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ABSTRACT. Among all the existing methods to solve the eikonal equation, three methods are chosen to
verify accuracy, symmetry, reciprocity and error propagation along large offsets of refracted waves in seismic near
surface exploration context. Performance is extremely highlighted nowadays and accuracy is being neglected,
then an eikonal solver poorly explored in geoscience is used. A classical solver, the Fast Iterative and the
modified Fast Sweeping Method are applied in three modeling schemes: a simple two layers model, a large four
layers and a complex benchmark model. The three methods compute the first arrival of refracted waves in high
contrast media and the results are compared to the analytical solution. A circular geometry is considered in all
experiments to explore the method applicability using full azimuth angles. On the first scheme, the errors in
traveltime are computed among the three methods using different model sample spacing and we discuss accuracy,
symmetry and reciprocity of first arrivals. On the second scheme, three circular receivers are placed in different
offsets to check errors along refracted wave propagation. Finally, the third scheme, four shots are strategically
positioned over the SEG/EAGE Overthrust model in order to compare the full acoustic wavefield with the
eikonal solvers and then check the similarities. Although the focus is on methods accuracy, the algorithm run
time is also considered and the comparison shows that the modified Fast Sweeping Method is the most accurate.
The most computational efficient eikonal solver is the Fast Iterative Method, but its geoscience applicability
needs to be cautious, because of its inaccurate results.

Keywords: eikonal solvers; refracted waves; numerical - analytical comparison; accurate first arrivals.

INTRODUCTION

There is a number of refracted wave applications in
exploration seismology such as migration (Shen and
Zhang, 2020), illumination study to reservoir moni-
toring (Lopez et al., 2020) and, most often, in seis-
mic tomography. Comparing eikonal and ray-tracing
based tomography in a cross well survey, Balkaya
et al. (2010) conclude that the eikonal kernel inver-
sion obtains better reconstruction of sharp structures.
Besides, Farra (1993) shows that a smoothed model
is the solution for the instability of ray-tracing equa-
tions and, due to this, the eikonal equation is highly
recommended to compute traveltimes in strongly con-
trasted media. An iterative solution for the eikonal
equation is developed by Vidale (1988); then, novel
solvers are proposed (Van Trier and Symes, 1991;

Podvin and Lecomte, 1991; Qin et al., 1992; Hole and
Zelt, 1995). Currently efforts are being directed to the
wavefront expansion solvers, such as Group March-
ing Method (Qin et al., 1992), Fast Marching Method
Sethian (1999) and Fast Iterative Method Jeong and
Whitaker (2008). The Fast Sweeping Method appears
as a great solver as it is demonstrated in Capozzoli
et al. (2013), whose study compares the time execu-
tion of Fast Marching, Fast Iterative and Fast Sweep-
ing methods in homogeneous media and in a maze
model. The Fast Iterative Method performs better
than the others, but nothing is shown about accuracy.
The strategy of using refracted waves with large offset
shot circles in Ocean Bottom Node geometry is being
applied to monitoring and characterizing reservoirs in
the pre-salt Brazilian Santos basin (Lopez et al., 2020;
Costa et al., 2020; Da Silva et al., 2022). Following

http://dx.doi.org/10.22564/brjg.v41i1.2295
https://orcid.org/0009-0003-0332-4668
https://orcid.org/0000-0003-4782-0826
https://orcid.org/0009-0005-2527-6526
https://orcid.org/0000-0001-8604-5389
mailto:pbastos@id.uff.br
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this acquisition geometry, but using refracted travel-
times, the objective of this paper is to verify, through
a comparison with an analytical solution for refracted
waves, eikonal solver accuracy and reciprocity of three
methods: the classic (Podvin and Lecomte, 1991),
the Fast Iterative (Jeong and Whitaker, 2008) and a
variation of the Fast Sweeping Method (Noble et al.,
2014). Reciprocity is taken into account because in
Tryggvason and Bergman (2006) it is shown a dis-
crepancy error in the classical methodology and then
a solution is proposed. The application of an accu-
rate method in high contrasted media may bring more
information for inversion and migration.

Firstly, in the following section, we describe equa-
tions, methodology and detail the modeling schemes
to compare analytical and numerical solutions of trav-
eltimes. The first approach is the simplest to ver-
ify symmetry, reciprocity and precision of first arrival
traveltimes. The second approach is used to verify
traveltime errors along offsets, so interfaces are strate-
gically positioned to pick the time at each circle geom-
etry. The third approach, the last scheme, illustrates
the wave propagation comparison with first arrivals in
the SEG/EAGE Overthrust model. Thus, the acous-
tic wave equation is solved using finite difference sten-
cils and the first arrival amplitude is compared with
the first arrival traveltimes. The Results and Dis-
cussion sections show all figures to verify the simula-
tions and, although the focus of this work is the ac-
curacy of the methods, we discuss the computational
time in each experiment. Finally, the Conclusion sec-
tion points out the considerations of the analysis of
accuracy and performance for each experiment and
method.

METHODOLOGY

The target phenomenon to be studied in this research
is the head waves, the one that are refracted when-
ever the incident angle is higher than the critical an-
gle (Sheriff and Geldart, 1995). We can generate head
waves using the high frequency approximation of the
wave equation for isotropic and acoustic media, the
Eikonal equation:(

∂T
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+
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+

(
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1
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where T = T (z, x, y) in 3D case is the first arrival
volume and v = v(z, x, y) velocity model, v(z, x, y).
Because we are considering the isotropic formulation,
the ray is orthogonal to the wavefronts and may be
calculated as the gradient of the traveltime volume
(Robinson and Clark, 2017). The first arrivals cor-
respond to the exact solution of an elastodynamic
equation and build a complete wavefield based on a
known velocity model (Cervenỳ, 2001). Therefore,
the eikonal solvers try to apply numerical methods to
solve the spatial partial derivatives over traveltimes
present in Equation (1). The most famous method-

ology is the Finite Difference Method that approxi-
mates the derivatives using the Taylor series function
over model grid points depending on the approxima-
tion order. Different from the classical wave equation
solution, the operators are built considering the near
neighbour grid points and to improve accuracy more
neighboring points are used (Ahmed et al., 2011; Cai
et al., 2023).

Analytical solution

A general formulation is used to calculate analyti-
cal traveltimes for n horizontal layers (Kearey et al.,
2002). It is needed the distance between source and
receiver (offset), the 1D velocity model and the thick-
ness of all layers. The main equation is given below:

tn =
x

vn
+

n−1∑
i=1

2zi cos(θin)

vi
; θin = sin(vi/vn), (2)

where tn is the traveltime for each layer n; x is the
offset; zi and vi are the thickness and the velocity of
each layer i, respectively; and θin is the incident crit-
ical angle for each layer. The generalization scheme
and a simplification for three layers is shown in Figure
1. This scheme is used to compute analytical travel-
times to compare with numerical solutions described
in the next sections.

Classical method

The method chosen to be the main reference for this
study is the Podvin and Lecomte (1991) formulation.
This methodology is broadly used to compute first ar-
rival traveltimes in geoscience problems. Linde et al.
(2008) perform a 2D joint inversion using structural
constraints, Yordkayhun et al. (2009) map through
a 3D traveltime tomography to monitoring CO2 mi-
gration in a saline aquifer, De Matteis et al. (2010)
explore a statistical analysis to estimate model uncer-
tainty and resolution in 3D first arrival tomography
and Bulhões et al. (2021) study the regularization ef-
fects using first arrival tomography in shallow models.
All those works are related to inversion problems but
using Podvin and Lecomte (1991) formulation as the
modeling kernel. Despite the high applicability, some
limitations can be found, such as in Tryggvason and
Bergman (2006), where it can be found discrepan-
cies in the calculation of times using reciprocity, and
in Koketsu (2000), where instability of times using
models with irregular interfaces can be found.
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(a)

(b)

Figure 1: (a) Analytical solution for n planar lay-
ers; b) Simplification for three layers adapted from
Kearey et al. (2002). S is used to reference the source
position and R is used to show the receiver position,
both on the same elevation. x is the offset and z the
thickness of each layer. θ is the incidence critical an-
gle related with the interface velocity contrast. The
velocity always increases with depth and there is no
lateral velocity variation inside each layer.

Based on the finite difference approximation, the
classical method uses a systematic application of Huy-
gens principle, where each wavefront expansion can
behave as a source that expands another wavefront.
Because of that, causality is respected in propaga-
tion. This numerical method discretizes Equation (1)
and builds finite difference operators that can use the
neighboring points to derive 1D, 2D and 3D oper-
ators. The model is constructed as a regular grid
volume, and some of conditional operators are ap-
plied to check illumination at each grid point com-
puted. In the 3D case computation, up to 170 stencils
are applicable: six 1D transmitted arrivals, twenty-
four 2D transmitted arrivals (conditional), twelve 2D
diffracted arrivals, ninety-six 3D transmitted plane
wavefront (conditional) and thirty-two 3D diffracted
arrivals (Podvin and Lecomte, 1991). The number of
iterations is computed based on the distance from the
source position to the end of the model in samples.
An auxiliary volume is stored at each iteration to save
grid points that were computed using the expanding
cube methodology. All finite difference operators are
computed in order to find the smaller traveltime. It is
necessary to compute the analytical traveltime from
source to the nearest grid point in meters to compute
the first arrivals outside a grid point. Trilinear in-
terpolation is applied to register time at the receiver
outside the grid point. The process to compute trav-

eltimes at each grid point is independent, so parallel
computing is possible. Thus, the algorithm is paral-
lelized using OpenACC compilation directives in the
C++ programming language (Farber, 2016).

Fast Iterative Method

The Fast Iterative Method (Jeong and Whitaker,
2008) improved the performance of eikonal equa-
tion solvers, and was inspired by the Fast Marching
method (Sethian, 1999) and other wavefront expan-
sion methods. This methodology is highly used in
GPU parallelization approach, and many benchmark
execution time tests are available in different parallel
distributions. Dang and Emad (2014) investigate two
parallel level approaches working with asynchronous
communication. Hong and Jeong (2016) solve the
method using multi-GPU system, and Huang (2021)
manages the algorithm to improve the performance
of the method. All those works only prioritize per-
formance. The Fast Iterative Method tries to formu-
late a cheapest alternative algorithm that beats the
famous and broadly applied geoscience Fast March-
ing Method because of its simplicity and high perfor-
mance. The Sethian (1999) method is broadly devel-
oped such as Rawlinson and Sambridge (2004, 2005)
and shows the availability to handle wave propagation
in heterogeneous media. Herrmann (2003); Yang and
Stern (2017) use domain decomposition to make the
Fast Marching Method parallelizable. Although Cai
et al. (2023) has tested the accuracy and proposed an
improved formulation, the methodology of Jeong and
Whitaker (2008) has not been compared with other
formulations in terms of accuracy.

The Fast Iterative Method was chosen because
Capozzoli et al. (2013) show its higher computational
performance over the Fast Marching Method for a ho-
mogeneous medium. Despite thee fact that we record
run time experiments, we focus our study on the ac-
curacy of the calculated traveltime. The Fast Iter-
ative Method kernel equation is empirically formu-
lated based on well-known eikonal equation solvers
(Jeong and Whitaker, 2008). The algorithm pro-
poses a list scheme: the updated points, the wavefront
points (active list) and the external points. The iter-
ative process solves the equation using only the wave-
front points, avoiding computational effort in all grid
points. The active list, at the beginning of the sim-
ulation, contemplates only the nearest source neigh-
boring points. After the update, the active list is
emptied, new points are added to the active list, and
a new iteration starts in a process such as wavefront
expansion. In this study, the original scheme of lists
is not employed. To propagate traveltimes using the
Fast Iterative Method, only the kernel equation and
the expanding cube methodology are applied. In our
implementation, to initialize a source outside the grid
points we compute the analytical time from the source
position to the nearest grid point in meters, and we
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register the traveltime outside the grid points, per-
forming a trilinear interpolation.

Accurate Fast Sweeping Method

The Fast Sweeping Method, originally created by
Zhao (2005), is an iterative formulation to improve
finite difference operators to compute eikonal solvers.
The method sweeps the entire 3D domain in different
directions reducing computational cost in serial com-
puting when compared to Podvin and Lecomte (1991)
formulation that solve the operators in cascade. Bak
et al. (2010) show how the Fast Sweeping Method can
be better than the Fast Marching Method in strong
velocity contrasts using some sweeping domain varia-
tions. Zhao (2007) illustrates the first attempt of the
parallelized Fast Sweeping Method and Detrixhe et al.
(2013) show that the Zhao (2007) method cannot be
parallelized on large scale, and proposed a better so-
lution that solves the problem efficiently. The Fast
Sweeping Method is broadly applied using anisotropic
media (Luo and Qian, 2012; Waheed et al., 2015; Wa-
heed and Alkhalifah, 2017; Huang and Luo, 2020)
with great feasibility for realistic applications. Focus-
ing on accuracy, Noble et al. (2014) created a hybrid
Accurate Fast Sweeping Method for the eikonal equa-
tion on isotropic media using Spherical and Cartesian
finite difference operators. The main innovation of
this method is the expanded 8-point finite difference
operator originally from Vidale (1988), that shows in
truncated form. The Spherical operators are applied
near the source to fit the wavefront spherical behav-
ior and the Cartesian operators are applied over other
grid points far from the source. With the expansion
of the 8-points operator Vidale (1988), the precision
increases and some operators can be discarded to im-
prove the execution time (Noble et al., 2014). In this
paper, just the Cartesian operators are used with no
parallelization following the 3D code in the github
repository of Noble et al. (2014). An important aspect
to emphasize about the Noble et al. (2014) formula-
tion is that the points around the source need to be
initialized with analytical traveltimes. There is a step
before the global sweep that sweeps the domain using
the source position as the reference to start sweeping
up to edges of domain called initial sweep. This step
makes the Fast Sweeping Method converge into only
one iteration for most of the average subsurface mod-
els. As in other previous methods presented in this
paper, the receivers outside the grid register travel-
times using a trilinear interpolation of neighboring
points.

Modeling schemes

The first scheme of this study is related with symme-
try and reciprocity accuracy analysis. Thus, a simple
model is applied and the sample spacing is changed to
verify the effects of the grid size. The common used
discretization parameters applied are 100, 50 and 25

meters (m). The model dimensions, considering the
(z, x, y) format, are (1.1, 22, 22) kilometers (km).
The total samples of models are (12, 221, 221), (23,
441, 441) and (45, 881, 881) homogeneous grid for a
spacing of 100, 50, 25 m, respectively. Figure 2 shows
the acquisition geometry, a velocity log and vertical
model slices to illustrate all approach 1 configuration.
The acquisition geometry has 5 shots positioning at 1
- (0, 1, 1); 2 - (0, 1, 21); 3 - (0, 21, 1); 4 - (0, 21, 21);
and 5 - (0, 11, 11) km. the shots are strategically po-
sitioned to verify the symmetry between shots 1 and
3, and 2 and 4. Shot 5 is used to verify the reciprocity
propagation, when the receiver and shot positions are
interchanged. The receiver configuration is circular,
and the center is located at (0, 11, 11) km with a ra-
dius of 10 km and a circular distance of 12.5 m of
between them.

The second scheme analyzes errors during the
wavefront propagation between layers. Figure 3 shows
the entire configuration of how the acquisition geom-
etry was chosen, the velocity model interfaces and the
raypath distribution at each layer. The model dimen-
sions are (4.5, 27, 27) km, in the (z, x, y) format; the
sample spacing is 25 m; and the model has (181, 1081,
1081) samples. Just one source at the center of the
model is applied to check all azimutal signature of
traveltimes. The layer interfaces are located at 1, 2.4
and 4.2 km from up to bottom, and the velocities are
1.5, 2, 3 and 4.5 km/s. Three circular geometry are
applied with 12.5 m equidistant receivers. All circles
are centered at position (0, 13.5, 13.5) km and they
have 880, 1257 and 1634 receivers for 7, 10 and 13
km of circle radius respectively. The analytical for-
mulation gives the traveltimes per layer. In order to
compare analytical and numerical traveltimes, it is
necessary to register only the smaller times using all
interfaces as shown in Figure 3d, where the purple
line is the target of analytical times. Raypaths are
shown in Figure 3c and they are calculated from the
gradient of the transit time volume, for isotropic me-
dia, is perpendicular to the isochrones (Vidale, 1988).
We apply the descent gradient method to find the ray-
path from the receiver to the source with a fixed ray
step of 25 % of the minimal grid length.

In the third scheme, we study how numerical first
arrivals can be correlated to waveform modeling for
acoustic media performing on the SEG/EAGE Over-
thrust model (Lecomte et al., 1994). A smoothed
version of this model is used in Noble et al. (2014)
to verify accuracy of a new eikonal solver. In our
study we use a version of the model without smooth-
ing to verify wavefront similarities between acoustic
wave equation and numerical first arrivals. The model
dimension is (4.66, 20, 20) km and the sample spacing
is 12.5 m to use frequencies high enough to perform
numerical simulation with a manageable model, pre-
senting (373, 1601, 1601) samples and almost 4 GB
of storage. Figure 4 shows the third scheme configu-
ration of the circular acquisition geometry, a central
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(a) (b)

(c) (d)

Figure 2: First scheme. (a) acquisition geometry with shot and receiver positions. The contours are traveltimes
and the dotted lines indicate plane slices; (b) 1D velocity model illustrating depth interface; (c) and (d) travel-
time contours and the projection of the central shot and receivers at XZ and YZ plane slices.

Figure 3: Second scheme. (a) all acquisition geometry with receiver circle radii of 7, 10 and 13 km. Traveltimes
are delimited by a contour map; (b) 1D velocity model to show velocity contrasts at each depth; (c) 2D model
slice to show raypaths from source to projected receivers; (d) Circle offset justification. For each circle, a dif-
ferent wavefront is registered. The smaller time is selected to build first arrival traveltimes.
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log velocity and the vertical slices of the XZ and YZ
plane. The velocities on the model varies from 2.5 to
6 km/s. The acquisition geometry is composed of 4
shots and 1194 receivers. The shots are positioned at
1 - (0, 0.5, 0.5); 2 - (0, 19.5, 0.5); 3 - (0, 0.5, 19.5);
and 4 - (0, 19.5, 19.5) km; the receivers have a cir-
cular configuration and are spaced 50 m away from
each other. The circle is centered at (0, 10, 10) km
and the radius is 9.5 km. The nearest offset is 3935
m and the largest offset is 22935 m for the position of
all shots.

The wave equation for isotropic acoustic media is
given by:

∇2P − 1

v2
∂2P

∂t2
= f(t), (3)

where P = P (z, x, y) is the pressure in Pascal (Pa);
v = v(z, x, y) is the velocity model volume; and f(t) is
a source applied at the (z0, x0, y0) position at the time
instant t. The reference source is a zero phase Ricker
wavelet with 50 Hz of maximum frequency and 1 Pa
of maximum amplitude. The finite difference method
is applied, and we employ operators of eighth order in
space and second order in time. Boundary conditions
were solved using a classical absorbing condition (Cer-
jan et al., 1985) with 50 points and an attenuation co-
efficient of 0.0045 following Bording (2004) who shows
the optimal way to set parameters in a sponge bound-
ary condition. We record the waveform outside the
grid using the Hicks (2002) interpolation. The total
modeling time is 6 seconds and the discretization pa-
rameter is 0.8 ms to avoid finite difference numerical
dispersion and maintain stability conditions.

All the results will respect the same color scheme
for each eikonal solver, which is blue for Podvin
and Lecomte (1991); yellow, for Jeong and Whitaker
(2008); and green, for Noble et al. (2014). The line
styles for each model discretization parameter are
solid, dashed and dash-dotted for 25 m, 50 m and
100 m, respectively.

RESULTS AND DISCUSSION

Each scheme is discussed individually to explain its
particularities. Figure 5 shows the results about the
symmetry and reciprocity analysis in order to mea-
sure azimutal errors and numerical time errors. Fig-
ure 6 illustrates how traveltime errors behave when
the wavefront propagates in high contrasted velocity
interfaces. Scheme 3 presents the acoustic waveform
propagation comparing it to numerical eikonal solu-
tions in order to verify correlations between them.

First scheme

All the base results of the first scheme are illustrated
in Figure 5, where the shot gathers for each shot po-
sition are shown in a global view (Figs. 5a, 5b, 5c and
5d) for symmetry studies and in a refined view (Figs.
5e and 5f) for accuracy and reciprocity studies.

The symmetry analysis about symmetric shots fol-

lowing the acquisition geometry in Figure 2 is pre-
sented in Figure 6. The vertical axis is the time error
in milliseconds and the horizontal axis is the receiver
indexes of a circular configuration. The symmetry
study was done using the results of Figure 5a sub-
tracted by the traveltimes in Figure 5b in their re-
verted indexation. This operation is shown in Fig-
ures 6a, 6c and 6e for a sample spacing of 100, 50 and
25 m, respectively. The same analysis was done for
the other pair of symmetrical shots illustrated in its
raw form in Figures 5c and 5d, which the results are
shown in Figures 6b, 6d and 6f. The eikonal solvers
respected the symmetry employed by the acquisition
geometry, just the Podvin and Lecomte (1991) formu-
lation 25 m sample spacing case that appeared some
noise in a scale of 1 millisecond. It shows that the
traveltimes are being computed equally in the entire
circular geometry independent of the geometry direc-
tion. That is a great information to use for eikonal
equation in target-oriented reservoir monitoring stud-
ies with circular geometry.

The regional accuracy study is done by computing
the analytical solution subtracted by the numerical
formulations for each discretization parameter shown
in Figures 5a, 5b, 5c, and 5d. To optimize the figure,
the symmetrical shots will be plotted at the same im-
age where, for shots 1 and 2, the line style is solid
and, for shots 3 and 4, the line style is dashed with
opacity. Figure 7 shows the accuracy of traveltimes
for the external shots 1, 2, 3 and 4. This analysis
is possible by subtracting the analytical solution by
the numerical results for each eikonal solver using a
specific model sample spacing. Figure 7 presents the
results with the same scale to show that traveltime
errors decrease with discretization parameter refine-
ment. It happens just because finite difference oper-
ators can generate better results with thin grid spac-
ing. Note that the formulation with larger difference
between analytic errors is the Fast Iterative Method
and the formulation with the smaller errors is the ac-
curate Fast Sweeping Method. The four external shot
run times for each numerical method are registered
in Table 1. According to Table 1 results, the fastest
algorithm is the Fast Iterative Method. The classi-
cal formulation appears not so computationally effi-
cient with a sample spacing of 100 m, but when the
discretization parameter decreases it becomes faster
than the Fast Sweeping Method. It is the implication
of the hardware used to compute each method; when
GPU is activated, larger parallel processes work bet-
ter than larger serial processes. The storage model
counts total grid points divided by 1 Mega Byte. For
example, a 25 m model has 45 × 881 × 881 × 4 /
1024 / 1024 ≈ 133 MB.

The central shot of the first scheme with the ac-
curacy and the reciprocity study is shown separately.
Figure 8 shows only the accuracy results; Figure 9,
the reciprocity ones. The expected behavior of the
circular geometry survey with a central shot result is
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(a) (b)

(c) (d)

Figure 4: Third scheme: SEG/EAGE Overthrust benchmark model. (a) acquisition geometry with shot and
receiver positions. The color bar represents all velocities in the model; (b) 1D velocity model log projected at
the center of the model; (c) and (d) are the model XZ and YZ projections; the dotted lines indicate each pro-
jection.

(a) (b)

(c) (d)

(e) (f)

Figure 5: First scheme. Shot gathers for position 1 (a), 3 (b), 2 (c) and 4 (d) to build the symmetry studies.
Shot gathers for the central position (e) and (f) to build the reciprocity and detailed accuracy studies. The
colors indicate the methods and the line style indicates the model sample spacing. For colors we have blue for
Podvin and Lecomte (1991); yellow, for Jeong and Whitaker (2008); and green, for Noble et al. (2014). For line
styles, we have solid for 25 m; dashed, for 50 m; and dash-dotted, for 100 m. The reciprocity study was done
using only the model with spatial discretization parameter of 25 m.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Symmetry results for the first scheme. (a), (c) and (e) are the symmetrical shots analyses for posi-
tions 1 and 3 with a discretization parameter of 100 m, 50 m and 25 m, respectively. (b), (d) and (f) are the
symmetrical shot analyses for positions 2 and 4 with a discretization parameter of 100 m, 50 m and 25 m, re-
spectively. The color convention of eikonal solvers is applied, but the resulted lines are overlapped. (e) and (f)
present some noise artifacts but smaller than in the common seismic exploration resolution.

(a) (b)

(c) (d)

(e) (f)

Figure 7: Accuracy results for external shots of the first scheme. (a), (c) and (e) are the accuracy of shots 1
and 3, respecting the color and line style convention: blue for Podvin and Lecomte (1991), yellow for Jeong and
Whitaker (2008) and green for Noble et al. (2014). The solid lines represent the errors of shots 1 and 2. On the
other hand, the dashed lines represent shots 3 and 4 errors. The scale of errors is the same to validate the er-
ror decreasing with grid refinement.

Table 1: Execution time for external shots in the first approach and the storage of each model.

100 m 50 m 25 m

Podvin and Lecomte (1991) 4.469 s 5.557 s 60.269 s

Jeong and Whitaker (2008) 0.523 s 3.761 s 53.408 s

Noble et al. (2014) 2.485 s 12.113 s 92.937 s

Model storage 2.2 MB 17 MB 133 MB

Braz. J. Geophys., 42, 1, 2024



ALVES ET AL. 9

a constant traveltime as the analytical solution com-
putes. The analytical equation shows that for the
central shot the traveltime response is a constant time
for all receivers. Looking carefully at Figures 8a, 8b
and 8c, the maximum difference error registered oc-
curs at −120, −350 and −5 ms, respectively. Because
of that, the most accurate method is the Noble et al.
(2014) formulation for this case due to the magnitude
of difference between analytical and numerical solu-
tions.

(a)

(b)

(c)

Figure 8: Central shot error comparison for the first
scheme. (a) Podvin and Lecomte (1991), (b) Jeong
and Whitaker (2008); and (c) Noble et al. (2014) for-
mulations. The line styles represent the model sample
spacing, where solid lines are for 25 m; dashed, for 50
m; and dash-dotted; for 100 m spacing.

(a)

(b)

(c)

Figure 9: Reciprocal time accuracy study for the first
scheme. The solid lines represent the shot to receiver
records and the opaque ones, the receiver to shot
records. (a) Podvin and Lecomte (1991); (b) Jeong
and Whitaker (2008); and (c) Noble et al. (2014) for-
mulations. The dashed line in part (c) represents the
adjusted traveltimes caused by a wrong initialization
in the Noble et al. (2014) algorithm.

Figure 9 shows the reciprocity traveltime error be-
havior comparison for the sample spacing of 25 m.
The results in Figures 9a and 9b fit well between for-
ward and reciprocity traveltimes and in Figure 9 the
difference had initially huge errors. These errors are
caused because the Fast Sweeping Method was not
initialized perfectly at all possible directions. When
we start the eikonal solution, an initialization com-
putes the analytical traveltime to fill all points sur-
rounding the source with the exact solution. After
that, the traveltimes respect the reciprocity principle
very well (Fiure 9c - dashed line). The sinuous be-
havior in all traveltimes happens because the Carte-
sian coordinate has an intrinsic azimutal imprecision
(Alkhalifah and Fomel, 2001; White et al., 2020). The
run time of the central shot for all numerical methods
and the reciprocity run time for 1257 shots are shown
in Table 2. The estimated reciprocity run time is com-
puted based on the run time of the sample spacing of
25 m.

Table 2: Execution run time for the central shot in
the first approach and its estimated reciprocity and
run time.

Podvin

(1991)

Jeong

(2008)

Noble

(2014)

100m 1.171 s 0.379 s 0.808 s

50m 2.052 s 1.132 s 3.747

25m 10.416 s 8.211 s 22.794 s

Estimated

reciprocity

3 h

38 min

12 s

2 h

52 min

5 s

7 h

57 min

32 s

Reciprocity

run

3 h

22 min

38 s

2 h

43 min

25 s

7 h

12 min

34 s

Second scheme

The results of the second scheme appear in Figure 10
from the acquisition geometry shown in Figure 3. It
is used three geometry circles with radii of 7, 10 and
13 km shown in Figures 10a, 10b and 10c respectively.
Each gather reveals the results of the traveltime dif-
ference between the analytical equations at the same
error scale.

Noble et al. (2014) formulation errors are close to
zero and the other ones, Podvin and Lecomte (1991)
and Jeong and Whitaker (2008) formulations, have
average errors of −25 ms and −80 ms, respectively.
However, in Figure 10b and 10c, when the wavefront
propagates through more interfaces, while the Noble
et al. (2014) formulation increases its errors, the Pod-
vin and Lecomte (1991) and the Jeong and Whitaker
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(a) (b) (c)

Figure 10: Resulting gathers for the central shot in approach 2: difference of analytical first arrival traveltimes.
All numerical methods are shown using only the model sample spacing of 25 m. (a) nearest circle offset with 7
km; (b) mid circle offset with 10 km; and (c) longest offset with 13 km. The line colors indicate each method:
blue for Podvin and Lecomte (1991), yellow for Jeong and Whitaker (2008) and green for Noble et al. (2014).

(2008) formulations decrease their errors. The ex-
pected behavior is to decrease the precision when the
number of layers increases.

Table 3: Run time execution for a central shot using
approach 2, the model with three interfaces.

Podvin and Lecomte (1991) 93.055 s

Jeong and Whitaker (2008) 62.491 s

Noble et al. (2014) 129.303 s

Model storage 807 MB

The errors observed with Noble et al. (2014) have
almost the same scale in Figures 10a, 10b and 10c.
For complex models, the result might be as accurate
as using simple models. The hardware used to com-
pute run time execution in Tables 1, 2, 3 and 4 are
the CPU Intel Xeon E-2288G (3.7 GHz) and the GPU
Nvidia Quadro 4000 (8 GB). Table 3 shows the run
time execution for the three numerical methods using
a model with 181×1081×1081 samples. Once again,
the Jeong and Whitaker (2008) formulation performs
better than the other formulations.

Third scheme

Figure 11 shows the shot 1 in the configuration pre-
sented in Figure 4. Four windows (Figure 11a) are
positioned strategically on the seismogram to verify
the correlations between the first arrivals computed
by the wave propagation and the traveltimes calcu-
lated via eikonal solvers. Figures 11b, 11c, 11d and
11e show the windows with their respective signals,

red and green, to point out bad and good correlations
with numeric seismic waves. Figures 12, 13 and ?? fol-
low the same pattern to verify all directions of prop-
agation in the SEG/EAGE Overthrust model. The
target first arrivals registered in the seismograms are
the first black amplitude because of the zero phase
wavelet applied.

A visual correlation is done and we noticed that
in the nearest offsets a good correlation between the
seismic and the numerical first arrivals appears in Fig-
ures 12e, 13c and 14b. Only in Figure 11d the nearest
offsets have anomalous traveltimes showing smaller
results than the finite difference solution for a com-
plete wave equation. The bad correlations may be
caused by the thin layers in the model. The eikonal
equation may represent that high velocity thin layers
better than the complete finite difference wave equa-
tion solution using a maximum frequency of 50 Hz.
Long offsets have good correlation as show in Fig-
ure 12c, but not in Figures 11b, 13e and 14d. The
most part of the correlation, pointed with green ar-
rows, are good, although some red arrows show bad
correlations in near and far offsets. In general, con-
sidering low frequency wave propagation, high offsets
and a model with high velocity thin layers, the cor-
relation between wave equation and eikonal solvers is
acceptable for seismic applications.

To verify performance, the comparison between
numerical method run times, inclusive the wave equa-
tion solver algorithm and the model size in MB, is
shown in Table 4. Computationally, it is cheaper solv-
ing eikonal equations than acoustic wave ones. Due
to the computational effort required to run the meth-
ods, the hardware used to execute the program are
now the CPU Intel Xeon Gold 6248R (3.0 GHz) and
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Figure 11: Shot 1 in approach 3. (a) 6 seconds of seismic data behavior. All zoom windows are shown at a
specific position; (b), (c), (d) and (e) are the zoom window plots to show good (green arrows) and bad (red ar-
rows) correlations between seismic data and first arrival traveltimes. The methods are plotted in blue (Podvin
and Lecomte, 1991), yellow (Jeong and Whitaker, 2008) and green (Noble et al., 2014) lines.

Figure 12: Shot 2 in approach 3. (a) 6 seconds of seismic data behavior. All zoom windows are shown at a
specific position; (b), (c), (d) and (e) are the zoom window plots to show good (green arrows) and bad (red ar-
rows) correlations between seismic data and first arrival traveltimes. The methods are plotted in blue (Podvin
and Lecomte, 1991), yellow (Jeong and Whitaker, 2008) and green (Noble et al., 2014) lines.

Figure 13: Shot 3 in approach 3. (a) 6 seconds of seismic data behavior. All zoom windows are shown at a
specific position. (b), (c), (d) and (e) are the zoom window plots to show good (green arrows) and bad (red ar-
rows) correlations between seismic data and first arrival traveltimes. The methods are plotted in blue (Podvin
and Lecomte, 1991), yellow (Jeong and Whitaker, 2008) and green (Noble et al., 2014) lines.
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Figure 14: Shot 4 in approach 3. (a) 6 seconds of seismic data behavior. All zoom windows are shown at a
specific position; (b), (c), (d) and (e) are the zoom window plots to show good (green arrows) and bad (red ar-
rows) correlations between seismic data and first arrival traveltimes. The methods are plotted in blue (Podvin
and Lecomte, 1991), yellow (Jeong and Whitaker, 2008) and green (Noble et al., 2014) lines.

the GPU Quadro RTX 6000 (22 GB).

Table 4: Four shot run time comparison for approach
3 including wave equation solver and model size.

Podvin and Lecomte (1991) 39 min 40 s

Jeong and Whitaker (2008) 34 min 50 s

Noble et al. (2014) 40 min 28 s

Wave equation 3 h 5 min 27 s

Model storage 3647 MB

Figure 15 shows the difference between Noble et al.
(2014) formulation and the other methods. For each
shot, the traveltimes of the modified Fast Sweeping
Method is subtracted by the classic and the Fast It-
erative Method. A mean error per shot is done col-
lecting the traveltimes per trace and dividing by the
total number of traces. The average difference be-
tween the Noble et al. (2014) and the Podvin and
Lecomte (1991) formulations is smaller than the dif-
ference from the Noble et al. (2014) and the Jeong
and Whitaker (2008) ones. The traveltime differences
are always negative, so the methods present the same
aspects shown in approaches 1 and 2. Podvin and
Lecomte (1991) present better results for high con-
trast model with a mean difference of -6 ms. The
Fast Iterative Method traveltimes present a higher
mean error and it can cause a wrong seismic analysis
when used as a kernel of some methodology.

(a)

(b)

(c)

(d)

Figure 15: Comparison of differences between the No-
ble et al. (2014) and the Podvin and Lecomte (1991)
formulations and between the Noble et al. (2014) and
the Jeong and Whitaker (2008) to verify the travel-
time discrepancy assuming Noble et al. (2014) as the
most accurate solver. The difference in milliseconds is
negative. In other words, the classic and the Fast It-
erative methods present a traveltime higher than the
Fast Sweeping Method.

CONCLUSION

From the results among comparisons of Podvin and
Lecomte (1991), Jeong and Whitaker (2008), and No-
ble et al. (2014) formulations to solve the eikonal
equation, the most accurate method is presented
as the modified Fast Sweeping Method. Three ap-
proaches are applied and, in large scale situations,
as shown in approach 3, the most accurate method
does not differ too much in performance from the
others. Then this Fast Sweeping Method can be ap-
plied on huge simulations. The classic method shows
great differences between the reference traveltime in
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approaches 1 and 2. However, for approach 3, with a
complex model, Podvin and Lecomte (1991) formula-
tion does not exhibit significant differences from the
most accurate solver. Then, the classic formulation
still appears as a great eikonal solver in strongly het-
erogeneous media. The Fast Iterative Method demon-
strates the highest performance and a smaller preci-
sion in all studied cases. So, this method may be used
when the traveltimes precision is not necessary, such
as a pathfinding problem. A future work suggestion
is to verify the improved Fast Iterative Method solu-
tion to check accuracy compared with the GPU im-
plementation of the accurate Fast Sweeping Method.
Accuracy and performance on seismic imaging experi-
ments, such as tomography or depth migration, could
be taken into account to verify the best method ap-
plicability.
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