. We 

chose a value of 0.01 for both Lagrange multipliers (λr and λh), and σρ = 100, σd = 0.8, 

and σh = 0.5, as the configuration parameters obtained after executing 10 previous 

inversions. 

 

8 Synthetic examples 

To evaluate the performance of the parallelized versions of WOA, PSO and GWO, we 

elaborated two synthetic models (Figure 1a and 1b) referred to as models A and B. Both 

models have layer cake-shaped and represent sedimentary media, considered hydro 

geological targets. In model A, we elaborated a sedimentary basin having three layers of 

100Ω.m (yellow color), 50Ω.m (green color) and 500Ω.m (dark brown color) resistivity 

values. The basin has a very slight slope (< 5%), where the lateral distance between 

neighboring soundings is larger than the vertical depth. In model B, we created a glacial 

model, emulating a paleochannel model (Auken et al., 2008). The valley is engraved into 

melt-water sand with medium to high resistivity of 80 Ω.m (blue color), filled with glacio-

lacustrine clay of 20 Ω.m (yellow color), and covered all by clay till of 10 Ω.m (dark blue 

color). TDEM soundings in 21 sites separated by 200 m were generated using a 2D finite-

volume forward modeling code (Cockett et al., 2015), for model A and 16 sites separated 

by 100 m for model B. Also, we corrupted the synthetic data with Gaussian random noise 

with zero mean and standard deviation of 2.5% at the data. 
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Figure 1: Synthetic data models: (a) A and (b) True model of resistivity. (c) Apparent 
resistivity section modeled with 21 transient electromagnetic soundings equally spaced 
250 m apart), (d) Apparent resistivity section modeled with 16 transient electromagnetic 
soundings equally spaced (100 m apart). 
 

Figures 1c and 1d show pseudo-sections of apparent resistivity, for the model A and B, 

respectively. For both models, the apparent resistivity data were carried out using a 

central-loop configuration with a loop-size of 100 m, receiver coil area of 14.14 m2, and 

with a time range of 0.146-5.21 ms. Additionally, all inversions results were interpreted 

using 105 and 80 parameters for models A and B, respectively. 

 

Since the parallel versions of WOA, PSO and GWO allow us to run the inversions in an 

efficient way, we carried out 10 separate simulations. The mean value of those simulations 

outcomes is taken as the final solution. To select the number of agents that make up the 

population in WOA, PSO or GWO, we first have used the strategies proposed by 

Engelbrecht (2007) and Juan et al. (2010). Attending these authors, we tested using factors 

of 6, 8, 10 and 12 times, the number of model parameters to configure the number of 

agents in the population. We chose to use 1000 agents for the experiments with both data 

set. Below, are the outcomes for the two synthetic models elaborated for testing the 

performance of the parallel WOA, PSO and GWO algorithms. In both cases, to assure 

that the termination criterion be attained (Ni = 500), we kept 5000 iterations as the 

maximum range of iterations allowed. 
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8.0.1 Model A: Sedimentary Basin 

In Figure 1a is shown the true model used to build the Sedimentary basin, simulated in 

this work. The inversion outcomes obtained for this model using the parallelized versions 

of WOA, PSO and GWO are shown in Figure 2. We concluded that both constraints used 

to image the subsurface reproduce quite well the true model. On the other hand, we also 

evaluated the inversion results obtained for the Buried Valley model (Model B), shown 

in Figure 3, that will be discussed in the next section.  
 

To check the quality of both the calculated data and the best model solution, we performed 

analysis of cumulative distribution frequency on the relative errors (RE) (%) of the 

apparent resistivity data and inverted model parameters. 
 

 
Figure 2: Model A. Inversion outcomes estimated using WOA in (a and b), PSO in (c and 
d), and GWO in (e and f). The left and right columns show inversion results using TV 
and GS constraints, respectively. 
 

The study shows that almost the 85% of the inverted parameters model are reproduced 

with a value of RE=15% (Figure 4a) for the TV constraint, whilst almost 80% of these 

inverted parameters are reproduced with a value of RE=10% (Figure and 4b) for the GS 

constraint. It is worth saying that in almost all cases the reproduced data with both 

constraints present the worst performance with GWO than WOA and PSO algorithms. It 

is also possible to infer that almost 90% of apparent resistivity data achieved RE values 

lower to 10% for the TV constraint (Figure 5a) and RE values less than 5% for the GS 
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constraint (Figure 5b). It is noted that the GS constraint achieves the better results due to 

the smooth nature of the model. 

 

Additionally, the Figure 6 shows the evolution curves of cost function for the parallelized 

versions of WOA, PSO and GWO, using both constraints (for one of the 10 inversions). 

From the analysis of the figure, we can infer that the GWO required more iterations to 

converge than the WOA and PSO. Also, we can conclude that the GS constraint needed 

less iterations to satisfy the termination criterion defined in equation (31). 

 

As a complementary analysis of the outcomes presented above, we decided to evaluate 

the quality of them using a confidence interval, that included the calculation of the mean 

and the standard deviation of a set of 10 simulations used to calculate the best model 

obtained in the inversion process. For simplicity, we selected 4 representative TDEM 

soundings (5,10, 15 and 20) for each type of algorithm (WOA, PSO and GWO) with its 

respective TV and GS constraint. In Table 1 were depicted the mean and the standard 

deviation of the resistivity and thickness layers of the model.  

 

Table 1: A comparative calculation of the mean and standard deviation for the resistivity 

and thickness layers belonging to WOA, PSO and GWO algorithms using TV and GS 

constraints for the 5, 10, 15 and 20 soundings of model A. 
 

Model A Soundin
g 

Mean ± standard deviation (sd) 

  ρ1 ρ2 Ρ3 h1 h2 

WOA TV 5 100.7 
±2.405
2 

50.34±1.2075  502.72±9.946 38.40±2.2372 10.22±0.5495 

10 100.7 
±2.405
2 

50.34±1.2075 502.72±9.946 47.86±3.003 10.22±0.5495 

15 100.7 
±2.405
2 

50.34±1.2075 502.72±9.946 43±1.2981 10.22±0.5495 

20 100.7 
±2.405
2 

50.34±1.2075 502.72±9.946 32.9±2.9883 10.22±0.5495 

WOA GS 5 99.9±0.
7746 

50.0±0.4123 500.56±2.495 38.18±0.6099 9.98±0.1095 

10 98.28±
2.7004 

49.72±0.6261 498.74±5.2027 45,74±2.3702 9.98±0.1095 

15 99.58±
1.2696 

50.06±0.5505 500.45±2.3797 41.68±0.9757 9.98±0.1304 

Draft 



 ABRIL-BENJUMEA ET AL. 21 

Braz. J. Geophys., 40, 4, 2022 

20 101.70
±2.298
9 

50.02±0.5167 504.96±3.5367 34.16±1.6025 9.96±0.1140 

PSO TV 5 102.90
±4.270
8 

48.38±2.8155 496.32±9.4403 38.74±1.7097 9.94±0.4278 

10 100.6±
30.030
7 

46.72±2.8226 496.88±7.4991 44.06±2.0513 10.26±0.5128 

15 101.44
±3.290
6 

46.48±2.8534 503.04±5.4165 41.26±2.0379 9.92±0.7596 

20 101±3.
9762 

48.16±2.4745 515.22±9.7911 37.38±2.9845 9.44±0.4980 

PSO GS 5 99±0.6
442 

53.18±3.5892 498.58±5.049 39.14±0.7635 9.9±0.5568 

10 96.72±
3.6458 

50.54±3.8214 493.2±5.7693 44.46±2.6661 10.18±0.7155 

15 96.24±
3.5767 

51.68±2.9927 506.12±9.44 40.56±1.3353 10.08±0.7497 

20 102.12
±5.284
1 

54.44±5.152 499.40±9.455 35.12±1.8512 10.02±0.3701 

GWO TV 5 108.07
±8.246
8 

53.825±2.77 520.40±9.0207 37.675±3.44442 11.975±0.75 

10 108.1±
5.1839 

51.625±2.9228 532.45±9.1318 54.025±9.1289 11.425±1.0436 

15 110.875
±8.130
8 

52.775±2.7183 511.72±9.262 44.30±6.2944 11.425±0.3594 

20 110.1±
9.2869 

55.15±7.892 527.27±9.3 35.925±5.471 12.475±1.0372 

GWO GS 5 102.67
5±4.35
84 

53.85±3.2337 505.8±9.258 40.55±3.061 11.10±0.8756 

10 107±7.
17 

51.725±0.9032 506.55±9.697 50.47±1.926 11.575±1.513 

15 103.37
5±2.69
24 

55.275±5.8375 537.1±9.1766 47.975±6.4598 11.8±1.5556 

20 109.8±
6.6458 

57.2±7.0781 523.8±9.3844 39.9±5.0971 12.1±2.273 

 

Here, it is noted that resistivities and thicknesses for all soundings using the WOA 

algorithm with GS presented lower values than the WOA algorithm using TV. These 

results are quite consistent with those obtained in the inversion process in which GS 

constraint favors smooth structures in comparison to TV constraint. Similarly, the same 

behavior is reflected for the PSO and GWO algorithms using GS and TV constraints, 

respectively. In general, is observed a pattern in which the mean and the standard 

deviation for each resistivity and thickness of the model are quite close to the mean model 

obtained and used as a better solution that coherently builds the resistivity model in 

subsurface. The same procedures and outcomes were obtained for the synthetic model B 

and field data, but for the sake of simpleness are not shown in this work. 
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8.0.2 Model B: Buried Valley 

Similarly with the model A, Figure 3 depicts the inverted resistivity models using the TV 

and GS constraints for the parallelized versions of WOA, PSO and GWO. Both 

constraints are good approximations to the true model shown in Figure 1b. 
 

 
Figure 3: Model B. Inversion outcomes estimated using WOA in (a and b), PSO in (c and 
d), and GWO in (e and f). The left and right columns show inversion results using TV 
and GS constraints, respectively. 

 

 
Figure 4: Cumulative distribution for the percentage discrepancy between true model A 
and the estimated model parameter values in (a and b) and for the model B in (c and d), 
obtained with WOA, PSO and GWO. The left and right panels are associated with the 
inversion results using the TV and GS constraints, respectively. These outcomes were 
calculated using the best estimates shown in Figure 2 and Figure 3 for models A and B, 
respectively. 
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To validate these outcomes, as in the Model A, we calculated the RE value for apparent 

data and inverted model parameters. The outcomes reflect that almost 85% of inverted 

model parameters are recovered with a value of RE=15% for the TV constraint (Figure 

4c), while 85% of data are reproduced with lower values of RE=15% for the GS constraint 

(Figure 4d). It is also noted that almost 85% of the apparent resistivity data are reproduced 

with RE (%) less than 10% for the TV constraint (Figure 5c), whilst 85% of these 

parameters are reproduced with RE values lower to 5% for the GS constraint (Figure 5d).  
 

 
 

Figure 5: Cumulative distribution for the percentage discrepancy between observed and 
modeled apparent resistivity data for model A (a and b), and for model B (c and d), obtained 
with WOA, PSO and GWO. The left and right panels are associated with the inversion results 
using the TV and GS constraints, respectively. These outcomes were calculated using the best 
estimates shown in Figure 2 and Figure 3 for models A and B, respectively. 
 

 
 
Figure 6: Evolutions of the cost function value along the stages for the model A, using 
TV and GS constraints for the (a) WOA, (b) PSO and (c) GWO methods associated with 
the respective inversion estimates shown in Figure 2. 
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These results conclude that the TV constraint favors solutions in which the physical 

property of interest has some discontinuities. 
 

In figure 7, are depicted the evolution curves of cost function values. It is also inferred 

that the best performances are achieved with WOA, and PSO, while the GWO needs a 

higher number of iterations to achieve the stopping criterion defined in equation (31). 
 

 
Figure 7: Evolutions of the cost function value along the stages using TV and GS 
constraints for the (a) WOA, (b) PSO and (c) GWO methods associated with the 
respective inversion estimates shown in Figure 3. 
 

9 Field data 

We use an experimental data of TDEM soundings, from a survey carried out in 2010 in the 

city of Bebedouro, São Paulo, state, in Brazil (Bortolozo et al., 2014). From this survey, we 

chose eight TDEM soundings that are approximately aligned forming a transverse (Figure 

8a). The TEM survey was conducted with the central-loop array, with square loops with 100m 

sides. Was used the TEM system from GEONICS Limited. Was used the TEM-57-MK2 

transmitter, with a maximum current of 28A (Geonics, 1994), and the PRO-TEM receiver. 

The PROTEM receiver works with 20 channels in the turn-off regimes and the frequency 

range used was 3Hz, 7.5Hz, and 30Hz, which allows three depth investigation levels (30Hz 

is the shallower and 3Hz the deepest), which allows a time range of investigation from 0.088 

to 33.73ms. The data points were then integrated, and the outliers were removed. According 

with Porsani et al. (2012), this survey was done for better understanding the hydrogeologic 

setting of fractured basaltic and sedimentary aquifers in the region. 
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Figure 8: (a) TDEM soundings surveyed in the Bebedouro city. In orange is the 
geoelectric profile containing the 8 soundings (T75-T82) used in this work. Adapted from 
Bortolozo et al. (2014). (b) Thermal well PSA located in the Santa Ana Farm, near to line 
of TDEM soundings. The depth of the fractured basalt is shown from 50 m approximately. 
Adapted from Assumpção et al. (2010). 
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It is worth to mention that there are three principal geological formations in this area: (i) 

an upper layer that is Adamantina Formation, with approximate thickness that varies from 

50 to 100 m, (ii) an intermediate layer made up by the Serra Geral Formation, composed 

by fractured basalt, with approximate thicknesses that varies from 400 to 600 m (Giampá 

and de Souza, 1982), and (iii) the bottom layer that corresponds to the Botucatu 

Formation, which involves the Guarani Aquifer. 

 

In Figure 8b is shown the PSA borehole, located near to the transverse of TDEM 

soundings. This well exhibits an intermediate layer composed by fractures basalt, that 

extends from 50 m to 170 m of depth. Above this layer, is noted a sedimentary layer that 

comprises the Adamantina Formation, with an approximate thickness of 50 m. These 

records, allow us to support the geological setting above mentioned. The interpretations 

result of Bortolozo et al. (2014) to the transverse TDEM soundings are depicted in 

(Figures 9a and 10b). We use an interpretation model of 4 layers according to the results 

obtained by Bortolozo et al. (2014). Thus, the inversion outcomes were interpreted using 

56 parameters. 

 

Figures 9 and 10 show the inversion results obtained using TV and GS constraints with 

WOA, PSO and GWO, respectively. Both constraints reproduce quite well the solution 

of Bortolozo et al. (2014) with few differences. The principal discrepancy occurs between 

T77 and T79 sounding. It seems that a fault is affecting the basalt layer of the Serra Geral 

Formation (yellow to orange color) at a depth of 100 m. It is also noted in all inversion 

results, that the TV constraint identified this abrupt discontinuity better than the GS 

constraint.  
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Figure 9: Field data. (a) Solution of Bortolozo et al. 2014. (b-d) The inversion obtained 
with PSO, GWO and WOA, respectively, using TV constraint. The color bar that 
represents the resistivity value is the same in all figures. 

 

 
Figure 10: Field data. (a) Solution of Bortolozo et al. 2014. (b-d) The inversion of 
obtained with PSO, GWO and WOA, respectively, using GS constraint. The color bar that 
represents the resistivity value is the same in all figures. 

 
To crosscheck the quality of the inversion estimates obtained with both constraints, we 

performed statistical analysis of cumulative frequency distribution of the relative errors of 

all inversion results. These outcomes showed that almost 95% of the apparent resistivity 

data are reproduced with values less to RE=20% for TV constraint (Figure 11a), whilst 95% 

of the data are reproduced with RE lower than 30% for GS constraint (Figure 11b). It is 

also noted that the WOA and PSO exhibit the better performances than the GWO. This last 
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information is also validated in Figure 12, where the WOA needed fewer iterations to 

achieve the termination criterion than the PSO and GWO algorithms. It is also noted that 

the TV constraint in all cases exhibited better results than the GS constraint. 
 

 
 

Figure 11: Cumulative distribution for the percentage discrepancy between observed and 

modeled apparent resistivity data for Bebedouro area with the three methods, using TV 

constraint (a), and (b) using GS constraint. These outcomes were calculated using the best 

inverted models obtained for PSO, GWO and WOA, respectively. 
 

 
Figure 12: Field data. Evolution of the cost function value along the stages using TV and 
GS constraints for the (a) WOA, (b) PSO and (c) GWO methods associated with the 
respective inversion estimates shown in Figures 9 and 10. 
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10 DISCUSSIONS 

GOMs offer high flexibility to incorporate several kinds of constraints, once are 

implemented computationally. This vantage offers an easy way to the interpreter to 

establish possible characteristics about the electrical resistivity distributions on the 

subsurface. In this work, we compare two lateral continuity constraints such as TV and 

GS on the model parameters as a manner to determine localized discontinuities such as 

sharp structures and faults. These constraints were incorporated easily in classical 

versions of WOA, PSO and GWO. However, these techniques require a high 

computational cost associated with the huge quantity of cost function evaluations (Sen et 

al., 1993). As a manner of overcoming this disadvantage, several approaches adopting 

parallel architectures and programming languages, has been used in the last years (e.g., 

Lalwani et al. (2019)). 

 

Table 2: Total execution time comparison between parallel (MPI) and sequential 

inversions. 

 
Model Algorithm Parallel processing (MPI) Sequential processing 

TVC GSC VTC GSC 
Model A WOA 2.14 hr 1.06 hr 36.8 hr 18.44 hr 

PSO 3.8 hr 3.03 hr 68.9 hr 52.8 hr 
GWO 6.5 hr 3.64 hr 115.3 hr 64.8 hr 

Model B WOA 0.57 hr 1.58 hr 9.92 hr 27 hr 
PSO 2.06 hr 3.6 hr 35.13 hr 62.53 hr 
GWO 2.08 hr 4.2 hr 36.1 hr 71.42 hr 

Bebedouro WOA 0.32 hr 0.48 hr 16.19 hr 24.4 hr 
PSO 0.42 hr 0.57 hr 21.02 hr 28.65 hr 
GWO 0.5 hr 0.63 hr 25.06 hr 31.93 hr 

 

Such parallel techniques, allow to reduce the inversion time enormously. Table 2 presents 

a quantitative distribution of such reduction in time, taking as a pattern the serial 

processing time. For the performance tests, we run the inversions with both synthetic 

models and real data. We tested all parallelized versions of WOA, PSO and GWO on a 

high-performance cluster for scientific computing. Each CPU model of a cluster node is 

a 2.3 GHz Intel Xeon Sixteen-Core E5-2698v3 with 128 GB RAM. We use 32 MPI 

processes per node, that provided the best performance, reducing the computational time 

significantly. The pure MPI version achieved a 17x speedup (quotient between the 
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sequential time execution and parallel execution time) for both synthetic models and a 

50x speedup for the real data. 

 

In summary, both synthetic models and real data had better performances with the GS 

constraint, very useful to determine sharp structures and faults. Figure 9 is a good example 

of that, where the inverted model parameters reproduced well fractured basalt layer below 

(T77-T79) soundings. In the same way, Figure 3 proved to be efficient to localize sharp 

contacts and alternation of materials resulting from buried valleys. This evidence supports 

the fact that CL2 constraint is more sensitive to the model, principally to high-low 

variations of resistivity (Menke, 2018). 

 

 

11 CONCLUSIONS 

In this study, we compare the performances of three GOMs to solve 1.5D TEM inverse 

problem using synthetic and real data. These techniques offer high flexibility in 

incorporating different constraints in the cost function, but present some drawbacks, such 

as rapid entrapment in local minimum and high computational cost. To mitigate the latter 

disadvantage, we made a parallelization for the classical versions of WOA, PSO and 

GWO. This implementation is based on master/worker paradigm of parallel processing, 

in which master process performs WOA-related operations, PSO and GWO, and the 

worker processes complete the evaluation of the agents. The pure MPI version 

demonstrated be highly effective in the reduction of computational time for all 

simulations. We validate the parallelized versions of WOA, PSO and GWO in both 

synthetic models and the experimental data, using statistical analysis of cumulative 

distribution frequency of relative errors for apparent resistivity data and inverted model 

parameters. Both solutions provide good results and turn into an excellent alternative to 

the classical inversion techniques of time electromagnetic data. 

 

 

13 AVAILABLE CODES 

The codes can be available upon request to the main authors. 
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