
Brazilian Journal of Geophysics, 42 (2024), 1. 1-20 
Brazilian Geophysical Society 
ISSN 2764-8044
DOI: 10.22564/brjg.v41i1.2295

3D REFRACTION TRAVEL TIME ACCURACY STUDY IN HIGH 
CONTRASTED MEDIA

Paulo H. B. Alves 1*, Luiz A. Santos 1,2, 
Felipe V. Capuzzo 1, and Marco Cetale 1

1Universidade Federal Fluminense – UFF, Programa de Pós-Graduação em Dinâmica dos Oceanos e da Terra – PPGDOT, 
Grupo de Imageamento Sísmico e Inversão Sísmica – GISIS

2Petrobras

*Corresponding author email: pbastos@id.uff.br

ABSTRACT

Among all the existing methods to solve the eikonal equation, three methods are chosen to verify accuracy, 

symmetry, reciprocity and error propagation along large offsets o f  r e fracted w a ves i n  s e ismic n e ar surface 

exploration context. Performance is extremely highlighted nowadays and accuracy is being neglected, then an 

eikonal solver poorly explored in geoscience is used. A classical solver, the Fast Iterative and the modified Fast 

Sweeping Method are applied in three modeling schemes: a simple two layers model, a large four layers and a 

complex benchmark model. The three methods compute the first arrival of refracted waves in high contrast media 

and the results are compared to the analytical solution. A circular geometry is considered in all experiments to 

explore the method applicability using full azimuth angles. On the first s cheme, t he e rrors i n t ravel t ime are 

computed among the three methods using different m odel s ample s pacing a nd w e d iscuss a ccuracy, symmetry 

and reciprocity of first a r rivals. O n t he s econd s cheme, t hree c ircular r eceivers a re p laced i n d ifferent off sets to 

check errors along refracted wave propagation. Finally, the third scheme, four shots are strategically positioned 

over the SEG/EAGE Overthrust model in order to compare the full acoustic wavefield w ith t he e ikonal solvers 

and then check the similarities. Although the focus is on methods accuracy, the algorithm run time is also 

considered and the comparison shows that the modified Fast S weeping M ethod i s t he m ost a c curate. T he most 

computational efficient ei konal so lver is  th e Fa st It erative Me thod, bu t it s ge oscience ap plicability ne eds to  be 

cautious, because of its inaccurate results.

Keywords: eikonal solvers; refracted waves; numerical - analytical comparison; accurate first arrivals.

INTRODUCTION

There is a number of refracted wave applications in exploration seismology such as migration (Shen and Zhang, 

2020), illumination study to reservoir monitoring (Lopez et al., 2020) and, most often, in seismic tomography. 

Comparing eikonal and ray tracing based tomography in cross well survey Balkaya et al. (2010) conclude that 

the eikonal kernel inversion obtains better reconstruction of sharp structures. Besides, Farra (1993) shows that 

a smoothed model is the solution for instability of ray tracing equations, and due to this, eikonal equation is 

highly recommended to compute travel times in strongly contrasted media. An iterative solution for eikonal 

equation is developed by Vidale (1988) and then, novel solvers are proposed (Van Trier and Symes, 1991; Podvin 

and Lecomte, 1991; Qin et al., 1992; Hole and Zelt, 1995). Currently efforts a re b e ing d irected t o t he wavefront 

expansion solvers such as Group Marching Method (Qin et al., 1992), Fast Marching Method Sethian (1999) and 

Fast Iterative Method Jeong and Whitaker (2008). The Fast Sweeping method appears as a great solver as it is
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demonstrated in Capozzoli et al. (2013), whose study compares time execution of Fast Marching, Fast Iterative

and Fast sweeping methods in homogeneous media and in a maze model. The Fast Iterative Method performs

better than the others, but nothing is shown about accuracy. The strategy of using refracted waves with large

offset shot circles in Ocean Bottom Nodes geometry are being applied to monitoring and characterize reservoir

in pre-salt Brazilian Santos basin (Lopez et al., 2020; Costa et al., 2020; Da Silva et al., 2022). Following this

acquisition geometry, but using refracted travel times, the objective of this paper is to verify eikonal solvers

accuracy and reciprocity of three methods: the classic (Podvin and Lecomte, 1991), the fast iterative method

(Jeong and Whitaker, 2008) and a variation of fast sweeping method (Noble et al., 2014) comparing with an

analytical solution for refracted waves. Reciprocity is taken into account because in Tryggvason and Bergman

(2006) have shown a discrepancy error in classical methodology and then a solution is proposed. The application

of an accurate method in high contrasted media could bring more information in inversion and migration.

Firstly, in the following section, we describe equations, methodology and detail the modeling schemes to

compare analytical and numerical solution of travel times. The first approach is the most simple to verify

symmetry, reciprocity and precision of first arrival travel times. The second approach is used to verify travel

time errors along offsets, so interfaces are strategically positioned to pick the time at each circle geometry. Third,

and last scheme, illustrates the wave propagation comparison with first arrivals in SEG/EAGE Overthrust

model. Thus, the acoustic wave equation is solved using finite difference stencils and the first arrival amplitude

is compared with first arrival travel times. The Results and Discussion sections show all figures to verify the

simulations and although the focus of this work is the accuracy of the methods, we discuss the computational

time in each experiment. Finally, the Conclusion section points out the considerations of the analysis in accuracy

and performance for each experiment and methods.

MATERIALS AND METHODS

The target phenomena to be studied in this research are the head waves, the one that are refracted whenever

the incident angle is higher than the critical angle (Sheriff and Geldart, 1995). We can generate head waves

using the high frequency approximation of wave equation for isotropic and acoustic media, the Eikonal equation
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1
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where T = T (z, x, y) in 3D case, is the first arrival volume and v = v(z, x, y) velocity model, v(z, x, y). Because

we are considering the isotropic formulation, the ray is orthogonal to the wavefronts and may be calculated as the

gradient of travel time volume (Robinson and Clark, 2017). The first arrivals correspond to the exact solution

of an elastodynamic equation and build a complete wavefield based on known velocity model (Cervenỳ, 2001).

Therefore, the eikonal solvers try to apply numerical methods to solve the spatial partial derivatives over travel

times present in equation 1. The most famous methodology is the Finite Difference Method that approximate

the derivatives using the Taylor series function over model grid points depending on the approximation order.

Different of classical wave equation solution, the operators are built considering the near neighbours grid points

and to improve accuracy authors use more neighboring points (Ahmed et al., 2011; Cai et al., 2023).
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Analytical solution

A general formulation is used to calculate analytical travel times for n horizontal layers (Kearey et al., 2002).

Distance between source and receiver (offset), 1D velocity model and thickness of all layers are needed. The

main equation is given below

tn =
x

vn
+

n−1∑
i=1

2zi cos(θin)

vi
; θin = sin(vi/vn), (2)

where tn is the travel time for each layer n, x is the offset, zi and vi are the thickness and the velocity of each

layer i respectively and θin is the incident critical angle for each layer. Generalization scheme and a simplification

for three layers is shown on Figure 1. This scheme is used to compute analytical travel times to compare with

numerical solutions described in next sections.

(a) (b)

Figure 1: a) Analytical solution for n planar layers. b) Simplification for three layers adapted f rom Kearey et al.
(2002). S to reference the source position and R to show receiver position, both on the same elevation. x is the 
offset and z  the thickness of each l ayer. θ  i s the incidence critical angle related with interface velocity contrast. 
Velocity always increase with depth and there is no lateral velocity variation inside each layer.

Classical method

The method chosen to be the main reference for this study is Podvin and Lecomte (1991) formulation. This 

methodology is broadly used to compute first arrival travel t imes in geoscience p roblems. Linde et al. (2008) 

performs a 2D joint inversion using structural constraints, Yordkayhun et al. (2009) maps through 3D travel 

time tomography to monitoring CO2 migration in a saline aquifer, De Matteis et al. (2010) explores a statistical 

analysis to estimate model uncertainty and resolution in 3D first arrival tomography and Bulhões et al. (2021) 

study the regularization effects using first arrival tomography in  shallow mo dels. All those works are re lated to 

inversion problems, but using Podvin and Lecomte (1991) formulation as the modeling kernel. Despite the high 

applicability, some limitations can be found, such as in Tryggvason and Bergman (2006), where discrepancies 

in the calculation of times using reciprocity, and Koketsu (2000), where instability of times using models with 

irregular interfaces could be found.

Based on the finite difference approximation, the classical method uses a systematic application of  Huygens 

principle, where each wavefront expansion can behave as a source that expand another wavefront. Because 

of that, causality is respected in propagation. This numerical method discretizes equation 1 and build finite
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difference operators that can use the neighboring points to derive 1D, 2D and 3D operators. The model is

constructed as a regular grid volume, and some of conditional operators are applied to check illumination at each

grid point computed. In the 3D case computation, up to 170 stencils are applicable: six 1D transmitted arrivals,

twenty four 2D transmitted arrivals (conditional), twelve 2D diffracted arrivals, ninety six 3D transmitted plane

wavefront (conditional) and thirty two 3D diffracted arrivals (Podvin and Lecomte, 1991). The number of

iterations is computed based on the distance from the source position to the end of the model in samples. An

auxiliary volume is stored at each iteration to save grid points that have been computed using the expanding

cube methodology. All finite difference operators are computed in order to find the smaller travel time. It is

necessary to compute the analytical travel time from source to the nearest grid point in meters to compute

the first arrivals outside a grid point. Trilinear interpolation is applied to register time at the receiver outside

the grid point. The process to compute travel times at each grid point is independent, so parallel computing

is possible. Thus the algorithm is parallelized using OpenACC compilation directives on C++ programming

language (Farber, 2016).

Fast iterative method

The Fast Iterative Method (Jeong and Whitaker, 2008) improved the performance of eikonal equation solvers,

and it was inspired by the Fast Marching method (Sethian, 1999) and others wavefront expansion methods. This

methodology is highly used in GPU parallelization approach, and many benchmark execution time tests are

available in different parallel distributions. Dang and Emad (2014) investigate two parallel level approaches

working with asynchronous communication. Hong and Jeong (2016) solve the method using multi-GPU system,

and Huang (2021) manages the algorithm to improve performance of the method. All those works prioritize

only performance. The Fast Iterative Method tries to formulate a cheapest alternative algorithm that beats the

famous and broadly applied geoscience Fast Marching Method because of its simplicity and high performance.

The Sethian (1999) method is broadly developed such as Rawlinson and Sambridge (2004, 2005) and show the

availability to handle wave propagation in heterogeneous media. Herrmann (2003); Yang and Stern (2017) use

domain decomposition to make Fast Marching method parallelizable. Although Cai et al. (2023) has tested the

accuracy and proposed an improved formulation, the methodology of Jeong and Whitaker (2008) have not been

compared with other formulations in terms of accuracy.

The Fast Iterative Method was chosen because Capozzoli et al. (2013) show its higher computational

performance over the Fast Marching Method for a homogeneous medium. Despite we record run time experiments,

we focus our study on the accuracy of the calculated travel time. The Fast Iterative Method kernel equation is

empirically formulated based on well-known eikonal equation solvers (Jeong and Whitaker, 2008). The algorithm

proposes a list scheme: the updated points, the wavefront points (active list) and the external points. The

iterative process solves the equation only using the wavefront points, avoiding computational effort in all grid

points. The active list, at the beginning of simulation, contemplates only the nearest source neighboring points.

After the update, the active list is emptied, new points are added to the active list, and a new iteration starts in

a process such as wavefront expansion. In this study, the original scheme of lists is not employed. To propagate

travel times using the Fast Iterative Method, only the kernel equation and the expanding cube methodology are

applied. In our implementation, to initialize a source outside grid points we compute analytical time from the
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source position to the nearest grid point in meters, and we register travel time outside grid points, performing a 

trilinear interpolation.

Accurate Fast Sweeping Method

The Fast Sweeping Method, originally created by Zhao (2005), is an iterative formulation to improve finite 

difference operators to compute e ikonal s olvers. The method sweeps the entire 3D domain in different directions 

reducing computational cost on serial computing when compared to Podvin and Lecomte (1991) formulation 

that solve the operators in cascade. Bak et al. (2010) show how Fast Sweeping Method can be better than Fast 

Marching Method in strong velocity contrasts using some sweeping domain variations. Zhao (2007) illustrates the 

first attempt of parallelized Fast Sweeping method and Detrixhe et al. (2013) show that the Zhao (2007) method 

cannot be parallelized on large scale, and proposed a better solution that solves the problem efficiently. The Fast 

Sweeping Method is broadly applied using anisotropic media (Luo and Qian, 2012; Waheed et al., 2015; Waheed 

and Alkhalifah, 2017; Huang and Luo, 2020) with great feasibility for realistic applications. Focusing on accuracy, 

Noble et al. (2014) create an hybrid Accurate Fast Sweeping Method for eikonal equation on isotropic media 

using Spherical and Cartesian finite difference op erators. The main innovation of  this method is  the expanded 

8 point finite difference operator or iginally from Vidale (1988), that shows in  truncated fo rm. The spherical 

operators are applied near from source to fit the wavefront spherical behavior and the cartesian operators are 

applied over other grid points far from source. With the expansion of 8 points Vidale (1988) operator, the 

precision increase and some operators could be discarded to improve execution time (Noble et al., 2014). In 

this paper, just the Cartesian operators is used with no parallelization following the 3D code on Noble et al.

(2014) github’s repository. An important aspect to emphasize about Noble et al. (2014) formulation is that the 

points around the source need to be initialized with analytical travel times. There is a step before the global 

sweep that sweeps domain using source position as the reference to start sweeping until the edges of domain 

called initial sweep. This step makes the Fast Sweeping Method converge in only one iteration for most of the 

average subsurface models. As in other previous methods presented in this paper, the receivers outside the grid 

is registering travel times using a trilinear interpolation of neighboring points.

Modeling schemes

The first scheme of this study is related with symmetry and reciprocity accuracy a nalysis. Thus, a  simple 

model is applied and the sample spacing is changed to verify the effects o f the grid s ize. The common used 

discretization parameters applied are 100, 50 and 25 meters [m]. The model dimension, considering (z, x, y) 

format, are (1.1, 22, 22) kilometers [km]. The total samples of models are (12, 221, 221), (23, 441, 441) and (45, 

881, 881) homogeneous grid for spacing of 100, 50, 25 m respectively. Figure 2, shows the acquisition geometry, 

a velocity log and vertical model slices to illustrate all approach 1 configuration. The acquisition geometry has 

5 shots positioning at 1 - (0, 1, 1), 2 - (0, 1, 21), 3 - (0, 21, 1), 4 - (0, 21, 21) and 5 - (0, 11, 11) km. Shots 

are strategically positioned to verify symmetry between shots 1 with 3 and 2 with 4. Shot 5 is used to verify 

reciprocity propagation, when receiver and shot position are inter-changed. The receiver configuration is circular, 

the center is located at (0, 11, 11) km with 10 km of radius and 12.5 m of circular distance between them.
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(a) (b)

(c)

(d)

Figure 2: First scheme. a) acquisition geometry with shots and receivers position, travel times are the contours
and dotted lines indicate plane slices. b) 1D velocity model illustrating depth interface. c) and d) travel times
contour and the projection of central shot and receivers at XZ and YZ plane slices are shown.

The second scheme analyze errors during wavefront propagation between layers. Figure 3, shows the entire

configuration of how acquisition geometry was chosen, velocity model interfaces and ray path distribution at each

layer. The model dimensions are (4.5, 27, 27) km, in (z, x, y) format, the sample spacing is 25 m and the model

has (181, 1081, 1081) samples. Just one source at center of the model is applied to check all azimutal signature

of travel times. The layer interfaces is located at 1, 2.4 and 4.2 km from up to bottom, and the velocities are 1.5,

2, 3 and 4.5 km/s. Three circular geometry are applied with 12.5 m equidistant receivers. All circles are centered

at position (0, 13.5, 13.5) km and they have 880, 1257 and 1634 receivers for 7, 10 and 13 km of circle radius

respectively. The analytical formulation gives the travel times per layer, so in order to compare analytical and

numerical travel times, it is necessary to register only the smaller times using all interfaces as shown in Figure

3 d), where the purple line is the target of analytical times. Ray path are shown in Figure 3 c) and they are

calculated from the gradient of the transit time volume, for isotropic media, is perpendicular to the isochrones

(Vidale, 1988). We apply the descent gradient method to find ray path from receiver to source with fixed ray

step of 25 % of minimal grid length.

Figure 3: Second scheme. a) all acquisition geometry with receiver circle radius of 7, 10 and 13 km. Travel times
are delimited by a contour map. b) 1D velocity model to show velocity contrasts at each depth. c) 2D model
slice to show ray paths from source to projected receivers. d) Circle offset justification, for each circle a different
wavefront is registered, the smaller time is selected to build first arrival travel times.
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In the third scheme, we study how numerical first arrivals can be correlated to waveform modeling for acoustic

media performing on the SEG/EAGE Overthrust model (Lecomte et al., 1994). A smoothed version of this

model is used in Noble et al. (2014) to verify accuracy of a new eikonal solver. In our study we use a version of

the model without smoothing to verify wavefront similarities between acoustic wave equation and numerical

first arrivals. The model dimension is (4.66, 20, 20) km and the sample spacing is 12.5 m to use frequencies

high enough to perform numerical simulation with a manageable model, which is (373, 1601, 1601) samples and

almost 4 GB of storage. Figure 4 shows the third scheme configuration of the circular acquisition geometry, a

central log velocity and the vertical slices of XZ and YZ plane. The velocities on the model varies from 2.5 to 6

km/s. The acquisition geometry is composed with 4 shots and 1194 receivers. Shots are positioned at 1 - (0, 0.5,

0.5), 2 - (0, 19.5, 0.5), 3 - (0, 0.5, 19.5) and 4 - (0, 19.5, 19.5) km and receivers are on circular configuration

spaced 50 m each other. Circle is centered at (0, 10, 10) km and the radius is 9.5 km. The nearest offset is 3935

m and the larger offset is 22935 m for all shots position.

Wave equation for isotropic acoustic media is given by

∇2P − 1

v2
∂2P

∂t2
= f(t), (3)

where P = P (z, x, y) is the pressure in Pascal [Pa], v = v(z, x, y) is the velocity model volume and f(t) is a source

applied at (z0, x0, y0) position on time instant t. The reference source is a zero phase Ricker wavelet with 50 Hz

of maximum frequency and 1 Pa of maximum amplitude. The finite difference method is applied and we employ

operators with eighth order in space and second order in time. Boundary conditions was solved using a classical

absorbing condition (Cerjan et al., 1985) with 50 points and attenuation coefficient of 0.0045 following Bording

(2004) that shows the optimal way to set parameters in sponge boundary condition. We record waveform outside

the grid using the Hicks (2002) interpolation. Total modeling time is 6 seconds and discretization parameter is

0.8 ms to avoid finite difference numerical dispersion and maintain stability conditions.

(a) (b)

(c)

(d)

Figure 4: Third scheme: SEG/EAGE Overthrust benchmark model. a) acquisition geometry with shots and 
receivers position. The color bar represents all velocities in the model. b) 1D velocity model log projected at the 
center of the model. c) and d) is the model XZ and YZ projection, dotted lines indicate each projection.

All the results will respect the same color scheme for each eikonal solver, which is blue for Podvin and 

Lecomte (1991), yellow for Jeong and Whitaker (2008) and green for Noble et al. (2014). The line styles for each

model discretization parameter are solid, dashed and dash-dotted for 25 m, 50 m and 100 m respectively.
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RESULTS AND DISCUSSIONS

Each scheme is discussed individually to explain their particularities. Scheme 1 shows the results about

symmetry and reciprocity analysis in order to measure azimutal errors and numerical time errors. Scheme

2 illustrates how travel time errors behave when wavefront propagates in high contrasted velocity interfaces.

Scheme 3 presents the acoustic waveform propagation comparing to numerical eikonal solutions in order to verify

correlations between them.

First scheme

All the base results of the first scheme are illustrated in Figure 5, where the shot gathers for each shot

position are shown in a global view (Figures 5 a), b), c) and d)) for symmetry studies and in a refined view

(Figures 5 e) and f)) for accuracy and reciprocity studies.

(a) (b)

(c) (d)

(e) (f)

Figure 5: First scheme. Shot gathers for position 1 (a), 3 (b), 2 (c) and 4 (d) to build the symmetry studies.
Shot gathers for the central position (e) and (f) to build the reciprocity and detailed accuracy studies. The
colors indicates the methods and the line style indicates the model sample spacing. About the colors we have
blue for Podvin and Lecomte (1991), yellow for Jeong and Whitaker (2008) and green for Noble et al. (2014).
About the line styles we have solid for 25 m, dashed for 50 m and dash-dotted for 100 m. The reciprocity study
only was done using the model with spatial discretization parameter of 25 m.
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The symmetry analysis about symmetric shots following the acquisition geometry in Figure 2 is presented in

Figure 6. The vertical axis is the time error in milliseconds and the horizontal axis is the receiver indexes of a

circular configuration. The symmetry study was done using the results of Figure 5 a) subtracted by the travel

times in Figure 5 b) in its reverted indexation. This operation is shown on Figures 6 a), c) and e) for sample

spacing of 100, 50 and 25 m respectively. The same analysis was done for the other pair of symmetrical shots

illustrated in its raw form in Figures 5 c) and d), which the results are shown in Figures 6 b), d) and f). The

eikonal solvers respected the symmetry employed by the acquisition geometry, just the Podvin and Lecomte

(1991) formulation 25 m sample spacing case that appeared some noise in a scale of 1 millisecond. It shows

that the travel times are being computed equally in entire circular geometry independent of geometry direction.

That is a great information to use eikonal equation in target oriented reservoir monitoring studies with circular

geometry.

(a) (b)

(c) (d)

(e) (f)

Figure 6: Symmetry results for the first s cheme. a), c) and e) are the symmetrical shots analysis for positions 1 
and 3 with discretization parameter of 100 m, 50 m and 25 m respectively. b), d) and f) are the symmetrical 
shots analysis for positions 2 and 4 with discretization parameter of 100 m, 50 m and 25 m respectively. The 
color convention of eikonal solvers is applied, but the resulted lines are overlapped. e) and f) present some noise 
artifacts but is smaller than common seismic exploration resolution.

The regional accuracy study is done by computing the analytical solution subtracted by the numerical

formulations for each discretization parameter shown in Figures 5 a), b), c) and d). To optimize the figure, 

the symmetrical shots will be plotted at the same image where for shots 1 and 2 the line style is solid, and for

shots 3 and 4 the line style is dashed with opacity. Figure 7 shows the accuracy of travel times for external 

shots 1,2,3 and 4. This analysis is possible subtracting the analytical solution by the numerical results for each

eikonal solver using specific model sample s pacing. Figure 7  presents the results with the same scale to show that 

travel time errors decrease with discretization parameter refinement. It happens just because of finite difference 

operators can generate better results with thin grid spacing. Note that the formulation with larger difference 

between analytic errors is the Fast Iterative Method and the formulation with the smaller errors is the accurate 

Fast Sweeping Method. The four external shots run time for each numerical method are registered in Table 1.

According to the Table 1 results, the fastest algorithm is the Fast Iterative method. The classical formulation
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10 3D REFRACTION TRAVEL TIME ACCURACY STUDY IN HIGH CONTRASTED MEDIA

appears not so computationally efficient with the 100 m of sample spacing, but when the discretization parameter

decreases it becomes faster than the Fast Sweeping Method. It is the implication of the hardware used to

compute each method, when GPU is activated, lager parallel processes work better than larger serial processes.

The storage model is counting total grid points divided by 1 Mega Byte, for example a 25 m model has

45× 881× 881× 4 / 1024 / 1024 ≈ 133 MB.

(a) (b)

(c) (d)

(e) (f)

Figure 7: Accuracy results for external shots of the first scheme. a), c) and e) are the shots 1 and 3 accuracy
respecting the color and line style convention: Blue for Podvin and Lecomte (1991), yellow for Jeong and
Whitaker (2008) and green for Noble et al. (2014). The solid lines represent the shots 1 and 2 errors, on the
other hand the dashed lines represent the shots 3 and 4 errors. The scale of errors are the same to validate the
error decreasing with grid refinement.

Table 1: Execution time for external shots on first approach and the storage of each model.

100 m 50 m 25 m

Podvin and Lecomte (1991) 4.469 s 5.557 s 60.269 s

Jeong and Whitaker (2008) 0.523 s 3.761 s 53.408 s

Noble et al. (2014) 2.485 s 12.113 s 92.937 s

Model storage 2.2 MB 17 MB 133 MB

The central shot of the first scheme with the accuracy and the reciprocity study is shown separately where

Figure 8 shows only the accuracy results and Figure 9 shows the reciprocity results. The expected behavior of

circular geometry survey with a central shot results is a constant travel time as the analytical solution computes.

The analytical equation show that for central shot the travel times response is a constant time for all receivers.

Looking at Figures 8 a), b) and c) carefully, the maximum difference error registered occurs in −120, −350 and

−5 ms respectively. Because of that, the most accurate method is the Noble et al. (2014) formulation for this

case due to the magnitude of difference between analytical and numerical solutions.
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(a)

(b)

(c)

Figure 8: Central shot error comparison for the first scheme. a) Podvin and Lecomte (1991), b) Jeong and
Whitaker (2008) and c) Noble et al. (2014) formulations. The line styles represent the model sample spacing,
where solid lines are for 25 m, dashed for 50 m and dash-dotted for 100 m spacing.

(a)

(b)

(c)

Figure 9: Reciprocal time accuracy study for the first s cheme. Solid l ines represent the shot to receiver records 
and opaque lines the receiver to shot records. a) Podvin and Lecomte (1991), b) Jeong and Whitaker (2008) and 
c) Noble et al. (2014) formulations. The dashed line in part c) represents the adjusted travel times caused by a 
wrong initialization in Noble et al. (2014) algorithm.
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12 3D REFRACTION TRAVEL TIME ACCURACY STUDY IN HIGH CONTRASTED MEDIA

Figure 9 shows the reciprocity travel time errors behavior of 25 m sample spacing comparison. The results in

Figures 9 a) and b) fit well between forward and reciprocity travel times and in Figure 9 h) the difference had

huge errors initially. These errors are caused because Fast Sweeping Method was not initialized perfectly at all

possible directions. When we start the eikonal solution, an initialization is compute the analytical travel time to

fill all points surrounding the source with exact solution. After that, the travel times respect the reciprocity

principle very well (Figure 9 c) - dashed line). The sinuous behavior in all travel times is because the Cartesian

coordinate has an intrinsic azimutal imprecision (Alkhalifah and Fomel, 2001; White et al., 2020). The run

time of central shot for all numerical methods and the reciprocity run time for 1257 shots are shown in Table 2.

Estimated reciprocity run time is computed based on the run time of 25 m sample spacing.

Table 2: Execution run time for central shot on first approach and its reciprocity estimated and run time.

100 m 50 m 25 m Reciprocity estimated Reciprocity run

Podvin (1991) 1.171 s 2.052 s 10.416 s 3 h 38 min 12 s 3 h 22 min 38 s

Jeong (2008) 0.379 s 1.132 s 8.211 s 2 h 52 min 5 s 2 h 43 min 25 s

Noble (2014) 0.808 s 3.747 s 22.794 s 7 h 57 min 32 s 7 h 12 min 34 s

Second scheme

Results about the second scheme appear on Figure 10 from acquisition geometry shown on Figure 3. It is

used three geometry circles with 7, 10 and 13 km of radius shown in Figures 10 a), b) and c) respectively. Each

gather reveals the results of travel times difference between analytical equation at the same error scale.

(a) (b) (c)

Figure 10: Resulting gathers for central shot in approach 2: difference to analytical first arrival travel time. All
numerical methods is shown using only model sample spacing of 25 m. a) nearest circle offset with 7 km. b) mid
circle offset with 10 km. c) longest offset with 13 km. The line colors indicate each method: blue for Podvin and
Lecomte (1991), yellow for Jeong and Whitaker (2008) and green for Noble et al. (2014).
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Noble et al. (2014) formulation errors is close to zero and the other ones, Podvin and Lecomte (1991) and

Jeong and Whitaker (2008) formulations, have average errors of −25 ms and −80 ms respectively. However,

on Figure 10 b) and c), when the wavefront propagates through more interfaces, while the Noble et al. (2014)

formulation increase its errors, the Podvin and Lecomte (1991) and the Jeong and Whitaker (2008) formulations

decrease their errors. The expected behavior is to decrease the precision with increasing the number of layers.

Table 3: Run time execution for a central shot using approach 2, the model with three interfaces.

Podvin (1991) Jeong (2008) Noble (2014) Model storage

93.055 s 62.491 s 129.303 s 807 MB

The errors observed with Noble et al. (2014) have almost the same scale on Figures 10 a), b) and c). For

complex models the result might be as accurate as using simple models. The hardware used to compute run time

execution on Tables 1,2, 3 and 4 are the CPU Intel Xeon E-2288G (3.7 GHz) and the GPU Nvidia Quadro 4000 (8

GB). Table 3 shows the run time execution for the three numerical methods using a model with 181×1081×1081

samples. The Jeong and Whitaker (2008) formulation performs better than the other formulations again.

Third scheme

Figure 11 shows the shot 1 in configuration presented in Figure 4. Four windows (Figure 11 a)) are positioned

strategically on seismogram to verify the correlations between first arrivals computed by wave propagation and

travel times calculated via eikonal solvers. Figures 11 b), c), d) and e) show the windows with their respective

signals, red and green, to point out bad and good correlations with numeric seismic waves. Figures 12, 13 and

14 follow the same pattern to verify all directions of propagation in SEG/EAGE Overthrust model. The target

first arrivals registered in seismograms are the first black amplitude because of the zero phase wavelet applied.

Figure 11: Shot 1 in approach 3. a) 6 seconds of seismic data behavior and all zoom windows are shown at 
specific p osition. b), c), d) and e) are the zoom windows plot to show good (green arrows) and bad (red arrows) 
correlations between seismic data and first arrival travel t imes. The methods are plotted on blue (Podvin and 
Lecomte, 1991), yellow (Jeong and Whitaker, 2008) and green (Noble et al., 2014) lines.
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Figure 12: Shot 2 in approach 3. a) 6 seconds of seismic data behavior and all zoom windows are shown at
specific position. b), c), d) and e) are the zoom windows plot to show good (green arrows) and bad (red arrows)
correlations between seismic data and first arrival travel times. The methods are plotted on blue (Podvin and
Lecomte, 1991), yellow (Jeong and Whitaker, 2008) and green (Noble et al., 2014) lines.

Figure 13: Shot 3 in approach 3. a) 6 seconds of seismic data behavior and all zoom windows are shown at
specific position. b), c), d) and e) are the zoom windows plot to show good (green arrows) and bad (red arrows)
correlations between seismic data and first arrival travel times. The methods are plotted on blue (Podvin and
Lecomte, 1991), yellow (Jeong and Whitaker, 2008) and green (Noble et al., 2014) lines.

A visual correlation is done and we noticed that in nearest offsets a good correlation between seismic and the

numerical first arrivals appear in Figures 12 e), 13 c) and 14 b). Only in Figure 11 d), the nearest offsets have

anomalous travel times showing smaller results than the finite difference solution for complete wave equation.

The bad correlations might be caused by the thin layers in model. The eikonal equation may represent that high

velocity thin layers better than the complete finite difference wave equation solution using maximum frequency

of 50 Hz. Long offsets have good correlation as show in Figure 12 c), but not in Figures 11 b), 13 e) and 14

d). The most part of correlation, pointed with green arrows, are good, although some red arrows show bad
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correlations in near and far offsets. In general considering low frequency wave propagation, high offsets and a

model with high velocity thin layers, the correlation between wave equation and eikonal solvers is acceptable for

seismic applications.

To verify performance, the comparison between numerical methods run time, inclusive the wave equation

solver algorithm and the model size in MB, are shown in Table 4. Computationally, is cheaper solve eikonal

equation than acoustic wave equation. Due to the computational effort required to run methods, the hardware

used to execute program are now the CPU Intel Xeon Gold 6248R (3.0 GHz) and the GPU Quadro RTX 6000

(22 GB).

Figure 14: Shot 4 in approach 3. a) 6 seconds of seismic data behavior and all zoom windows are shown at
specific position. b), c), d) and e) are the zoom windows plot to show good (green arrows) and bad (red arrows)
correlations between seismic data and first arrival travel times. The methods are plotted on blue (Podvin and
Lecomte, 1991), yellow (Jeong and Whitaker, 2008) and green (Noble et al., 2014) lines.

Table 4: Four shots run time comparison for approach 3 including wave equation solver and model size.

Podvin (1991) Jeong (2008) Noble (2014) Wave equation Model storage

39 min 40 s 34 min 50 s 40 min 28 s 3 h 5 min 27 s 3647 MB

The Figure 15 shows the difference between Noble et al. (2014) formulation and the other m ethods. For each 

shot, the travel times of the modified Fast Sweeping method i s subtracted by the classic and the Fast Iterative 

method. A mean error per shot is done collecting the travel times per trace and dividing by the total number 

of traces. The average difference b etween Noble e t a l. ( 2014) and Podvin and Lecomte ( 1991) formulations 

is smaller than the difference from Noble et al. (2014) and Jeong and Whitaker (2008) o nes. The travel time 

differences are always negative, so the methods present the same aspects shown in approaches 1  and 2 . Podvin 

and Lecomte (1991) present better results for high contrast model with a mean difference of -6 m s. The Fast 

Iterative Method travel times present a higher mean error and it can cause wrong seismic analysis when used as 

a kernel of some methodology.
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(a)

(b)

(c)

(d)

Figure 15: Comparison of differences between Noble et al. (2014) with Podvin and Lecomte (1991) and Jeong
and Whitaker (2008) formulations to verify the travel time discrepancy assuming Noble et al. (2014) as the most
accurate solver. The difference in milliseconds are negative, in other words, the classic and the Fast Iterative
method present a travel time higher than the Fast Sweeping method.

CONCLUSION

From the results among comparisons with Podvin and Lecomte (1991), Jeong and Whitaker (2008), and Noble

et al. (2014) formulations for solve eikonal equation, the most accurate method is presented as the modified Fast

Sweeping Method. Three approaches are applied and, in large scale situations, as shown in approach 3, the most

accurate method does not differ too much in performance from the others. Then this Fast Sweeping Method

can be applied on huge simulations. The classic method, shows great differences among reference travel time in

approaches 1 and 2. However, for approach 3, with a complex model, Podvin and Lecomte (1991) formulation

does not exhibit significant differences from the most accurate solver. Then, the classic formulation still appears

as a great eikonal solver in strongly heterogeneous media. The Fast Iterative Method demonstrates the highest

performance and a smaller precision in all studied cases. So, this method might be used when the travel times

precision is not necessary such as pathfinding problem. A future work suggestion is to verify the improved

Fast Iterative Method solution to check accuracy compared with the GPU implementation of the accurate Fast

Sweeping Method. Accuracy and performance on seismic imaging experiments such as tomography or depth

migration could be taken into account to verify the best method applicability.
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DATA AND MATERIALS AVAILABILITY

The first approach, using a simple model to verify symmetry and accuracy, is the experiment presented in an

expanded abstract applied on IX Brazilian Geophysical Symposium. The paper is stored on the official Brazilian

Geophysical Society website and the codes used to compute first arrivals are in author’s GitHub repository as

the experiment presented in the Symposium. The classical method can be found in the global-search earthquake

Location in 3D media GitHub repository, the Fast Iterative Method original code can be found in structured

eikonal GitHub repository and the accurate fast sweeping method can be found in FTeik-Eikonal-Solver GitHub

repository. Recently the Fast Iterative Method original code was integrated in the author’s github repository

and the Accurate Fast sweeping method was improved in performance, so future works are coming soon.
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