PALEOMAGNETISMO DE UM ENXAME DE DIQUES TOLEITICOS DE IDADE MESO-CENOZÓICA, LOCALIZADOS NO RIO GRANDE DO NORTE.

SONIA DIAS CAVALCANTI GUERREIRO

Núcleo de Ciências Geofísicas e Geológicas/UFPa Caixa Postal 1611, 66000 — Belém — Pará — Brasil

AXEL SCHULT

Institut für Allgemeine und Angewandte Geophysik Theresienstr. 41, block C. 8000 Munchen 2. Alemanha Ocidental

Thirteen sites from a probably Lower Cretaceous tholeiitic dike swarm in Rio Grande do Norte (approx. 5.5°S, 36.8°W) have been sampled (128 samples). After the alternating field cleaning, their mean direction is D = 186.6°, I = + 20.6° with α_{95} = 14.0, K = 12.9, N = 10. This yields a pole at 80.6°S, 274.8°E with A₉₅ = 9.5 and K = 26.8, which for South America is nearer to the Upper Cretaceous poles than to the Lower Cretaceous poles. This may reflect an uncertainty in determination of the age of the dikes: although some existing radiometric determinations indicate ages of about 130 m.y., some authors attribute a younger age (Upper Cretaceous or Tertiary) to the dikes. Rock magnetic investigations showed that the magnetic phase in the tholeiitic rocks is mainly magnetite and maghemite with poor titanium content.

INTRODUÇÃO

No interior do estado do Rio Grande do Norte ocorre uma série de diques sub-paralelos com direção aproximadamente E-W, constituída por rochas toleíticas. Esse enxame constitui um dos quatro principais grupos de rochas vulcânicas pós-paleozóicas encontradas no Nordeste do Brasil (Sial, 1976).

Esses diques foram estudados por diversos autores que apresentaram idades discordantes para os mesmos. Beurlen (1967) (citado em Sial, 1976), atribui a esses diques idade terciária, associando-os aos eventos magmáticos do Pico do Cabuji, com idade K-Ar de 20m.a. Rolf (1965) referiu-se à intrusão turoniana dos basaltos do Cabuji datando-os portanto como Cretáceo Superior. Por sua vez Rodrigues (1976) diferenciou dois grupos de rochas básicas petrologicamente distintos. Segundo a autora ocorrem na região diabásios toleíticos, de idade cretácea inferior e olivinas basaltos, estes do Terciário. Sial (1975) estudando esses diques considerou-os também do Cretáceo Inferior, com base em datações pelo método de traços de fissão na apatita, determinando uma idade de 121m.a. a 131m.a. Outros autores citados em Sial (1976) também atribuiram a esses diques idade cretácea interior por datação pelo método potássio-argônio. Entretanto esses diques têm alta concentração de elementos incompatíveis K2O, TiO2 e P2O5, (Sial, 1975). Uma possível explicação para o alto teor em K₂O em algumas rochas básicas foi dada por Green e Ringwood (1967), que propuseram uma reação com as rochas encaixantes, citado em Sial (1975). Havendo a contaminação, a relação K/Ar não traduz a razão inicial entre esses dois elementos, não sendo, portanto, o método adequado à datação dessas rochas.

SITUAÇÃO GEOLÓGICA E AMOSTRAGEM

Na região de Lages, Anjicos e Açu onde foram coletadas as amostras deste trabalho, predominam rochas do Pré-Cambriano (Grupo Caicó e Grupo Seridó) e ainda alguns corpos granitóides do Pré-Cambriano que cortam indistintamente os dois grupos acima citados. Ao norte, recobrindo aqueles com-Apodi (Carta Geológica do Brasil ao milionésimo-Folha Jaguaribe SB-24). Na altura do paralelo 5º 30'S ocorre uma série de diques sub-paralelos com direção E-W, constituídos por rochas toleíticas (Rodrigues, 1976 e Sial, 1975). Os diques foram considerados verticais com base nos trabalhos de Rolf (1975) e Sial (1975).

Amostras desses diques foram coletadas por meio de uma perfuradora portátil ao longo da estrada e riachos, em cilindros de 2,5cm de diâmetro e cerca de 6cm de altura (Fig. 1). Ao todo foram obtidas 128 amostras de 13 sítios visitados. A orientação foi feita com uma bússola magnética.

A maioria das amostras de diabásio toleítico é mineralógica e texturalmente bastante monótona. Principalmente na região de Lages essa homogeneidade é observada para amostras bem distantes em um mesmo dique e também entre diques diferentes. As diferenças mais marcantes entre diferentes amostras são de granulação e estado de "alteração", enquanto as paragêneses dos minerais essenciais (plagioclásio, augita subcálcica, opacos e resíduos traquíticos) são bastante constantes (Rodrigues, 1976).

MEDIDAS PALEOMAGNÉ.TICAS

Os trabalhos de laboratório foram desenvolvidos no Núcleo de Ciências Geofísicas e Geológicas (NCGG/UFPa),

Figura 1 - Mapa esquemático de localização dos sítios estudados.

no instituto Astronômico e Geofísico (IAG/USP) e no Institut für Allgemeine und Angewandte Geophysik (Munique). Inicialmente foi medida, por meio de um magnetômetro rotativo da DIGICO, a magnetização remanescente natural (NRM) das amostras coletadas, previamente preparadas em cilindros de 2,5cm de diâmetro e cerca de 2,4cm de altura. A intensidade média de NRM dessas amostras apresentou grande variação sendo obtidos valores entre 0,3 e 300.10⁻³ Gauss. O passo seguinte foi submeter espécimes pilotos a desmagnetizações parciais por campos magnéticos alternados de modo a eliminar-se as magnetizações secundárias e assim isolar-se a magnetização remanescente característica (CARM). Os picos desses campos foram aumentados gradativamente de 50 0e ou 100 0e, conforme o caso, até o valor máximo de 1000 0e, limite do equipamento usado. Foram escolhidos ainda alguns pilotos para serem submetidos ao tratamento de desmagnetização térmica. A lavagem térmica foi efetuada a partir de 100°C e realizada a intervalos de 100°C, 50°C e 10°C conforme o comportamento da amostra. Ambos os desmagnetizadores usados são da Schonstedt.

A Fig. 2 apresenta alguns diagramas de Zijderveld. A Fig. 2a refere-se a desmagnetização da amostra B2/1/1 após

a lavagem térmica. Como nas demais amostras submetidas ao mesmo tratamento, a intensidade foi suavemente reduzida até cerca de 580°C. As Figs. 2b e 2c são exemplos de desmagnetização por campos magnéticos alternados. As intensidades das magnetizações das amostras submetidas a este tratamento foram intensamente reduzidas nas lavagens com pico de campo magnético de 100 a 200 0e. Freqüentemente foram atingidos valores de um terço a um vigésimo da magnetização inicial. O diagrama da Fig. 2d indica a presença de uma magnetização viscosa de direção aproximadamente oposta à direção da NRM.

Com base nas curvas de desmagnetização obtidas para os espécimes pilotos, foram lavadas as demais amostras dos diversos sítios e então medidas as magnetizações remanescentes características (CARM). Foi aplicada apenas a lavagem por campo magnético alternado porque apresentou uma influência sobre a magnetização remanescente muito mais forte do que a lavagem térmica. Os resultados obtidos estão resumidos na Tabela 1. A observação desses resultados mostra que os espalhamentos dentro dos sítios foram considervalmente reduzidos, como se pode comprovar pelos

Figura 3 — Exemplos de redução do espalhamento dentro do sítio após a desmagnetização por campo alternado. Símbolos claros indicam magnetização positiva, símbolos escuros magnetização negativa. Estão indicados ainda os círculos de confiança.

Figura 4 – Direção média da magnetização remanescente natural (NRM) e da direção da magnetização remanescente característica (CARM) dos sítios. Os símbolos significam: (o) inclinação positiva; (●) inclinação negativa; (+) direção média da CARM para os sítios; (*) campo magnético atual; (x) campo dipolar atual (D=3540, I = +70).

exemplos apresentados na Fig. 3. O espalhamento entre sítios foi também reduzido e as médias se colocaram numa posição aproximadamente Norte-Sul (Fig. 4).

Foram observadas magnetizações normais e reversas. Conforme se pode constatar pelas Figs. 1 e 4 e Tabela 1, as amostras ao longo do dique III apresentaram a mesma polaridade normal, enquanto as amostras ao longo do dique I e II apresentaram polaridade reversa. Atribuindo-se peso unitário a cada sítio foi determinada a direção média da CARM de 10 sítios, onde D=186°, I=+20,6°, α_{95} =14,0°, respectivamente declinação, inclinação e raio do círculo de confiança. Os sítios 48,53,54 não foram utilizados por não apresentarem resultados consistentes. Também não foi incluído, na média geral, o sítio B3 porque esse sítio não é um dique, mas sim um derrame basáltico que pode estar associado aos olivina-basaltos terciários (Rodrigues, 1976).

MEDIDAS DE TEMPERATURA DE CURIE E RAIO-X

Amostras de cada sítio visitado foram submetidas à análise de difração de raio-X após um enriquecimento dos minerais magnéticos com um ímã manual. Os minerais magnéticos encontrados foram magnetita, maguemita, ilmenita e hematita (Tabela 2).

Foram estudadas ainda a variação da intensidade da magnetização de saturação com a temperatura, para cada duas amostras de um mesmo sítio. O equipamento usado foi uma balança de translação de Humphrey Instruments Inc. O campo magnético indutor é da ordem de 1800 0e. Os resultados obtidos estão indicados na Tabela 2. A Fig. 5 apresenta algumas curvas termomagnéticas características obtidas.

DISCUSSÃO DOS RESULTADOS

A Fig. 5a mostra a curva termomagnética para a amostra B2/2/1. A curva de aquecimento é semelhante à curva tipo Q de Néel. A temperatura de Curie determinada para essa amostra foi de 532ºC. O traçado da curva indica ser o material constituído por uma fase cúbica pobre em titânio (Petersen et al., 1979). A curva de resfriamento mostra que houve em parte oxidação para hematita da fase próxima à magnetita, o que explica a diminuição da magnetização de saturação à temperatura ambiente. Na Fig. 5b está indicada a curva termomagnética para a amostra 43/1/2. A outra amostra do mesmo sítio apresentou curva muito semelhante. Pelo traçado da curva se conclui que em parte se tratava originalmente de uma titano-magnetita e, com a elevação de temperatura durante as medidas, houve transformação de maguemita metaestável em hematita a 300º - 400ºC (Petersen et al., 1979). A presença de maguemita indica uma oxidação a baixa temperatura ou intemperismo da rocha. A fase quase estável é responsável pela temperatura de Curie de 567°C obtida pela curva de aquecimento e de 551°C pela curva de resfriamento. As temperaturas de Curie obtidas para a maioria das amostras estudadas foram superiores a 550°C. Seções polidas mostraram alteração e

Figura 5 — Exemplos de curvas termomagnéticas para as amostras estudadas.

														A ₉₅ 9.5 K=26.8
		(3°) LONG	305.2	125.3	190.5	259.5	129.2	312.0	231.0	277.6	175.8)	286.6	153.4	274.8
	VGP	LAT(oS)	61.7	81.1	84.1	57.9	82.8	73.5	88.1	67.4	(72.5	72.8	84.8	80.6
		¥	174	387	91	169	97	25	91	71.5	96.5)	50.5	138.5	12.9
		α95	3.9	2.6	4.1	4.2	6.1	15.8	5.8	8.0	5.2	13.0	5.1	14.0
	CARM	INC	51.6	- 5.3	- 3.3	33.5	- 2.3	38.6	- 11.1	37.2	18.0	34.7	- 0.9	20.6
		DEC	190.1	177.2	4.2	210.1	178.2	183.5	1.9	197.1	(9.4	190.8	0.9	186.6
		z	σ	0	14	∞	7	2	8	9	0	4	7	10
	NRM	×	9.2	8.1	2.4	3.9	ados não consistentes	3.6	5.2	2.6	3.7	1.4	172.0	médio
		α	17.9	17.2	33.1	26.7		46.9	29.3	46.6	30.8	73.4	4.6	
		INC	58.6	- 17.2	- 12.9	30.6		19.7	- 15.8	15.7	17.4	44.2	- 0.8	valor
		DEC	238.5	191.7	22.1	216.6	result	334.9	252.6	198.6	357.6	273.2	359.4	
		z	6 6	11	14	11	4	Q	7	7	6	10	7	
		SITIOS	43	44	46	47	49	50	51	82	B3	84	85	

Resultados paleomagnéticos para o enxame de diques (localização média 5,50S e 36,80W). N=nº de amostras; 0% ou A₉₅ = raio do círculo de 95% de confiança. R ou K = parâ-metro de precisão. VGP entre parênteses foi omitido do cálculo do polo paleomagnético. Tabela 1 -

Tabela 2 – Resumo dos dados de propriedades magnéticas.

									and the second second second				
ls (4)	$(\Gamma cm^3 g^{-1})$	2.1	2.8	3.3	2.5	0.8	1.1	2.7	0.8	3.1	1.2	3.3	4.6
Tc (3)	(0 ₀)	567	558	579	572	586	579	576	583	532	579	565	564
POLARIDADE (2)		Я	ж	z	В	Я	Я	z	z	æ	z	R	z
NRM	(10 ⁻³ 7)	2.8	8.4	1.4	3.3	5.2	0.4	20.5	1.6	47.9	3.8	124.8	8.4
COMPOSIÇÃO (1)		Mt+l&+Hm+Mm	Mt+Hm+l &	Mt+1&	Mt+I&+Hm+Mm	Mt+I&+Hm	Mt+IR	Mt+I &+Hm+Mm	Mt+I&+Hm	Mt+I &+Hm	Mt+I &+Hm	Mt+I &+Hm	Mt+l&+Hm
AMOSTRA		43/1/2	44/1/2	46/7/2	47/4/2	49/2/2	50/2/2	51/6/2	54/5/2	B2/2/1	B3/5/1	B4/2/1	B5/1/1

(1) Mt: magnetita, 1&: ilmenita, Hm: hematita, Mm: magnemita

(2) N : magnetização normal, R: reversa
(3) Tc: temperatura de Curie obtida pela curva de aquecimento
(4) Is : intensidade da magnetização de saturação à temperatura ambiente.

- Cretáceo Superior
- Cretáceo Inferior
- Polo para o enxame de diques deste trabalho

Figura 6 – Polos paleomagnéticos para o Cretáceo da América do Sul, listados na Tabela 3.

abundantes lamelas de ilmenita em grãos de titanomagnetita o que pode ser interpretado como oxidação de alta temperatura (Ade-Hall et al., 1964).

Não se conseguiu perceber diferenças significativas entre as curvas termomagnéticas de diques distintos a não ser pelo fato que algumas curvas mostraram a presença de maguemita. Entretanto é possível verificar-se que em um mesmo dique os sítios localizados mais a oeste da área apresentaram intensidade de magnetização de saturação, à temperatura ambiente, mais intensa do que os localizados a este da área. Isto talvez esteja associado às diversas ocorrências de "necks" de idade terciária na porção oriental da área. Essas intrusões terciárias possivelmente induziram condicões oxidantes favorecendo a oxidação dos minerais magnéticos com a consegüente diminuição da intensidade de magnetização. Algumas amostras apresentaram curvas seme-Ihantes à curva termomagnética da amostra 43/1/2, Fig. 5b, indicando portanto a presença de maguemita (observar também a Tabela 2), o que é compatível com a explicação acima. Beurlen (1967) observou a ocorrência de arenitos cujos poros foram total ou parcialmente preenchidos por sílica e, acompanhado a isso, um enriquecimento em ferro. Ele atribui essa silicificação a ações hidrotermais ligadas ao vulcanismo terciário.

Observando-se os resultados obtidos para os diversos sítios, verifica-se que o tratamento de desmagnetização eliminou, em grade parte, as magnetizações secundárias produzidas, entre outros fatores, pela presença dos "necks" discutidos acima, permitindo a determinação de uma direção média para o enxame de diques estudado. Comparando-se essas direções com outras encontradas na literatura para o

Tabela 3 – Polos paleomagnéticos do Cretáceo da América do Sul. As referências dos polos apresentados nesta tabela estão citados em Schult et al. (1981).

	Idade	Posição		
	(m.a)	os	οE	A ₉₅
1. Rio de Los Molinos	129-150	78	13	8
2. Almafuerte	123±4	72	25	6
3. Cerro Colorado	121±3	83	16	10
4. Serra Geral	115-130	78	54	5.7
5. Serra Geral	119±5	85	115	3.7
6. Maranhão	118±6	84	81	1.9
7. Cerro Rumipalla	<121	88	146	9
8. La Serena	~110	81	209	4.5
9. Cabo de St. Agostinho	85-99	88	315	4.5
0. Poços de Caldas	63-80	81	233	10
1. Rio Grande do Norte	Ks (?)	81	275	9.5

continente sul-americano para o Cretáceo (Tabela 3, Fig. 6), verifica-se que o polo obtido aproxima-se mais dos polos do Cretáceo Superior do que dos polos do Cretáceo Inferior sugerindo a possibilidade desses diques serem de idade Cretáceo Superior como indicado por Rolf (1965). Entretanto este resultado não é conclusivo, uma vez que o círculo de confiança obtido para esses diques se superpõe a alguns círculos de confiança de polos do Cretáceo Inferior e, do ponto de vista do paleomagnetismo, esta idade também é válida. Da mesma forma, com base em resultados paleomagnéticos não se pode excluir uma idade terciária para esses diques, pois existem muito poucos dados paleomagnéticos para o Terciário para a América do Sul para ser possível uma comparação. São necessários, portanto, trabalhos mais detalhados de modo a se determinar com maior precisão a idade desse polo paleomagnético.

AGRADECIMENTOS

Os autores expressam aqui seus agradecimentos ao Conselho Nacional de Desenvolvimento Científico e Tecnológico e ao Bundesministerium für Forschung und Technologie, cujo suporte financeiro permitiu a realização deste trabalho, dentro do acordo bilateral Brasil-República Federal da Alemanha. Agradecem ao Dr. L. Lins e ao Dr. R. Schwab pelo auxílio no trabalho de campo.

Agradecem ainda ao Dr. Igor Pacca por ter cedido o laboratório de paleomagnetismo do Instituto Astronômico e Geofísico da Universidade de São Paulo, para a realização de algumas dessas medidas.

REFERÊNCIAS

- ADE-HALL, J.M., WILSON, R.L. e SMITH, P.J. 1964 The petrology, Curie points and natural magnetizations of basic lavas. Geophys, J. R. Astron. Soc. 9: 323-336.
- BEURLEN, K. 1967 Geologia da região de Mossoró. Editora Pongete, 137 pp.
- GREEN, O.H. e RINGWOOD, A.E. 1967 The genesis of basaltic magmas. Contr. Mineral. and Petrol. 15: 103-190.
- RODRIGUES, M. F. B. 1967 Rochas basálticas do Rio Grande do Norte e Paraíba IG/USP – tese de mestrado.
- ROLF, P. A. A. 1965 O pico vulcânico do Cabuji. DNPM. Notas preliminares e estudos. 126: 26 pp.
- PETERSEN, N., POHL, J., SCHMIDBAUER, E., SCHULT, A. e SOFFEL, H.C. – 1979 – Typsierung der Is/T – Kuerven von Basalten. (não publicado).
- SCHULT, A., HUSSAIN, A.G. e SOFFEL, H.C. 1981 Paleomagnetism of Upper Cretaceous volcanics and Nubian Sandstones

of Wadi Natash, SE Egypt and implications for the polar wander path for Africa in the Mesozoic. J. Geophys. 50: 16-22.

- SIAL, A. N. 1975 Petrologia e significado tectônico dos diabásios mesozóicos do Rio Grande do Norte e Paraíba. Atas do III Simpósio de Geologia: 207-221.
- SIAL, A. N. 1976 The post-paleozoic volcanism of Northeast Brazil and its tectonic significance. An. Acad. Bras. Cienc. 48 Suplemento: 299-311.

Versão original recebida em Abr./1983; Versão final, em Mai./1983.